-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathddbm_train.py
151 lines (126 loc) · 4.36 KB
/
ddbm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Train a diffusion model on images.
"""
import argparse
from ddbm import dist_util, logger
from datasets import load_data
from ddbm.resample import create_named_schedule_sampler
from ddbm.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
sample_defaults,
args_to_dict,
add_dict_to_argparser,
get_workdir
)
from ddbm.train_util import TrainLoop
import torch.distributed as dist
from pathlib import Path
import wandb
import numpy as np
from glob import glob
import os
from datasets.augment import AugmentPipe
def main(args):
workdir = get_workdir(args.exp)
Path(workdir).mkdir(parents=True, exist_ok=True)
dist_util.setup_dist()
logger.configure(dir=workdir)
if dist.get_rank() == 0:
name = args.exp if args.resume_checkpoint == "" else args.exp + '_resume'
wandb.init(project="bridge", group=args.exp,name=name, config=vars(args), mode='online' if not args.debug else 'disabled')
logger.log("creating model and diffusion...")
data_image_size = args.image_size
if args.resume_checkpoint == "":
model_ckpts = list(glob(f'{workdir}/*model*[0-9].*'))
if len(model_ckpts) > 0:
max_ckpt = max(model_ckpts, key=lambda x: int(x.split('model_')[-1].split('.')[0]))
if os.path.exists(max_ckpt):
args.resume_checkpoint = max_ckpt
if dist.get_rank() == 0:
logger.log('Resuming from checkpoint: ', max_ckpt)
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.to(dist_util.dev())
if dist.get_rank() == 0:
wandb.watch(model, log='all')
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
if args.batch_size == -1:
batch_size = args.global_batch_size // dist.get_world_size()
if args.global_batch_size % dist.get_world_size() != 0:
logger.log(
f"warning, using smaller global_batch_size of {dist.get_world_size()*batch_size} instead of {args.global_batch_size}"
)
else:
batch_size = args.batch_size
if dist.get_rank() == 0:
logger.log("creating data loader...")
data, test_data = load_data(
data_dir=args.data_dir,
dataset=args.dataset,
batch_size=batch_size,
image_size=data_image_size,
num_workers=args.num_workers,
)
if args.use_augment:
augment = AugmentPipe(
p=0.12,xflip=1e8, yflip=1, scale=1, rotate_frac=1, aniso=1, translate_frac=1
)
else:
augment = None
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
train_data=data,
test_data=test_data,
batch_size=batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
test_interval=args.test_interval,
save_interval=args.save_interval,
save_interval_for_preemption=args.save_interval_for_preemption,
resume_checkpoint=args.resume_checkpoint,
workdir=workdir,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
augment_pipe=augment,
**sample_defaults()
).run_loop()
def create_argparser():
defaults = dict(
data_dir="",
dataset='edges2handbags',
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
global_batch_size=2048,
batch_size=-1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
test_interval=500,
save_interval=10000,
save_interval_for_preemption=50000,
resume_checkpoint="",
exp='',
use_fp16=False,
fp16_scale_growth=1e-3,
debug=False,
num_workers=2,
use_augment=False
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
args = create_argparser().parse_args()
main(args)