-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathHeapObject.cpp
1084 lines (922 loc) · 37.7 KB
/
HeapObject.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- HeapObject.cpp - Swift Language ABI Allocation Support -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Allocation ABI Shims While the Language is Bootstrapped
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Once.h"
#include "swift/ABI/System.h"
#include "MetadataCache.h"
#include "Private.h"
#include "RuntimeInvocationsTracking.h"
#include "WeakReference.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/CustomRRABI.h"
#include "swift/Runtime/InstrumentsSupport.h"
#include "swift/shims/GlobalObjects.h"
#include "swift/shims/RuntimeShims.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <new>
#if SWIFT_OBJC_INTEROP
# include <objc/NSObject.h>
# include <objc/runtime.h>
# include <objc/message.h>
# include <objc/objc.h>
# include "swift/Runtime/ObjCBridge.h"
# include <dlfcn.h>
#endif
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
# include <malloc_type_private.h>
#endif
#include "Leaks.h"
using namespace swift;
// Check to make sure the runtime is being built with a compiler that
// supports the Swift calling convention.
//
// If the Swift calling convention is not in use, functions such as
// swift_allocBox and swift_makeBoxUnique that rely on their return value
// being passed in a register to be compatible with Swift may miscompile on
// some platforms and silently fail.
#if !__has_attribute(swiftcall)
#error "The runtime must be built with a compiler that supports swiftcall."
#endif
/// Returns true if the pointer passed to a native retain or release is valid.
/// If false, the operation should immediately return.
SWIFT_ALWAYS_INLINE
static inline bool isValidPointerForNativeRetain(const void *p) {
#if defined(__arm64__) && (__POINTER_WIDTH__ == 32)
// arm64_32 is special since it has 32-bit pointers but __arm64__ is true.
// Catch it early since __POINTER_WIDTH__ is generally non-portable.
return p != nullptr;
#elif defined(__ANDROID__) && defined(__aarch64__)
// Check the top of the second byte instead, since Android AArch64 reserves
// the top byte for its own pointer tagging since Android 11.
return (intptr_t)((uintptr_t)p << 8) > 0;
#elif defined(__x86_64__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) || defined(__s390x__) || (defined(__riscv) && __riscv_xlen == 64) || (defined(__powerpc64__) && defined(__LITTLE_ENDIAN__))
// On these platforms, except s390x, the upper half of address space is reserved for the
// kernel, so we can assume that pointer values in this range are invalid.
// On s390x it is theoretically possible to have high bit set but in practice
// it is unlikely.
return (intptr_t)p > 0;
#else
return p != nullptr;
#endif
}
// Call the appropriate implementation of the `name` function, passing `args`
// to the call. This checks for an override in the function pointer. If an
// override is present, it calls that override. Otherwise it directly calls
// the default implementation. This allows the compiler to inline the default
// implementation and avoid the performance penalty of indirecting through
// the function pointer in the common case.
//
// NOTE: the memcpy and asm("") naming shenanigans are to convince the compiler
// not to emit a bunch of ptrauth instructions just to perform the comparison.
// We only want to authenticate the function pointer if we actually call it.
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask)
asm("__swift_allocObject_");
static HeapObject *_swift_retain_(HeapObject *object) asm("__swift_retain_");
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n)
asm("__swift_retain_n_");
static void _swift_release_(HeapObject *object) asm("__swift_release_");
static void _swift_release_n_(HeapObject *object, uint32_t n)
asm("__swift_release_n_");
static HeapObject *_swift_tryRetain_(HeapObject *object)
asm("__swift_tryRetain_");
#ifdef SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
#define CALL_IMPL(name, args) do { \
if (SWIFT_UNLIKELY(_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.load(std::memory_order_relaxed))) \
return _ ## name args; \
return _ ## name ## _ args; \
} while(0)
#define CALL_IMPL_CHECK(name, args) do { \
void *fptr; \
memcpy(&fptr, (void *)&_ ## name, sizeof(fptr)); \
extern char _ ## name ## _as_char asm("__" #name "_"); \
fptr = __ptrauth_swift_runtime_function_entry_strip(fptr); \
if (SWIFT_UNLIKELY(fptr != &_ ## name ## _as_char)) { \
if (SWIFT_UNLIKELY(!_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.load(std::memory_order_relaxed))) { \
_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.store(true, std::memory_order_relaxed); \
} \
return _ ## name args; \
} \
return _ ## name ## _ args; \
} while(0)
#else
// If retain/release etc. aren't overridable, just call the real implementation.
#define CALL_IMPL(name, args) \
return _ ## name ## _ args;
#define CALL_IMPL_CHECK(name, args) \
return _ ## name ## _ args;
#endif
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
static malloc_type_summary_t
computeMallocTypeSummary(const HeapMetadata *heapMetadata) {
assert(isHeapMetadataKind(heapMetadata->getKind()));
auto *classMetadata = heapMetadata->getClassObject();
// Objc
if (classMetadata && classMetadata->isPureObjC())
return {.type_kind = MALLOC_TYPE_KIND_OBJC};
return {.type_kind = MALLOC_TYPE_KIND_SWIFT};
}
static malloc_type_id_t getMallocTypeId(const HeapMetadata *heapMetadata) {
uint64_t metadataPtrBits = reinterpret_cast<uint64_t>(heapMetadata);
uint32_t hash = (metadataPtrBits >> 32) ^ (metadataPtrBits >> 0);
malloc_type_descriptor_t desc = {
.hash = hash,
.summary = computeMallocTypeSummary(heapMetadata)
};
return desc.type_id;
}
#endif // SWIFT_STDLIB_HAS_MALLOC_TYPE
#ifdef SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_allocObject)(
HeapMetadata const *metadata, size_t requiredSize,
size_t requiredAlignmentMask) = _swift_allocObject_;
SWIFT_RUNTIME_EXPORT
std::atomic<bool> _swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly = false;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain)(HeapObject *object) =
_swift_retain_;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain_n)(
HeapObject *object, uint32_t n) = _swift_retain_n_;
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release)(HeapObject *object) =
_swift_release_;
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release_n)(HeapObject *object,
uint32_t n) = _swift_release_n_;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_tryRetain)(HeapObject *object) =
_swift_tryRetain_;
#endif // SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
assert(isAlignmentMask(requiredAlignmentMask));
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
auto object = reinterpret_cast<HeapObject *>(swift_slowAllocTyped(
requiredSize, requiredAlignmentMask, getMallocTypeId(metadata)));
#else
auto object = reinterpret_cast<HeapObject *>(
swift_slowAlloc(requiredSize, requiredAlignmentMask));
#endif
// NOTE: this relies on the C++17 guaranteed semantics of no null-pointer
// check on the placement new allocator which we have observed on Windows,
// Linux, and macOS.
::new (object) HeapObject(metadata);
// If leak tracking is enabled, start tracking this object.
SWIFT_LEAKS_START_TRACKING_OBJECT(object);
SWIFT_RT_TRACK_INVOCATION(object, swift_allocObject);
return object;
}
HeapObject *swift::swift_allocObject(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
CALL_IMPL_CHECK(swift_allocObject, (metadata, requiredSize, requiredAlignmentMask));
}
HeapObject *
swift::swift_initStackObject(HeapMetadata const *metadata,
HeapObject *object) {
object->metadata = metadata;
object->refCounts.initForNotFreeing();
SWIFT_RT_TRACK_INVOCATION(object, swift_initStackObject);
return object;
}
struct InitStaticObjectContext {
HeapObject *object;
HeapMetadata const *metadata;
};
// TODO: We could generate inline code for the fast-path, i.e. the metadata
// pointer is already set. That would be a performance/codesize tradeoff.
HeapObject *
swift::swift_initStaticObject(HeapMetadata const *metadata,
HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_initStaticObject);
// The token is located at a negative offset from the object header.
swift_once_t *token = ((swift_once_t *)object) - 1;
// We have to initialize the header atomically. Otherwise we could reset the
// refcount to 1 while another thread already incremented it - and would
// decrement it to 0 afterwards.
InitStaticObjectContext Ctx = { object, metadata };
swift::once(
*token,
[](void *OpaqueCtx) {
InitStaticObjectContext *Ctx = (InitStaticObjectContext *)OpaqueCtx;
Ctx->object->metadata = Ctx->metadata;
Ctx->object->refCounts.initImmortal();
},
&Ctx);
return object;
}
void
swift::swift_verifyEndOfLifetime(HeapObject *object) {
if (object->refCounts.getCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Stack object escaped\n");
if (object->refCounts.getUnownedCount() != 1)
swift::fatalError(/* flags = */ 0,
"Fatal error: Unowned reference to stack object\n");
if (object->refCounts.getWeakCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Weak reference to stack object\n");
}
/// Allocate a reference-counted object on the heap that
/// occupies <size> bytes of maximally-aligned storage. The object is
/// uninitialized except for its header.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
HeapObject* swift_bufferAllocate(
HeapMetadata const* bufferType, size_t size, size_t alignMask)
{
return swift::swift_allocObject(bufferType, size, alignMask);
}
namespace {
/// Heap object destructor for a generic box allocated with swift_allocBox.
static SWIFT_CC(swift) void destroyGenericBox(SWIFT_CONTEXT HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Destroy the object inside.
auto *value = metadata->project(o);
metadata->BoxedType->vw_destroy(value);
// Deallocate the box.
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
class BoxCacheEntry {
public:
FullMetadata<GenericBoxHeapMetadata> Data;
BoxCacheEntry(const Metadata *type)
: Data{HeapMetadataHeader{ {/*type layout*/nullptr}, {destroyGenericBox},
{/*vwtable*/ nullptr}},
GenericBoxHeapMetadata{MetadataKind::HeapGenericLocalVariable,
GenericBoxHeapMetadata::getHeaderOffset(type),
type}} {
}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.BoxedType);
}
bool matchesKey(const Metadata *type) const { return type == Data.BoxedType; }
friend llvm::hash_code hash_value(const BoxCacheEntry &value) {
return llvm::hash_value(value.Data.BoxedType);
}
static size_t getExtraAllocationSize(const Metadata *key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
static SimpleGlobalCache<BoxCacheEntry, BoxesTag> Boxes;
BoxPair swift::swift_makeBoxUnique(OpaqueValue *buffer, const Metadata *type,
size_t alignMask) {
auto *inlineBuffer = reinterpret_cast<ValueBuffer*>(buffer);
HeapObject *box = reinterpret_cast<HeapObject *>(inlineBuffer->PrivateData[0]);
if (!swift_isUniquelyReferenced_nonNull_native(box)) {
auto refAndObjectAddr = BoxPair(swift_allocBox(type));
// Compute the address of the old object.
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *oldObjectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
// Copy the data.
type->vw_initializeWithCopy(refAndObjectAddr.buffer, oldObjectAddr);
inlineBuffer->PrivateData[0] = refAndObjectAddr.object;
// Release ownership of the old box.
swift_release(box);
return refAndObjectAddr;
} else {
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *objectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
return BoxPair{box, objectAddr};
}
}
BoxPair swift::swift_allocBox(const Metadata *type) {
// Get the heap metadata for the box.
auto metadata = &Boxes.getOrInsert(type).first->Data;
// Allocate and project the box.
auto allocation = swift_allocObject(metadata, metadata->getAllocSize(),
metadata->getAllocAlignMask());
auto projection = metadata->project(allocation);
return BoxPair{allocation, projection};
}
void swift::swift_deallocBox(HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Move the object to the deallocating state (+1 -> +0).
o->refCounts.decrementFromOneNonAtomic();
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
OpaqueValue *swift::swift_projectBox(HeapObject *o) {
// The compiler will use a nil reference as a way to avoid allocating memory
// for boxes of empty type. The address of an empty value is always undefined,
// so we can just return nil back in this case.
if (!o)
return nullptr;
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
return metadata->project(o);
}
namespace { // Begin anonymous namespace.
struct _SwiftEmptyBoxStorage {
HeapObject header;
};
swift::HeapLocalVariableMetadata _emptyBoxStorageMetadata;
/// The singleton empty box storage object.
_SwiftEmptyBoxStorage _EmptyBoxStorage = {
// HeapObject header;
{
&_emptyBoxStorageMetadata,
}
};
} // End anonymous namespace.
HeapObject *swift::swift_allocEmptyBox() {
auto heapObject = reinterpret_cast<HeapObject*>(&_EmptyBoxStorage);
swift_retain(heapObject);
return heapObject;
}
// Forward-declare this, but define it after swift_release.
extern "C" SWIFT_LIBRARY_VISIBILITY SWIFT_NOINLINE SWIFT_USED void
_swift_release_dealloc(HeapObject *object);
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_retain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
if (isValidPointerForNativeRetain(object)) {
// Return the result of increment() to make the eventual call to
// incrementSlow a tail call, which avoids pushing a stack frame on the fast
// path on ARM64.
return object->refCounts.increment(1);
}
return object;
}
HeapObject *swift::swift_retain(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_retain(object);
#else
CALL_IMPL(swift_retain, (object));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_retain)
HeapObject *swift::swift_nonatomic_retain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(1);
return object;
}
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.increment(n);
return object;
}
HeapObject *swift::swift_retain_n(HeapObject *object, uint32_t n) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_retain_n(object, n);
#else
CALL_IMPL(swift_retain_n, (object, n));
#endif
}
HeapObject *swift::swift_nonatomic_retain_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(n);
return object;
}
SWIFT_ALWAYS_INLINE
static void _swift_release_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(1);
}
void swift::swift_release(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_release(object);
#else
CALL_IMPL(swift_release, (object));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_release)
void swift::swift_nonatomic_release(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(1);
}
SWIFT_ALWAYS_INLINE
static void _swift_release_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(n);
}
void swift::swift_release_n(HeapObject *object, uint32_t n) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_release_n(object, n);
#else
CALL_IMPL(swift_release_n, (object, n));
#endif
}
void swift::swift_nonatomic_release_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(n);
}
size_t swift::swift_retainCount(HeapObject *object) {
if (isValidPointerForNativeRetain(object))
return object->refCounts.getCount();
return 0;
}
size_t swift::swift_unownedRetainCount(HeapObject *object) {
return object->refCounts.getUnownedCount();
}
size_t swift::swift_weakRetainCount(HeapObject *object) {
return object->refCounts.getWeakCount();
}
HeapObject *swift::swift_unownedRetain(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return static_cast<HeapObject *>(swift_nonatomic_unownedRetain(object));
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(1);
return object;
#endif
}
void swift::swift_unownedRelease(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRelease(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFree(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
}
void *swift::swift_nonatomic_unownedRetain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(1);
return object;
}
void swift::swift_nonatomic_unownedRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
HeapObject *swift::swift_unownedRetain_n(HeapObject *object, int n) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_unownedRetain_n(object, n);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(n);
return object;
#endif
}
void swift::swift_unownedRelease_n(HeapObject *object, int n) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRelease_n(object, n);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFree(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
}
HeapObject *swift::swift_nonatomic_unownedRetain_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(n);
return object;
}
void swift::swift_nonatomic_unownedRelease_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_tryRetain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_tryRetain);
if (!isValidPointerForNativeRetain(object))
return nullptr;
#ifdef SWIFT_THREADING_NONE
if (object->refCounts.tryIncrementNonAtomic()) return object;
else return nullptr;
#else
if (object->refCounts.tryIncrement()) return object;
else return nullptr;
#endif
}
HeapObject *swift::swift_tryRetain(HeapObject *object) {
CALL_IMPL(swift_tryRetain, (object));
}
bool swift::swift_isDeallocating(HeapObject *object) {
if (!isValidPointerForNativeRetain(object))
return false;
return object->refCounts.isDeiniting();
}
void swift::swift_setDeallocating(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_setDeallocating);
object->refCounts.decrementFromOneNonAtomic();
}
HeapObject *swift::swift_unownedRetainStrong(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_unownedRetainStrong(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
return object;
#endif
}
HeapObject *swift::swift_nonatomic_unownedRetainStrong(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
return object;
}
void swift::swift_unownedRetainStrongAndRelease(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRetainStrongAndRelease(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFree(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
#endif
}
void swift::swift_nonatomic_unownedRetainStrongAndRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFreeNonAtomic(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
}
void swift::swift_unownedCheck(HeapObject *object) {
if (!isValidPointerForNativeRetain(object)) return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (object->refCounts.isDeiniting())
swift::swift_abortRetainUnowned(object);
}
void _swift_release_dealloc(HeapObject *object) {
asFullMetadata(object->metadata)->destroy(object);
}
#if SWIFT_OBJC_INTEROP
/// Perform the root -dealloc operation for a class instance.
void swift::swift_rootObjCDealloc(HeapObject *self) {
auto metadata = self->metadata;
assert(metadata->isClassObject());
auto classMetadata = static_cast<const ClassMetadata*>(metadata);
assert(classMetadata->isTypeMetadata());
swift_deallocClassInstance(self, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
void swift::swift_deallocClassInstance(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
size_t retainCount = swift_retainCount(object);
if (SWIFT_UNLIKELY(retainCount > 1)) {
auto descriptor = object->metadata->getTypeContextDescriptor();
swift::fatalError(0,
"Object %p of class %s deallocated with non-zero retain "
"count %zd. This object's deinit, or something called "
"from it, may have created a strong reference to self "
"which outlived deinit, resulting in a dangling "
"reference.\n",
object,
descriptor ? descriptor->Name.get() : "<unknown>",
retainCount);
}
#if SWIFT_OBJC_INTEROP
// We need to let the ObjC runtime clean up any associated objects or weak
// references associated with this object.
#if TARGET_OS_SIMULATOR && (__x86_64__ || __i386__)
const bool fastDeallocSupported = false;
#else
const bool fastDeallocSupported = true;
#endif
if (!fastDeallocSupported || !object->refCounts.getPureSwiftDeallocation()) {
objc_destructInstance((id)object);
}
#endif
swift_deallocObject(object, allocatedSize, allocatedAlignMask);
}
/// Variant of the above used in constructor failure paths.
void swift::swift_deallocPartialClassInstance(HeapObject *object,
HeapMetadata const *metadata,
size_t allocatedSize,
size_t allocatedAlignMask) {
if (!object)
return;
// Destroy ivars
auto *classMetadata = _swift_getClassOfAllocated(object)->getClassObject();
assert(classMetadata && "Not a class?");
#if SWIFT_OBJC_INTEROP
// If the object's class is already pure ObjC class, just release it and move
// on. There are no ivar destroyers. This avoids attempting to mutate
// placeholder objects statically created in read-only memory.
if (classMetadata->isPureObjC()) {
objc_release((id)object);
return;
}
#endif
while (classMetadata != metadata) {
#if SWIFT_OBJC_INTEROP
// If we have hit a pure Objective-C class, we won't see another ivar
// destroyer.
if (classMetadata->isPureObjC()) {
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
if (classMetadata->IVarDestroyer)
classMetadata->IVarDestroyer(object);
classMetadata = classMetadata->Superclass->getClassObject();
assert(classMetadata && "Given metatype not a superclass of object type?");
}
#if SWIFT_OBJC_INTEROP
// If this class doesn't use Swift-native reference counting, use
// objc_release instead.
if (!usesNativeSwiftReferenceCounting(classMetadata)) {
// Find the pure Objective-C superclass.
while (!classMetadata->isPureObjC())
classMetadata = classMetadata->Superclass->getClassObject();
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
// The strong reference count should be +1 -- tear down the object
bool shouldDeallocate = object->refCounts.decrementShouldDeinit(1);
assert(shouldDeallocate);
(void) shouldDeallocate;
swift_deallocClassInstance(object, allocatedSize, allocatedAlignMask);
}
#if !defined(__APPLE__) && defined(SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS)
static inline void memset_pattern8(void *b, const void *pattern8, size_t len) {
char *ptr = static_cast<char *>(b);
while (len >= 8) {
memcpy(ptr, pattern8, 8);
ptr += 8;
len -= 8;
}
memcpy(ptr, pattern8, len);
}
#endif
static inline void swift_deallocObjectImpl(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask,
bool isDeiniting) {
assert(isAlignmentMask(allocatedAlignMask));
if (!isDeiniting) {
assert(object->refCounts.isUniquelyReferenced());
object->refCounts.decrementFromOneNonAtomic();
}
assert(object->refCounts.isDeiniting());
SWIFT_RT_TRACK_INVOCATION(object, swift_deallocObject);
#ifdef SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
memset_pattern8((uint8_t *)object + sizeof(HeapObject),
"\xAB\xAD\x1D\xEA\xF4\xEE\xD0\bB9",
allocatedSize - sizeof(HeapObject));
#endif
// If we are tracking leaks, stop tracking this object.
SWIFT_LEAKS_STOP_TRACKING_OBJECT(object);
// Drop the initial weak retain of the object.
//
// If the outstanding weak retain count is 1 (i.e. only the initial
// weak retain), we can immediately call swift_slowDealloc. This is
// useful both as a way to eliminate an unnecessary atomic
// operation, and as a way to avoid calling swift_unownedRelease on an
// object that might be a class object, which simplifies the logic
// required in swift_unownedRelease for determining the size of the
// object.
//
// If we see that there is an outstanding weak retain of the object,
// we need to fall back on swift_release, because it's possible for
// us to race against a weak retain or a weak release. But if the
// outstanding weak retain count is 1, then anyone attempting to
// increase the weak reference count is inherently racing against
// deallocation and thus in undefined-behavior territory. And
// we can even do this with a normal load! Here's why:
//
// 1. There is an invariant that, if the strong reference count
// is > 0, then the weak reference count is > 1.
//
// 2. The above lets us say simply that, in the absence of
// races, once a reference count reaches 0, there are no points
// which happen-after where the reference count is > 0.
//
// 3. To not race, a strong retain must happen-before a point
// where the strong reference count is > 0, and a weak retain
// must happen-before a point where the weak reference count
// is > 0.
//
// 4. Changes to either the strong and weak reference counts occur
// in a total order with respect to each other. This can
// potentially be done with a weaker memory ordering than
// sequentially consistent if the architecture provides stronger
// ordering for memory guaranteed to be co-allocated on a cache
// line (which the reference count fields are).
//
// 5. This function happens-after a point where the strong
// reference count was 0.
//
// 6. Therefore, if a normal load in this function sees a weak
// reference count of 1, it cannot be racing with a weak retain
// that is not racing with deallocation:
//
// - A weak retain must happen-before a point where the weak
// reference count is > 0.
//
// - This function logically decrements the weak reference
// count. If it is possible for it to see a weak reference
// count of 1, then at the end of this function, the
// weak reference count will logically be 0.
//
// - There can be no points after that point where the
// weak reference count will be > 0.
//
// - Therefore either the weak retain must happen-before this
// function, or this function cannot see a weak reference
// count of 1, or there is a race.
//
// Note that it is okay for there to be a race involving a weak
// *release* which happens after the strong reference count drops to
// 0. However, this is harmless: if our load fails to see the
// release, we will fall back on swift_unownedRelease, which does an
// atomic decrement (and has the ability to reconstruct
// allocatedSize and allocatedAlignMask).
//
// Note: This shortcut is NOT an optimization.
// Some allocations passed to swift_deallocObject() are not compatible
// with swift_unownedRelease() because they do not have ClassMetadata.
if (object->refCounts.canBeFreedNow()) {
// object state DEINITING -> DEAD
swift_slowDealloc(object, allocatedSize, allocatedAlignMask);
} else {
// object state DEINITING -> DEINITED
swift_unownedRelease(object);
}
}
void swift::swift_deallocObject(HeapObject *object, size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, true);
}
void swift::swift_deallocUninitializedObject(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, false);
}