-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmisc.py
264 lines (229 loc) · 11.1 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
import re
import contextlib
import numpy as np
import torch
import warnings
#----------------------------------------------------------------------------
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
# same constant is used multiple times.
_constant_cache = dict()
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
value = np.asarray(value)
if shape is not None:
shape = tuple(shape)
if dtype is None:
dtype = torch.get_default_dtype()
if device is None:
device = torch.device('cpu')
if memory_format is None:
memory_format = torch.contiguous_format
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
tensor = _constant_cache.get(key, None)
if tensor is None:
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
if shape is not None:
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
tensor = tensor.contiguous(memory_format=memory_format)
_constant_cache[key] = tensor
return tensor
# #----------------------------------------------------------------------------
# # Replace NaN/Inf with specified numerical values.
# try:
# nan_to_num = torch.nan_to_num # 1.8.0a0
# except AttributeError:
# def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
# assert isinstance(input, torch.Tensor)
# if posinf is None:
# posinf = torch.finfo(input.dtype).max
# if neginf is None:
# neginf = torch.finfo(input.dtype).min
# assert nan == 0
# return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
# #----------------------------------------------------------------------------
# # Symbolic assert.
# try:
# symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
# except AttributeError:
# symbolic_assert = torch.Assert # 1.7.0
# #----------------------------------------------------------------------------
# # Context manager to temporarily suppress known warnings in torch.jit.trace().
# # Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672
# @contextlib.contextmanager
# def suppress_tracer_warnings():
# flt = ('ignore', None, torch.jit.TracerWarning, None, 0)
# warnings.filters.insert(0, flt)
# yield
# warnings.filters.remove(flt)
# #----------------------------------------------------------------------------
# # Assert that the shape of a tensor matches the given list of integers.
# # None indicates that the size of a dimension is allowed to vary.
# # Performs symbolic assertion when used in torch.jit.trace().
# def assert_shape(tensor, ref_shape):
# if tensor.ndim != len(ref_shape):
# raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
# for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
# if ref_size is None:
# pass
# elif isinstance(ref_size, torch.Tensor):
# with suppress_tracer_warnings(): # as_tensor results are registered as constants
# symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
# elif isinstance(size, torch.Tensor):
# with suppress_tracer_warnings(): # as_tensor results are registered as constants
# symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
# elif size != ref_size:
# raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
# #----------------------------------------------------------------------------
# # Function decorator that calls torch.autograd.profiler.record_function().
# def profiled_function(fn):
# def decorator(*args, **kwargs):
# with torch.autograd.profiler.record_function(fn.__name__):
# return fn(*args, **kwargs)
# decorator.__name__ = fn.__name__
# return decorator
# #----------------------------------------------------------------------------
# # Sampler for torch.utils.data.DataLoader that loops over the dataset
# # indefinitely, shuffling items as it goes.
# class InfiniteSampler(torch.utils.data.Sampler):
# def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
# assert len(dataset) > 0
# assert num_replicas > 0
# assert 0 <= rank < num_replicas
# assert 0 <= window_size <= 1
# super().__init__(dataset)
# self.dataset = dataset
# self.rank = rank
# self.num_replicas = num_replicas
# self.shuffle = shuffle
# self.seed = seed
# self.window_size = window_size
# def __iter__(self):
# order = np.arange(len(self.dataset))
# rnd = None
# window = 0
# if self.shuffle:
# rnd = np.random.RandomState(self.seed)
# rnd.shuffle(order)
# window = int(np.rint(order.size * self.window_size))
# idx = 0
# while True:
# i = idx % order.size
# if idx % self.num_replicas == self.rank:
# yield order[i]
# if window >= 2:
# j = (i - rnd.randint(window)) % order.size
# order[i], order[j] = order[j], order[i]
# idx += 1
# #----------------------------------------------------------------------------
# # Utilities for operating with torch.nn.Module parameters and buffers.
# def params_and_buffers(module):
# assert isinstance(module, torch.nn.Module)
# return list(module.parameters()) + list(module.buffers())
# def named_params_and_buffers(module):
# assert isinstance(module, torch.nn.Module)
# return list(module.named_parameters()) + list(module.named_buffers())
# @torch.no_grad()
# def copy_params_and_buffers(src_module, dst_module, require_all=False):
# assert isinstance(src_module, torch.nn.Module)
# assert isinstance(dst_module, torch.nn.Module)
# src_tensors = dict(named_params_and_buffers(src_module))
# for name, tensor in named_params_and_buffers(dst_module):
# assert (name in src_tensors) or (not require_all)
# if name in src_tensors:
# tensor.copy_(src_tensors[name])
# #----------------------------------------------------------------------------
# # Context manager for easily enabling/disabling DistributedDataParallel
# # synchronization.
# @contextlib.contextmanager
# def ddp_sync(module, sync):
# assert isinstance(module, torch.nn.Module)
# if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
# yield
# else:
# with module.no_sync():
# yield
# #----------------------------------------------------------------------------
# # Check DistributedDataParallel consistency across processes.
# def check_ddp_consistency(module, ignore_regex=None):
# assert isinstance(module, torch.nn.Module)
# for name, tensor in named_params_and_buffers(module):
# fullname = type(module).__name__ + '.' + name
# if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
# continue
# tensor = tensor.detach()
# if tensor.is_floating_point():
# tensor = nan_to_num(tensor)
# other = tensor.clone()
# torch.distributed.broadcast(tensor=other, src=0)
# assert (tensor == other).all(), fullname
# #----------------------------------------------------------------------------
# # Print summary table of module hierarchy.
# def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
# assert isinstance(module, torch.nn.Module)
# assert not isinstance(module, torch.jit.ScriptModule)
# assert isinstance(inputs, (tuple, list))
# # Register hooks.
# entries = []
# nesting = [0]
# def pre_hook(_mod, _inputs):
# nesting[0] += 1
# def post_hook(mod, _inputs, outputs):
# nesting[0] -= 1
# if nesting[0] <= max_nesting:
# outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
# outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
# entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
# hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
# hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
# # Run module.
# outputs = module(*inputs)
# for hook in hooks:
# hook.remove()
# # Identify unique outputs, parameters, and buffers.
# tensors_seen = set()
# for e in entries:
# e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
# e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
# e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
# tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
# # Filter out redundant entries.
# if skip_redundant:
# entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
# # Construct table.
# rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
# rows += [['---'] * len(rows[0])]
# param_total = 0
# buffer_total = 0
# submodule_names = {mod: name for name, mod in module.named_modules()}
# for e in entries:
# name = '<top-level>' if e.mod is module else submodule_names[e.mod]
# param_size = sum(t.numel() for t in e.unique_params)
# buffer_size = sum(t.numel() for t in e.unique_buffers)
# output_shapes = [str(list(t.shape)) for t in e.outputs]
# output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
# rows += [[
# name + (':0' if len(e.outputs) >= 2 else ''),
# str(param_size) if param_size else '-',
# str(buffer_size) if buffer_size else '-',
# (output_shapes + ['-'])[0],
# (output_dtypes + ['-'])[0],
# ]]
# for idx in range(1, len(e.outputs)):
# rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
# param_total += param_size
# buffer_total += buffer_size
# rows += [['---'] * len(rows[0])]
# rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
# # Print table.
# widths = [max(len(cell) for cell in column) for column in zip(*rows)]
# print()
# for row in rows:
# print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
# print()
# return outputs
# #----------------------------------------------------------------------------