-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathimage_sample.py
189 lines (145 loc) · 5.47 KB
/
image_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
import numpy as np
import torch as th
import torchvision.utils as vutils
import torch.distributed as dist
from ddbm import dist_util, logger
from ddbm.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from ddbm.random_util import get_generator
from ddbm.karras_diffusion import karras_sample, forward_sample
from datasets import load_data
from pathlib import Path
from PIL import Image
def get_workdir(exp):
workdir = f'./workdir/{exp}'
return workdir
def main():
args = create_argparser().parse_args()
workdir = os.path.dirname(args.model_path)
## assume ema ckpt format: ema_{rate}_{steps}.pt
split = args.model_path.split("_")
step = int(split[-1].split(".")[0])
sample_dir = Path(workdir)/f'sample_{step}/w={args.guidance}_churn={args.churn_step_ratio}'
dist_util.setup_dist()
if dist.get_rank() == 0:
sample_dir.mkdir(parents=True, exist_ok=True)
logger.configure(dir=workdir)
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys()),
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model = model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
logger.log("sampling...")
all_images = []
all_dataloaders = load_data(
data_dir=args.data_dir,
dataset=args.dataset,
batch_size=args.batch_size,
image_size=args.image_size,
include_test=True,
seed=args.seed,
num_workers=args.num_workers,
)
if args.split =='train':
dataloader = all_dataloaders[1]
elif args.split == 'test':
dataloader = all_dataloaders[2]
else:
raise NotImplementedError
args.num_samples = len(dataloader.dataset)
for i, data in enumerate(dataloader):
x0_image = data[0]
x0 = x0_image.to(dist_util.dev()) * 2 -1
y0_image = data[1].to(dist_util.dev())
y0 = y0_image.to(dist_util.dev()) * 2 - 1
model_kwargs = {'xT': y0}
index = data[2].to(dist_util.dev())
sample, path, nfe = karras_sample(
diffusion,
model,
y0,
x0,
steps=args.steps,
model_kwargs=model_kwargs,
device=dist_util.dev(),
clip_denoised=args.clip_denoised,
sampler=args.sampler,
sigma_min=diffusion.sigma_min,
sigma_max=diffusion.sigma_max,
churn_step_ratio=args.churn_step_ratio,
rho=args.rho,
guidance=args.guidance
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
if index is not None:
gathered_index = [th.zeros_like(index) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_index, index)
gathered_samples = th.cat(gathered_samples)
gathered_index = th.cat(gathered_index)
gathered_samples = gathered_samples[th.argsort(gathered_index)]
else:
gathered_samples = th.cat(gathered_samples)
num_display = min(32, sample.shape[0])
if i == 0 and dist.get_rank() == 0:
vutils.save_image(sample.permute(0,3,1,2)[:num_display].float(), f'{sample_dir}/sample_{i}.png', normalize=True, nrow=int(np.sqrt(num_display)))
if x0 is not None:
vutils.save_image(x0_image[:num_display], f'{sample_dir}/x_{i}.png',nrow=int(np.sqrt(num_display)))
vutils.save_image(y0_image[:num_display]/2+0.5, f'{sample_dir}/y_{i}.png',nrow=int(np.sqrt(num_display)))
all_images.append(gathered_samples.detach().cpu().numpy())
logger.log(f"created {len(all_images) * args.batch_size * dist.get_world_size()} samples")
arr = np.concatenate(all_images, axis=0)
arr = arr[:args.num_samples]
if dist.get_rank() == 0:
shape_str = "x".join([str(x) for x in arr.shape])
out_path = os.path.join(sample_dir, f"samples_{shape_str}_nfe{nfe}.npz")
logger.log(f"saving to {out_path}")
np.savez(out_path, arr)
dist.barrier()
logger.log("sampling complete")
def create_argparser():
defaults = dict(
data_dir="", ## only used in bridge
dataset='edges2handbags',
clip_denoised=True,
num_samples=10000,
batch_size=16,
sampler="heun",
split='train',
churn_step_ratio=0.,
rho=7.0,
steps=40,
model_path="",
exp="",
seed=42,
ts="",
upscale=False,
num_workers=2,
guidance=1.,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()