forked from espressif/arduino-esp32
-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathesp32-hal-adc.c
273 lines (235 loc) · 10.6 KB
/
esp32-hal-adc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-adc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "rom/ets_sys.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "soc/rtc_io_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/sens_reg.h"
static uint8_t __analogAttenuation = 3;//11db
static uint8_t __analogWidth = 3;//12 bits
static uint8_t __analogCycles = 8;
static uint8_t __analogSamples = 0;//1 sample
static uint8_t __analogClockDiv = 1;
// Width of returned answer ()
static uint8_t __analogReturnedWidth = 12;
void __analogSetWidth(uint8_t bits){
if(bits < 9){
bits = 9;
} else if(bits > 12){
bits = 12;
}
__analogReturnedWidth = bits;
__analogWidth = bits - 9;
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, __analogWidth, SENS_SAR1_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, __analogWidth, SENS_SAR1_SAMPLE_BIT_S);
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, __analogWidth, SENS_SAR2_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, __analogWidth, SENS_SAR2_SAMPLE_BIT_S);
}
void __analogSetCycles(uint8_t cycles){
__analogCycles = cycles;
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_CYCLE, __analogCycles, SENS_SAR1_SAMPLE_CYCLE_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_CYCLE, __analogCycles, SENS_SAR2_SAMPLE_CYCLE_S);
}
void __analogSetSamples(uint8_t samples){
if(!samples){
return;
}
__analogSamples = samples - 1;
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_NUM, __analogSamples, SENS_SAR1_SAMPLE_NUM_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_NUM, __analogSamples, SENS_SAR2_SAMPLE_NUM_S);
}
void __analogSetClockDiv(uint8_t clockDiv){
if(!clockDiv){
return;
}
__analogClockDiv = clockDiv;
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_CLK_DIV, __analogClockDiv, SENS_SAR1_CLK_DIV_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_CLK_DIV, __analogClockDiv, SENS_SAR2_CLK_DIV_S);
}
void __analogSetAttenuation(adc_attenuation_t attenuation)
{
__analogAttenuation = attenuation & 3;
uint32_t att_data = 0;
int i = 10;
while(i--){
att_data |= __analogAttenuation << (i * 2);
}
WRITE_PERI_REG(SENS_SAR_ATTEN1_REG, att_data & 0xFFFF);//ADC1 has 8 channels
WRITE_PERI_REG(SENS_SAR_ATTEN2_REG, att_data);
}
void IRAM_ATTR __analogInit(){
static bool initialized = false;
if(initialized){
return;
}
__analogSetAttenuation(__analogAttenuation);
__analogSetCycles(__analogCycles);
__analogSetSamples(__analogSamples + 1);//in samples
__analogSetClockDiv(__analogClockDiv);
__analogSetWidth(__analogWidth + 9);//in bits
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_DATA_INV);
SET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE_M); //SAR ADC1 controller (in RTC) is started by SW
SET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M); //SAR ADC1 pad enable bitmap is controlled by SW
SET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE_M); //SAR ADC2 controller (in RTC) is started by SW
SET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M); //SAR ADC2 pad enable bitmap is controlled by SW
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_M); //force XPD_SAR=0, use XPD_FSM
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S); //force XPD_AMP=0
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_CTRL_REG, 0xfff << SENS_AMP_RST_FB_FSM_S); //clear FSM
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S);
while (GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR1_REG, 0x7, SENS_MEAS_STATUS_S) != 0); //wait det_fsm==
initialized = true;
}
void __analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation)
{
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0 || attenuation > 3){
return ;
}
__analogInit();
if(channel > 7){
SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, attenuation, ((channel - 10) * 2));
} else {
SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, attenuation, (channel * 2));
}
}
bool IRAM_ATTR __adcAttachPin(uint8_t pin){
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
return false;//not adc pin
}
int8_t pad = digitalPinToTouchChannel(pin);
if(pad >= 0){
uint32_t touch = READ_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG);
if(touch & (1 << pad)){
touch &= ~((1 << (pad + SENS_TOUCH_PAD_OUTEN2_S))
| (1 << (pad + SENS_TOUCH_PAD_OUTEN1_S))
| (1 << (pad + SENS_TOUCH_PAD_WORKEN_S)));
WRITE_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG, touch);
}
} else if(pin == 25){
CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_XPD_DAC | RTC_IO_PDAC1_DAC_XPD_FORCE);//stop dac1
} else if(pin == 26){
CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_XPD_DAC | RTC_IO_PDAC2_DAC_XPD_FORCE);//stop dac2
}
pinMode(pin, ANALOG);
__analogInit();
return true;
}
bool IRAM_ATTR __adcStart(uint8_t pin){
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
return false;//not adc pin
}
if(channel > 9){
channel -= 10;
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_SAR_M);
SET_PERI_REG_BITS(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD, (1 << channel), SENS_SAR2_EN_PAD_S);
SET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_SAR_M);
} else {
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_SAR_M);
SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD, (1 << channel), SENS_SAR1_EN_PAD_S);
SET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_SAR_M);
}
return true;
}
bool IRAM_ATTR __adcBusy(uint8_t pin){
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
return false;//not adc pin
}
if(channel > 7){
return (GET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_DONE_SAR) == 0);
}
return (GET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DONE_SAR) == 0);
}
uint16_t IRAM_ATTR __adcEnd(uint8_t pin)
{
uint16_t value = 0;
int8_t channel = digitalPinToAnalogChannel(pin);
if(channel < 0){
return 0;//not adc pin
}
if(channel > 7){
while (GET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_DONE_SAR) == 0); //wait for conversion
value = GET_PERI_REG_BITS2(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_DATA_SAR, SENS_MEAS2_DATA_SAR_S);
} else {
while (GET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DONE_SAR) == 0); //wait for conversion
value = GET_PERI_REG_BITS2(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DATA_SAR, SENS_MEAS1_DATA_SAR_S);
}
// Shift result if necessary
uint8_t from = __analogWidth + 9;
if (from == __analogReturnedWidth) {
return value;
}
if (from > __analogReturnedWidth) {
return value >> (from - __analogReturnedWidth);
}
return value << (__analogReturnedWidth - from);
}
uint16_t IRAM_ATTR __analogRead(uint8_t pin)
{
if(!__adcAttachPin(pin) || !__adcStart(pin)){
return 0;
}
return __adcEnd(pin);
}
void __analogReadResolution(uint8_t bits)
{
if(!bits || bits > 16){
return;
}
__analogSetWidth(bits); // hadware from 9 to 12
__analogReturnedWidth = bits; // software from 1 to 16
}
int __hallRead() //hall sensor without LNA
{
int Sens_Vp0;
int Sens_Vn0;
int Sens_Vp1;
int Sens_Vn1;
pinMode(36, ANALOG);
pinMode(39, ANALOG);
SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE_M); // hall sens force enable
SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_XPD_HALL); // xpd hall
SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE_M); // phase force
CLEAR_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE); // hall phase
Sens_Vp0 = __analogRead(36);
Sens_Vn0 = __analogRead(39);
SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE);
Sens_Vp1 = __analogRead(36);
Sens_Vn1 = __analogRead(39);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE);
CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE);
return (Sens_Vp1 - Sens_Vp0) - (Sens_Vn1 - Sens_Vn0);
}
extern uint16_t analogRead(uint8_t pin) __attribute__ ((weak, alias("__analogRead")));
extern void analogReadResolution(uint8_t bits) __attribute__ ((weak, alias("__analogReadResolution")));
extern void analogSetWidth(uint8_t bits) __attribute__ ((weak, alias("__analogSetWidth")));
extern void analogSetCycles(uint8_t cycles) __attribute__ ((weak, alias("__analogSetCycles")));
extern void analogSetSamples(uint8_t samples) __attribute__ ((weak, alias("__analogSetSamples")));
extern void analogSetClockDiv(uint8_t clockDiv) __attribute__ ((weak, alias("__analogSetClockDiv")));
extern void analogSetAttenuation(adc_attenuation_t attenuation) __attribute__ ((weak, alias("__analogSetAttenuation")));
extern void analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation) __attribute__ ((weak, alias("__analogSetPinAttenuation")));
extern int hallRead() __attribute__ ((weak, alias("__hallRead")));
extern bool adcAttachPin(uint8_t pin) __attribute__ ((weak, alias("__adcAttachPin")));
extern bool adcStart(uint8_t pin) __attribute__ ((weak, alias("__adcStart")));
extern bool adcBusy(uint8_t pin) __attribute__ ((weak, alias("__adcBusy")));
extern uint16_t adcEnd(uint8_t pin) __attribute__ ((weak, alias("__adcEnd")));