Skip to content

Commit 655fd15

Browse files
committed
Replace format() str method by f-string
1 parent 5e9a5f1 commit 655fd15

File tree

8 files changed

+2331
-2331
lines changed

8 files changed

+2331
-2331
lines changed

docs/source/cnn.rst

+6-6
Original file line numberDiff line numberDiff line change
@@ -644,9 +644,9 @@ addition to the classification accuracy.
644644
num_wrong = numpy.where(predictions != train_outputs)[0]
645645
num_correct = train_outputs.size - num_wrong.size
646646
accuracy = 100 * (num_correct/train_outputs.size)
647-
print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct))
648-
print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size))
649-
print("Classification accuracy : {accuracy}.".format(accuracy=accuracy))
647+
print(f"Number of correct classifications : {num_correct}.")
648+
print(f"Number of wrong classifications : {num_wrong.size}.")
649+
print(f"Classification accuracy : {accuracy}.")
650650
651651
It is very important to note that it is not expected that the
652652
classification accuracy is high because no training algorithm is used.
@@ -743,6 +743,6 @@ files before running this code.
743743
num_wrong = numpy.where(predictions != train_outputs)[0]
744744
num_correct = train_outputs.size - num_wrong.size
745745
accuracy = 100 * (num_correct/train_outputs.size)
746-
print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct))
747-
print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size))
748-
print("Classification accuracy : {accuracy}.".format(accuracy=accuracy))
746+
print(f"Number of correct classifications : {num_correct}.")
747+
print(f"Number of wrong classifications : {num_wrong.size}.")
748+
print(f"Classification accuracy : {accuracy}.")

docs/source/gacnn.rst

+19-19
Original file line numberDiff line numberDiff line change
@@ -405,7 +405,7 @@ solutions within the population.
405405
population_matrices = gacnn.population_as_matrices(population_networks=GACNN_instance.population_networks, population_vectors=ga_instance.population)
406406
GACNN_instance.update_population_trained_weights(population_trained_weights=population_matrices)
407407
408-
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
408+
print(f"Generation = {ga_instance.generations_completed}")
409409
410410
After preparing the fitness and callback function, next is to create an
411411
instance of the ``pygad.GA`` class.
@@ -462,7 +462,7 @@ be called to show how the fitness values evolve by generation.
462462
463463
ga_instance.plot_fitness()
464464
465-
.. figure:: https://user-images.githubusercontent.com/16560492/83429675-ab744580-a434-11ea-8f21-9d3804b50d15.png
465+
.. image:: https://user-images.githubusercontent.com/16560492/83429675-ab744580-a434-11ea-8f21-9d3804b50d15.png
466466
:alt:
467467

468468
Information about the Best Solution
@@ -483,9 +483,9 @@ Here is how such information is returned.
483483
.. code:: python
484484
485485
solution, solution_fitness, solution_idx = ga_instance.best_solution()
486-
print("Parameters of the best solution : {solution}".format(solution=solution))
487-
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
488-
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
486+
print(f"Parameters of the best solution : {solution}")
487+
print(f"Fitness value of the best solution = {solution_fitness}")
488+
print(f"Index of the best solution : {solution_idx}")
489489
490490
.. code::
491491
@@ -504,7 +504,7 @@ the labels correctly.
504504
.. code:: python
505505
506506
predictions = pygad.cnn.predict(last_layer=GANN_instance.population_networks[solution_idx], data_inputs=data_inputs)
507-
print("Predictions of the trained network : {predictions}".format(predictions=predictions))
507+
print(f"Predictions of the trained network : {predictions}")
508508
509509
Calculating Some Statistics
510510
---------------------------
@@ -518,9 +518,9 @@ addition to the classification accuracy.
518518
num_wrong = numpy.where(predictions != data_outputs)[0]
519519
num_correct = data_outputs.size - num_wrong.size
520520
accuracy = 100 * (num_correct/data_outputs.size)
521-
print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct))
522-
print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size))
523-
print("Classification accuracy : {accuracy}.".format(accuracy=accuracy))
521+
print(f"Number of correct classifications : {num_correct}.")
522+
print(f"Number of wrong classifications : {num_wrong.size}.")
523+
print(f"Classification accuracy : {accuracy}.")
524524
525525
.. code::
526526
@@ -575,8 +575,8 @@ complete code is listed below.
575575
576576
GACNN_instance.update_population_trained_weights(population_trained_weights=population_matrices)
577577
578-
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
579-
print("Fitness = {fitness}".format(fitness=ga_instance.best_solutions_fitness))
578+
print(f"Generation = {ga_instance.generations_completed}")
579+
print(f"Fitness = {ga_instance.best_solutions_fitness}")
580580
581581
data_inputs = numpy.load("dataset_inputs.npy")
582582
data_outputs = numpy.load("dataset_outputs.npy")
@@ -642,21 +642,21 @@ complete code is listed below.
642642
643643
# Returning the details of the best solution.
644644
solution, solution_fitness, solution_idx = ga_instance.best_solution()
645-
print("Parameters of the best solution : {solution}".format(solution=solution))
646-
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
647-
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
645+
print(f"Parameters of the best solution : {solution}")
646+
print(f"Fitness value of the best solution = {solution_fitness}")
647+
print(f"Index of the best solution : {solution_idx}")
648648
649649
if ga_instance.best_solution_generation != -1:
650-
print("Best fitness value reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation))
650+
print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")
651651
652652
# Predicting the outputs of the data using the best solution.
653653
predictions = GACNN_instance.population_networks[solution_idx].predict(data_inputs=data_inputs)
654-
print("Predictions of the trained network : {predictions}".format(predictions=predictions))
654+
print(f"Predictions of the trained network : {predictions}")
655655
656656
# Calculating some statistics
657657
num_wrong = numpy.where(predictions != data_outputs)[0]
658658
num_correct = data_outputs.size - num_wrong.size
659659
accuracy = 100 * (num_correct/data_outputs.size)
660-
print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct))
661-
print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size))
662-
print("Classification accuracy : {accuracy}.".format(accuracy=accuracy))
660+
print(f"Number of correct classifications : {num_correct}.")
661+
print(f"Number of wrong classifications : {num_wrong.size}.")
662+
print(f"Classification accuracy : {accuracy}.")

0 commit comments

Comments
 (0)