|
| 1 | +import pygad |
| 2 | +import numpy |
| 3 | + |
| 4 | +""" |
| 5 | +Given these 2 functions: |
| 6 | + y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6 |
| 7 | + y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12 |
| 8 | + where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50 |
| 9 | + and (x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30 |
| 10 | +What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize these 2 functions. |
| 11 | +This is a multi-objective optimization problem. |
| 12 | +
|
| 13 | +PyGAD considers the problem as multi-objective if the fitness function returns: |
| 14 | + 1) List. |
| 15 | + 2) Or tuple. |
| 16 | + 3) Or numpy.ndarray. |
| 17 | +""" |
| 18 | + |
| 19 | +function_inputs1 = [4,-2,3.5,5,-11,-4.7] # Function 1 inputs. |
| 20 | +function_inputs2 = [-2,0.7,-9,1.4,3,5] # Function 2 inputs. |
| 21 | +desired_output1 = 50 # Function 1 output. |
| 22 | +desired_output2 = 30 # Function 2 output. |
| 23 | + |
| 24 | +def fitness_func(ga_instance, solution, solution_idx): |
| 25 | + output1 = numpy.sum(solution*function_inputs1) |
| 26 | + output2 = numpy.sum(solution*function_inputs2) |
| 27 | + fitness1 = 1.0 / (numpy.abs(output1 - desired_output1) + 0.000001) |
| 28 | + fitness2 = 1.0 / (numpy.abs(output2 - desired_output2) + 0.000001) |
| 29 | + return [fitness1, fitness2] |
| 30 | + |
| 31 | +num_generations = 100 # Number of generations. |
| 32 | +num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool. |
| 33 | + |
| 34 | +sol_per_pop = 20 # Number of solutions in the population. |
| 35 | +num_genes = len(function_inputs1) |
| 36 | + |
| 37 | +last_fitness = 0 |
| 38 | +def on_generation(ga_instance): |
| 39 | + global last_fitness |
| 40 | + print("Generation = {generation}".format(generation=ga_instance.generations_completed)) |
| 41 | + print("Fitness = {fitness}".format(fitness=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1])) |
| 42 | + print("Change = {change}".format(change=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness)) |
| 43 | + last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] |
| 44 | + |
| 45 | +ga_instance = pygad.GA(num_generations=num_generations, |
| 46 | + num_parents_mating=num_parents_mating, |
| 47 | + sol_per_pop=sol_per_pop, |
| 48 | + num_genes=num_genes, |
| 49 | + fitness_func=fitness_func, |
| 50 | + parent_selection_type='nsga2', |
| 51 | + on_generation=on_generation) |
| 52 | + |
| 53 | +# Running the GA to optimize the parameters of the function. |
| 54 | +ga_instance.run() |
| 55 | + |
| 56 | +ga_instance.plot_fitness() |
| 57 | + |
| 58 | +# Returning the details of the best solution. |
| 59 | +solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness) |
| 60 | +print("Parameters of the best solution : {solution}".format(solution=solution)) |
| 61 | +print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness)) |
| 62 | +print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx)) |
| 63 | + |
| 64 | +prediction = numpy.sum(numpy.array(function_inputs1)*solution) |
| 65 | +print("Predicted output 1 based on the best solution : {prediction}".format(prediction=prediction)) |
| 66 | +prediction = numpy.sum(numpy.array(function_inputs2)*solution) |
| 67 | +print("Predicted output 2 based on the best solution : {prediction}".format(prediction=prediction)) |
| 68 | + |
| 69 | +if ga_instance.best_solution_generation != -1: |
| 70 | + print("Best fitness value reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation)) |
| 71 | + |
0 commit comments