-
-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathexample_logger.py
45 lines (36 loc) · 1.48 KB
/
example_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import logging
import pygad
import numpy
level = logging.DEBUG
name = 'logfile.txt'
logger = logging.getLogger(name)
logger.setLevel(level)
file_handler = logging.FileHandler(name,'a+','utf-8')
file_handler.setLevel(logging.DEBUG)
file_format = logging.Formatter('%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_format)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_format = logging.Formatter('%(message)s')
console_handler.setFormatter(console_format)
logger.addHandler(console_handler)
equation_inputs = [4, -2, 8]
desired_output = 2671.1234
def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution * equation_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitness
def on_generation(ga_instance):
ga_instance.logger.info(f"Generation = {ga_instance.generations_completed}")
ga_instance.logger.info(f"Fitness = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
ga_instance = pygad.GA(num_generations=10,
sol_per_pop=40,
num_parents_mating=2,
keep_parents=2,
num_genes=len(equation_inputs),
fitness_func=fitness_func,
on_generation=on_generation,
logger=logger)
ga_instance.run()
logger.handlers.clear()