-
-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathexample_parallel_processing.py
39 lines (32 loc) · 1.68 KB
/
example_parallel_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import pygad
import numpy
function_inputs = [4,-2,3.5,5,-11,-4.7] # Function inputs.
desired_output = 44 # Function output.
def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution*function_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitness
last_fitness = 0
def on_generation(ga_instance):
global last_fitness
print(f"Generation = {ga_instance.generations_completed}")
print(f"Fitness = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
print(f"Change = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness}")
last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]
if __name__ == '__main__':
ga_instance = pygad.GA(num_generations=100,
num_parents_mating=10,
sol_per_pop=20,
num_genes=len(function_inputs),
fitness_func=fitness_func,
on_generation=on_generation,
# parallel_processing=['process', 2],
parallel_processing=['thread', 2]
)
# Running the GA to optimize the parameters of the function.
ga_instance.run()
# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")