forked from espressif/arduino-esp32
-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathesp32-hal-ledc.c
180 lines (166 loc) · 8.24 KB
/
esp32-hal-ledc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "rom/ets_sys.h"
#include "esp32-hal-matrix.h"
#include "soc/dport_reg.h"
#include "soc/ledc_reg.h"
#include "soc/ledc_struct.h"
xSemaphoreHandle _ledc_sys_lock;
#define LEDC_MUTEX_LOCK() do {} while (xSemaphoreTake(_ledc_sys_lock, portMAX_DELAY) != pdPASS)
#define LEDC_MUTEX_UNLOCK() xSemaphoreGive(_ledc_sys_lock)
/*
* LEDC Chan to Group/Channel/Timer Mapping
** ledc: 0 => Group: 0, Channel: 0, Timer: 0
** ledc: 1 => Group: 0, Channel: 1, Timer: 0
** ledc: 2 => Group: 0, Channel: 2, Timer: 1
** ledc: 3 => Group: 0, Channel: 3, Timer: 1
** ledc: 4 => Group: 0, Channel: 4, Timer: 2
** ledc: 5 => Group: 0, Channel: 5, Timer: 2
** ledc: 6 => Group: 0, Channel: 6, Timer: 3
** ledc: 7 => Group: 0, Channel: 7, Timer: 3
** ledc: 8 => Group: 1, Channel: 0, Timer: 0
** ledc: 9 => Group: 1, Channel: 1, Timer: 0
** ledc: 10 => Group: 1, Channel: 2, Timer: 1
** ledc: 11 => Group: 1, Channel: 3, Timer: 1
** ledc: 12 => Group: 1, Channel: 4, Timer: 2
** ledc: 13 => Group: 1, Channel: 5, Timer: 2
** ledc: 14 => Group: 1, Channel: 6, Timer: 3
** ledc: 15 => Group: 1, Channel: 7, Timer: 3
*/
//uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num));
void ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
{
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
uint8_t group=(chan/8), timer=((chan/2)%4);
static bool tHasStarted = false;
if(!tHasStarted) {
tHasStarted = true;
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
ledc_dev->conf.apb_clk_sel = 1;//LS use apb clock
_ledc_sys_lock = xSemaphoreCreateMutex();
}
LEDC_MUTEX_LOCK();
ledc_dev->timer_group[group].timer[timer].conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
ledc_dev->timer_group[group].timer[timer].conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
ledc_dev->timer_group[group].timer[timer].conf.tick_sel = apb_clk;//apb clock
if(group) {
ledc_dev->timer_group[group].timer[timer].conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
}
ledc_dev->timer_group[group].timer[timer].conf.pause = 0;
ledc_dev->timer_group[group].timer[timer].conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
ledc_dev->timer_group[group].timer[timer].conf.rst = 0;
LEDC_MUTEX_UNLOCK();
}
uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num)
{
uint64_t clk_freq = APB_CLK_FREQ;
clk_freq <<= 8;//div_num is 8 bit decimal
uint32_t div_num = (clk_freq >> bit_num) / freq;
bool apb_clk = true;
if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
clk_freq /= 80;
div_num = (clk_freq >> bit_num) / freq;
if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
div_num = LEDC_DIV_NUM_HSTIMER0_V;//lowest clock possible
}
apb_clk = false;
} else if(div_num < 256) {
div_num = 256;//highest clock possible
}
ledcSetupTimer(chan, div_num, bit_num, apb_clk);
return (clk_freq >> bit_num) / div_num;
}
void ledcSetupChannel(uint8_t chan, uint8_t idle_level)
{
uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
LEDC_MUTEX_LOCK();
ledc_dev->channel_group[group].channel[channel].conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
ledc_dev->channel_group[group].channel[channel].conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
ledc_dev->channel_group[group].channel[channel].hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
ledc_dev->channel_group[group].channel[channel].conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
ledc_dev->channel_group[group].channel[channel].duty.duty = 0;
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4);
} else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0;
}
LEDC_MUTEX_UNLOCK();
}
uint32_t ledcSetup(uint8_t chan, uint32_t freq, uint8_t bit_num)
{
if(chan > 15) {
return 0;
}
uint32_t res_freq = ledcSetupTimerFreq(chan, freq, bit_num);
ledcSetupChannel(chan, LOW);
return res_freq;
}
void ledcWrite(uint8_t chan, uint32_t duty)
{
if(chan > 15) {
return;
}
uint8_t group=(chan/8), channel=(chan%8);
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
LEDC_MUTEX_LOCK();
ledc_dev->channel_group[group].channel[channel].duty.duty = duty << 4;//25 bit (21.4)
if(duty) {
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 1;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val |= BIT(4);
} else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 1;
}
} else {
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4);
} else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0;
}
}
LEDC_MUTEX_UNLOCK();
}
uint32_t ledcRead(uint8_t chan)
{
if(chan > 15) {
return 0;
}
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
return ledc_dev->channel_group[chan/8].channel[chan%8].duty.duty >> 4;
}
void ledcAttachPin(uint8_t pin, uint8_t chan)
{
if(chan > 15) {
return;
}
pinMode(pin, OUTPUT);
pinMatrixOutAttach(pin, ((chan/8)?LEDC_LS_SIG_OUT0_IDX:LEDC_HS_SIG_OUT0_IDX) + (chan%8), false, false);
}
void ledcDetachPin(uint8_t pin)
{
pinMatrixOutDetach(pin, false, false);
}