forked from bayesian-optimization/BayesianOptimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_parameter.py
246 lines (175 loc) · 8.5 KB
/
test_parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import annotations
import numpy as np
import pytest
from scipy.optimize import NonlinearConstraint
from sklearn.gaussian_process import GaussianProcessRegressor, kernels
from bayes_opt import BayesianOptimization
from bayes_opt.parameter import CategoricalParameter, FloatParameter, IntParameter, wrap_kernel
from bayes_opt.target_space import TargetSpace
def test_float_parameters():
def target_func(**kwargs):
# arbitrary target func
return sum(kwargs.values())
pbounds = {"p1": (0, 1), "p2": (1, 2)}
space = TargetSpace(target_func, pbounds)
assert space.dim == len(pbounds)
assert space.empty
assert space.keys == ["p1", "p2"]
assert isinstance(space._params_config["p1"], FloatParameter)
assert isinstance(space._params_config["p2"], FloatParameter)
assert all(space.bounds[:, 0] == np.array([0, 1]))
assert all(space.bounds[:, 1] == np.array([1, 2]))
assert (space.bounds == space.bounds).all()
point1 = {"p1": 0.2, "p2": 1.5}
target1 = 1.7
space.probe(point1)
point2 = {"p1": 0.5, "p2": 1.0}
target2 = 1.5
space.probe(point2)
assert (space.params[0] == np.fromiter(point1.values(), dtype=float)).all()
assert (space.params[1] == np.fromiter(point2.values(), dtype=float)).all()
assert (space.target == np.array([target1, target2])).all()
p1 = space._params_config["p1"]
assert p1.to_float(0.2) == 0.2
assert p1.to_float(np.array(2.3)) == 2.3
assert p1.to_float(3) == 3.0
def test_int_parameters():
def target_func(**kwargs):
assert [isinstance(kwargs[key], int) for key in kwargs]
# arbitrary target func
return sum(kwargs.values())
pbounds = {"p1": (0, 5, int), "p3": (-1, 3, int)}
space = TargetSpace(target_func, pbounds)
assert space.dim == len(pbounds)
assert space.empty
assert space.keys == ["p1", "p3"]
assert isinstance(space._params_config["p1"], IntParameter)
assert isinstance(space._params_config["p3"], IntParameter)
point1 = {"p1": 2, "p3": 0}
target1 = 2
space.probe(point1)
point2 = {"p1": 1, "p3": -1}
target2 = 0
space.probe(point2)
assert (space.params[0] == np.fromiter(point1.values(), dtype=float)).all()
assert (space.params[1] == np.fromiter(point2.values(), dtype=float)).all()
assert (space.target == np.array([target1, target2])).all()
p1 = space._params_config["p1"]
assert p1.to_float(0) == 0.0
assert p1.to_float(np.array(2)) == 2.0
assert p1.to_float(3) == 3.0
assert p1.kernel_transform(0) == 0.0
assert p1.kernel_transform(2.3) == 2.0
assert p1.kernel_transform(np.array([1.3, 3.6, 7.2])) == pytest.approx(np.array([1, 4, 7]))
def test_cat_parameters():
fruit_ratings = {"apple": 1.0, "banana": 2.0, "mango": 5.0, "honeydew melon": -10.0, "strawberry": np.pi}
def target_func(fruit: str):
return fruit_ratings[fruit]
fruits = ("apple", "banana", "mango", "honeydew melon", "strawberry")
pbounds = {"fruit": ("apple", "banana", "mango", "honeydew melon", "strawberry")}
space = TargetSpace(target_func, pbounds)
assert space.dim == len(fruits)
assert space.empty
assert space.keys == ["fruit"]
assert isinstance(space._params_config["fruit"], CategoricalParameter)
assert space.bounds.shape == (len(fruits), 2)
assert (space.bounds[:, 0] == np.zeros(len(fruits))).all()
assert (space.bounds[:, 1] == np.ones(len(fruits))).all()
point1 = {"fruit": "banana"}
target1 = 2.0
space.probe(point1)
point2 = {"fruit": "honeydew melon"}
target2 = -10.0
space.probe(point2)
assert (space.params[0] == np.array([0, 1, 0, 0, 0])).all()
assert (space.params[1] == np.array([0, 0, 0, 1, 0])).all()
assert (space.target == np.array([target1, target2])).all()
p1 = space._params_config["fruit"]
for i, fruit in enumerate(fruits):
assert (p1.to_float(fruit) == np.eye(5)[i]).all()
assert (p1.kernel_transform(np.array([0.8, 0.2, 0.3, 0.5, 0.78])) == np.array([1, 0, 0, 0, 0])).all()
assert (p1.kernel_transform(np.array([0.78, 0.2, 0.3, 0.5, 0.8])) == np.array([0, 0, 0, 0, 1.0])).all()
def test_cateogrical_valid_bounds():
pbounds = {"fruit": ("apple", "banana", "mango", "honeydew melon", "banana", "strawberry")}
with pytest.raises(ValueError):
TargetSpace(None, pbounds)
pbounds = {"fruit": ("apple",)}
with pytest.raises(ValueError):
TargetSpace(None, pbounds)
def test_to_string():
pbounds = {"p1": (0, 1), "p2": (1, 2)}
space = TargetSpace(None, pbounds)
assert space._params_config["p1"].to_string(0.2, 5) == "0.2 "
assert space._params_config["p2"].to_string(1.5, 5) == "1.5 "
assert space._params_config["p1"].to_string(0.2, 3) == "0.2"
assert space._params_config["p2"].to_string(np.pi, 5) == "3.141"
assert space._params_config["p1"].to_string(1e-5, 6) == "1e-05 "
assert space._params_config["p2"].to_string(-1e-5, 6) == "-1e-05"
assert space._params_config["p1"].to_string(1e-15, 5) == "1e-15"
assert space._params_config["p1"].to_string(-1.2e-15, 7) == "-1.2..."
pbounds = {"p1": (0, 5, int), "p3": (-1, 3, int)}
space = TargetSpace(None, pbounds)
assert space._params_config["p1"].to_string(2, 5) == "2 "
assert space._params_config["p3"].to_string(0, 5) == "0 "
assert space._params_config["p1"].to_string(2, 3) == "2 "
assert space._params_config["p3"].to_string(-1, 5) == "-1 "
assert space._params_config["p1"].to_string(123456789, 6) == "123..."
pbounds = {"fruit": ("apple", "banana", "mango", "honeydew melon", "strawberry")}
space = TargetSpace(None, pbounds)
assert space._params_config["fruit"].to_string("apple", 5) == "apple"
assert space._params_config["fruit"].to_string("banana", 5) == "ba..."
assert space._params_config["fruit"].to_string("mango", 5) == "mango"
assert space._params_config["fruit"].to_string("honeydew melon", 10) == "honeyde..."
assert space._params_config["fruit"].to_string("strawberry", 10) == "strawberry"
def test_preconstructed_parameter():
pbounds = {"p1": (0, 1), "p2": (1, 2), "p3": IntParameter("p3", (-1, 3))}
def target_func(p1, p2, p3):
return p1 + p2 + p3
optimizer1 = BayesianOptimization(target_func, pbounds)
pbounds = {"p1": (0, 1), "p2": (1, 2), "p3": (-1, 3, int)}
optimizer2 = BayesianOptimization(target_func, pbounds)
assert optimizer1.space.keys == optimizer2.space.keys
assert (optimizer1.space.bounds == optimizer2.space.bounds).all()
assert optimizer1.space._params_config["p3"].to_float(2) == 2.0
def test_integration_mixed_optimization():
fruit_ratings = {"apple": 1.0, "banana": 2.0, "mango": 5.0, "honeydew melon": -10.0, "strawberry": np.pi}
pbounds = {
"p1": (0, 1),
"p2": (1, 2),
"p3": (-1, 3, int),
"fruit": ("apple", "banana", "mango", "honeydew melon", "strawberry"),
}
def target_func(p1, p2, p3, fruit):
return p1 + p2 + p3 + fruit_ratings[fruit]
optimizer = BayesianOptimization(target_func, pbounds)
optimizer.maximize(init_points=2, n_iter=10)
def test_integration_mixed_optimization_with_constraints():
fruit_ratings = {"apple": 1.0, "banana": 2.0, "mango": 5.0, "honeydew melon": -10.0, "strawberry": np.pi}
pbounds = {
"p1": (0, 1),
"p2": (1, 2),
"p3": (-1, 3, int),
"fruit": ("apple", "banana", "mango", "honeydew melon", "strawberry"),
}
def target_func(p1, p2, p3, fruit):
return p1 + p2 + p3 + fruit_ratings[fruit]
def constraint_func(p1, p2, p3, fruit):
return (p1 + p2 + p3 - fruit_ratings[fruit]) ** 2
constraint = NonlinearConstraint(constraint_func, 0, 4.0)
optimizer = BayesianOptimization(target_func, pbounds, constraint=constraint)
init_points = [
{"p1": 0.5, "p2": 1.5, "p3": 1, "fruit": "banana"},
{"p1": 0.5, "p2": 1.5, "p3": 2, "fruit": "mango"},
]
for p in init_points:
optimizer.register(p, target=target_func(**p), constraint_value=constraint_func(**p))
optimizer.maximize(init_points=0, n_iter=2)
def test_wrapped_kernel_fit():
pbounds = {"p1": (0, 1), "p2": (1, 10, int)}
space = TargetSpace(None, pbounds)
space.register(space.random_sample(0), 1.0)
space.register(space.random_sample(1), 5.0)
kernel = wrap_kernel(kernels.Matern(nu=2.5, length_scale=1e5), space.kernel_transform)
gp = GaussianProcessRegressor(kernel=kernel, alpha=1e-6, n_restarts_optimizer=5)
gp.fit(space.params, space.target)
assert gp.kernel_.length_scale != 1e5