-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathestimate_gmm_sklearn.py
62 lines (49 loc) · 1.61 KB
/
estimate_gmm_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = "Christian Heider Nielsen"
__doc__ = r"""
Created on 19/07/2020
"""
import numpy
from sklearn.mixture import GaussianMixture
from neodroidvision.segmentation.gmm import visualise_2D_gmm, visualise_3d_gmm
if __name__ == "__main__":
N, D = 1000, 3
if D == 2:
means = numpy.array([[0.5, 0.0], [0, 0], [-0.5, -0.5], [-0.8, 0.3]])
covs = numpy.array(
[
numpy.diag([0.01, 0.01]),
numpy.diag([0.025, 0.01]),
numpy.diag([0.01, 0.025]),
numpy.diag([0.01, 0.01]),
]
)
elif D == 3:
means = numpy.array(
[[0.5, 0.0, 0.0], [0.0, 0.0, 0.0], [-0.5, -0.5, -0.5], [-0.8, 0.3, 0.4]]
)
covs = numpy.array(
[
numpy.diag([0.01, 0.01, 0.03]),
numpy.diag([0.08, 0.01, 0.01]),
numpy.diag([0.01, 0.05, 0.01]),
numpy.diag([0.03, 0.07, 0.01]),
]
)
n_components = means.shape[0]
points = []
for i in range(len(means)):
x = numpy.random.multivariate_normal(means[i], covs[i], N)
points.append(x)
points = numpy.concatenate(points)
gmm = GaussianMixture(n_components=n_components, covariance_type="diag")
gmm.fit(points)
if D == 2:
visualise_2D_gmm(
points, gmm.weights_, gmm.means_.T, numpy.sqrt(gmm.covariances_).T
)
elif D == 3:
visualise_3d_gmm(
points, gmm.weights_, gmm.means_.T, numpy.sqrt(gmm.covariances_).T
)