diff --git a/ExploreVis.ipynb b/ExploreVis.ipynb new file mode 100644 index 0000000..12f0079 --- /dev/null +++ b/ExploreVis.ipynb @@ -0,0 +1,275 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "from sklearn.manifold import TSNE" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "inputEdge = \"graph/karate.edgelist\"\n", + "G = nx.read_edgelist(inputEdge, nodetype=int, create_using=nx.DiGraph())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "G" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "def loadEmbedding(file_name):\n", + " with open(file_name, 'r') as f:\n", + " n, d = f.readline().strip().split()\n", + " X = np.zeros((int(n)+1, int(d)))\n", + " for line in f:\n", + " emb = line.strip().split()\n", + " emb_fl = [float(emb_i) for emb_i in emb[1:]]\n", + " X[int(emb[0]),:] = emb_fl\n", + " return X\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_embedding2D(node_pos, node_colors=None, di_graph=None):\n", + " node_num, embedding_dimension = node_pos.shape\n", + " if(embedding_dimension > 2):\n", + " print \"Embedding dimensiion greater than 2, use tSNE to reduce it to 2\"\n", + " model = TSNE(n_components=2)\n", + " node_pos = model.fit_transform(node_pos)\n", + "\n", + " if di_graph is None:\n", + " # plot using plt scatter\n", + " plt.scatter(node_pos[:,0], node_pos[:,1], c=node_colors)\n", + " else:\n", + " # plot using networkx with edge structure\n", + " pos = {}\n", + " for i in xrange(node_num):\n", + " pos[i] = node_pos[i, :]\n", + " if node_colors:\n", + " nx.draw_networkx_nodes(di_graph, pos, node_color=node_colors, width=0.1, node_size=100, arrows=False, alpha=0.8, font_size=5)\n", + " else:\n", + " nx.draw_networkx(di_graph, pos, node_color=node_colors, width=0.1, node_size=300, arrows=False, alpha=0.8, font_size=12)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "emb = loadEmbedding(\"emb/karate-2.emb\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0. , 0. ],\n", + " [ 0.647954, -1.221835],\n", + " [ 0.26078 , -1.18105 ],\n", + " [ 0.014604, -1.177134],\n", + " [ 0.341933, -1.163942],\n", + " [ 0.87369 , -1.255122],\n", + " [ 0.987939, -1.255225],\n", + " [ 0.891888, -1.221276],\n", + " [ 0.2124 , -1.138424],\n", + " [-0.105782, -1.146163],\n", + " [ 0.078162, -1.200563],\n", + " [ 0.660968, -1.199685],\n", + " [ 0.194901, -1.163361],\n", + " [ 0.332712, -1.186467],\n", + " [ 0.053062, -1.161349],\n", + " [-0.690653, -1.180797],\n", + " [-0.404271, -1.148828],\n", + " [ 0.921079, -1.241551],\n", + " [ 0.3638 , -1.157203],\n", + " [-0.510195, -1.145792],\n", + " [ 0.01432 , -1.16636 ],\n", + " [-0.726022, -1.197924],\n", + " [ 0.443489, -1.180293],\n", + " [-0.515541, -1.187338],\n", + " [-0.492621, -1.158493],\n", + " [-0.390101, -1.133154],\n", + " [-0.411404, -1.129306],\n", + " [-0.472089, -1.153028],\n", + " [-0.487534, -1.146644],\n", + " [-0.197616, -1.183069],\n", + " [-0.334453, -1.14833 ],\n", + " [-0.183227, -1.114288],\n", + " [-0.457681, -1.146089],\n", + " [-0.289914, -1.156211],\n", + " [-0.674016, -1.160691]])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "emb" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "plot_embedding2D(emb,node_colors=None,di_graph=G)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecXFd99/8+t0wvu7N91cuqS7ZluVfcsIWxsY1tTAIh\nJDh0AiQEAr/wJOT5hWAgCR0SminGmMSxjY1tSQZXucgFq6163za7O7vTZ245zx+zM7uzTSuvLLmc\n9+tla3bunXvP3Jm5n3O+VUgpUSgUCoWijHayB6BQKBSK1xZKGBQKhUJRhRIGhUKhUFShhEGhUCgU\nVShhUCgUCkUVShgUCoVCUYUSBoVCoVBUoYRBoVAoFFUoYVAoFApFFcbJHsArob6+Xs6dO/dkD0Oh\nUCheVzz//PO9UsqGo+33uhSGuXPnsmnTppM9DIVCoXhdIYQ4MJX9lClJoVAoFFUoYVAoFApFFUoY\nFAqFQlGFEgaFQqFQVKGEQaFQKBRVKGFQKBQKRRVKGBQKhUJRhRIGhUKhUFShhEGhUCgUVShhUCgU\nCkUVShgUCoVCUYUSBoVCoVBUoYRBoVAoFFUoYVAoFApFFUoYFAqFQlGFEgaFQqFQVKGEQaFQKBRV\nKGFQKBQKRRVKGBQKhUJRhRIGhUKhUFShhEGhUCgUVShhUCgUCkUVShgUCoVCUYUSBoVCoVBUoYRB\noVAoFFUoYVAoFApFFUoYFAqFQlHFtIRBCHGjEGKrEMIVQqyZZL8fCSF6hBBbRj0fE0KsE0LsGvq3\ndjrjUSgUCsX0me6KYQtwPfDYUfb7CXDlOM9/FtggpWwDNgz9rVAoFIqTyLSEQUq5XUq5Ywr7PQb0\nj7PpWuCnQ49/CrxjOuNRKBQKxfQ52T6GJill59DjLqDpZA5GoVAoFGAcbQchxHqgeZxNn5dS3nO8\nBiKllEIIOck4bgVuBZg9e/bxOq1CoVAoRnFUYZBSXvYqnr9bCNEipewUQrQAPZOM4wfADwDWrFkz\noYAoFAqFYnqcbFPSvcCfDT3+M+C4rUAUCoVC8cqYbrjqdUKIw8A5wP1CiIeGnm8VQjwwYr87gI3A\nYiHEYSHEXwxt+jJwuRBiF3DZ0N8KhUKhOIkIKV9/Vpk1a9bITZs2nexhKKbJQLbIhu097I2nSRVs\nwl6D+Q0hLlvaRDRgnuzhKRRvOIQQz0spJ8w5K3NUH4NCcbzZ1Z3ijmcP8fsd3Thu6TlNgDs0R/nW\n73dzyZJG3nXGLNqawidvoArFmxQlDIoTygMvd/KVh3bgSpeQ10TXxJh9HFeyblsXG7b38Jm3Lmbt\nqpaTMFKF4s2LEgbFCeOBlzv58oPt+E0djzHxV0/XBFG/h6Lt8uUH2wGUOCgUJxAlDIoTwq7uFF95\naAdH1v+E1KHtOFYRTzDKzDPfSvOqC3Edm/bf/oB01wEKyT5W3vy31MxeDMBtD++grSmkzEoKxQlC\nCYPihHDHs4dwpcucc96G/6r3oRkm2b5OXv7VbQQbZxNsmEl0RhszTr+c9nu/W3mdx9DIWTZ3PneI\nL1y97CS+A4XizcPJzmNQvAkYyBb5/Y5uQl6TYH0rmjEUcSQEQkB+II6mG8xYcznRmW2g6VWvD3lN\nNrT3MJi1TsLoFYo3H2rFoHjV2bC9B8el4mjeve7ndG95Ete2CDbOJjZ/5aSv1zWB40o2bO/m+tNn\nnoghKxRvapQwKF519sbTVX8vvPxPWXDpu0l27GHw0A6kNrWF697ezKsxPIVCMQplSlK86qQKNqOj\nUoWmEW5dQG6gl0Ob1mNZk5uJhIBkXpmSFIoTgRIGxatO2GtUktcAXOliWRalrHsXJzOAYRhYVpGJ\nMvGlhIhPZUMrFCcCJQyKV535DSEACukBOrc8hZ3PYug6yYPbiW9/jto5yxBCoAtBMZ8DKZGOjWtb\nVUIxvz54st6CQvGmQvkYFK86Fy+q49/XtWPZLvEtT7DvkTtASjzhGPMuuZm6hacCsOmHX6CQ7ENK\nyea7vo4QgjNu/TJmuA5dE1y6VPVxUihOBEoY3iScjIJ1rusSj8fRNI3Ll7eyfnsXq971mcp2y7Iw\nzeFzn/lX/1p57DgOUkoMw2AwV+SKZc2qsJ5CcYJQwvAG52QUrJNSEo/HAWhsbEQIwS1n+nikvYei\n7eIxNFzXRZskGknXdVzXJZsvoGs6N58x67iMTaFQHB0lDG9gTkbBur6+PmzbpqGhoerG39YU5jNv\nXVypfSSkU7VaGA/bBUsKPnBGPfPrA9Mal0KhmDpKGN6gnOiCdYlEgmKxSF1dHcYE5ysf9ysPtWPZ\nDlHdmFCs0gULXdP47JVLWbuqhc7OTmpra/H5fMc8NoVCcWwoYXgDsqs7xZfv30LHo3eQOtyOnc/i\nq2lg7gXXE5u/Esd1GUhlOfjYb0jufh4pHYINs1j5rs8cc8G6wcFB8vk8tbW11NbWHnX/tataqDUK\nbNibZUN7D86QTUuIUkgqlMTqimXN3DzCvNXS0kJfXx/FYpFIJPLKLoxCoZgSShjegNzx7CEc1yZQ\nU8+88z+DNxyjf99mtt37PWZe/zkK3ih9f7gdKV0a3vE5NF8Qq+8wB/qzeHTB9x7dw9duOnXSc6RS\nKXK5HJFIhGg0OuWxSSmZX+fnnGVz+dglbWzY3s3e3gzJvEXEZzK/PsilEzjE6+rqSCaT9Pf3E4vF\njvm6KBSKqaGE4Q1GuWBdNBQidt41leeN1mXY3hoSHfvwxlrIHdzCrFu+hOYpmWaMxjlIJAXL4Z6X\nOjhnfh3vXDPW4ZvNZkmn04RCIRobG495fPF4nIaGBgCiAfOYax9FIhFyuRxdXV00Nzcf8/kVCsXR\nUcLwBmN0wTqAwZzFka44djKON9ZKMX4AIxxj4IUHSO9+Fj0Qpea0qwjOOxVD17Fdl///ge0EPEbF\nL5DL5UilUvj9/lckCGWklJNGI00Fv9+Px+PhyJEjtLS0TPt4CoWiGiUMbzBGF6zLWw6diQx9f/gJ\nmuml+8HvUOw7gpMbxIw2MuuWfyaz/yUO//of8dTPQjM8SAkNq6/gtoCHuTEv9R4bn883LUEAjqsJ\nSNd1ZsyYoZzSCsWrgBKGNxijC9b1pfL0PfazUtG6JecRXHQW2QMv0//kr8ke2o6dHcTbOA/N4yN2\n5juIrrwEx5WEfDrFosUvn9nPP9+w+riMbXRC2/GgpaWF3t7e151T+mQkHCoUU0UJwxuMkQXrbMfh\nwIaf4eZSNL31gwjDRLoST+0MNK8fIxyj2HsIT/2wL0EikVIiJESDPp7cl2Qwa037ZpVMJgmHX53W\nnPX19a8bp/TJSDhUKI4VZZx9g1EuWAew7cHbsQa6abri1pKJyJUITeBvbUP3hcl37cKINlGIH8C1\n8gy88DsO3/EP9D/xS0wnV9UgZ7rkcjkCgVcvSS0SieD3++nq6nrVzjFdHni5kw/c/jzrt3fhNw2i\nfpOo3yTsMyuP/abOum1dfOD253ng5c6TPWTFmxS1YniDcenSRr71+11kEnF6Nz+OKwwO/fILpY0S\n6s6/meD81Wj+MLo3SNe9X0UPRmm84kPUrLoEJ5+l76lf0/nIT2m46VPA9BvkZLNZ/H7/dN/aUXkt\nO6XHSzjMD/aye93PSXXsRegG9YtPZ8El7zouCYcKxXRQwvAGoybg4S2Lm1i/XbLkg98mlbfRNYHr\nugitlEXW+/vb0f1hZv3Z19ENo9R7mSHHhC/E7ItvYf8vPo9TzCOEPu0GOalUiqamE1MZ9bXolN7V\nneIrD+0YEoVhsdq97ueYgQhnffhr2IUsm3/9dTpe/D0zTr+sst+xJhwqFMeD186USnHcuOXMWWhC\nq2QSSyoP6Hv8DuzcIHVv+XN000QIrSIKrpQIBDVBT2l36U67QU6xWDzuDuep0NLSQjqdJpVKnfBz\nj+aOZw/hSrdKFKC0YmhYsgbNMPEEo9TOW0G2r6Oy3WNoOK7Lnc8dOtFDVrzJUSuG1wlHi2IZvX1x\nc4gndvWWVgoIhCboe+JOiolOGq/8MLrHWxGEQs9+8PjQwvU0eF0OP/prorMWY3gDkLOm1SAnkUgc\nt9XCsUbyvBac0uWEw5B37PhmrLmc+PZnic5ajJ3Pkti7mTnnv6Nqn5DXZEN7Dx+7pE1FKylOGEoY\nXuNMFMViOZJc0eaL927FowssR+IxNPymjqELXAk+UydTdLAdiUj1kWp/EqGbHPnVP1SOHzv3Jlwh\nSD5/P3oxQ9Lvp2bOMpa8/VYcV06rQY7ruggxtkje8boGU4nkKWdKd3d3nzBz1kjGSzgsE53ZRtcf\nH+Wp//gYSJfG5edS13Za1T4jAwCONUtcoXilKGF4DTNe2ey85dCfKZLK2ziuizOiRbJhCVIFm4jP\noDbgIez1kisUydkgAzFa3/fv6NoIfwKAgIjXYPkZF+Iz9crTtuvSNZhjVizA19bteEVx9vF4fNpJ\nccejdLjf78c0zZPilB6dcFhGui5bfvPvNK+6iLbrPoHX0Nn5ux+z/7H/Zt5F7xx7nGkGACgUx4IS\nhtco40WxDGSLdCcLlVyDsigIAcjSDVKIUgmMwZxFY8hDrU/DzpX2dyXo5Rm8AEMTRHwmNQFP5YZb\nFp5k3kJK6E4WeGxn/Jjj7KUcyoeYxorheJYONwyD1tZWurq6iMVieL3eVzyuY2F0wmEZO5+hkOyn\nYeX56B4/lm3TtPJ8Djx+9xhhEIJpBwAoFMeCEobXIOUolsGtj7J320YyvUcILzgd71k3ow1FECW2\nP0V6ywaKXbsBgRGOoYdiBJdfQu2y8yj07GPL7+5HDHYgEYiG+YTPvB4nEMXUBEIIiq6kN12kN1Mk\n4jMwNEF/xkIOea1ba/xE/dWrg6k29unt7a0Uy5vONRgdyZPt62D3+l+S7tqPGQgz76IbqV9Uysw+\nWiSPEKIqU/rVSrgbyciEw5GYgTCecIz4lidoWX0ZunToeOkxgo1jzUXTDQBQKI4VJQyvQcpRLIFI\nLYFzria+ZzP9A0myT9xBvmMnVqoXO9VP7IoPUnvx+8i0P07hSDuuVaD3gX8n/dIDhBadRXjJuXha\nlyI0jcTTv2HwyTuIXf5BXCnx6MM3W4kkkSniyJLt3tA1miO+MaIAU2/s47ouuq6Pef5Yr8HIlYJ0\nHbbd/W2aT7mIlTd+isFDO9h69zcJ1n8Rf6zkP/AYGjnL5s7nDvGFq5eNe+wT6ZQemXA4Etu2WPqO\nj7D/D3dy+NmHQEDNrCXMOPfa8Y8zjQAAheJYUcLwGmNkFIu+6HQAjuzbiZQSM1RLzdqP0bf5Uez+\nI6Q23UfDNZ8huOg8kk//htpLPgBS4pu3mtTWR2m58Yu4hhddE9Qsv4iu+/8DXYAjwXaGHcMjzVKJ\nx36GjO+mz7XxBKPMPPOtNK+6sLTtwDb2rP8lhWQf4Zb5zLvifePOzhOJBDU1NcflGowk29dFMT3A\njDWXI4SgZs5SIq0L6d76FHMvuK6y31QieSKRCNls9lV3SpcTDsuOfADbttE0nUjzHFa96zNDz1kY\nholt2+Tz+Ur+xXQDABSKV4IShtcYo6NYbNclb7nohkHN6rWVG7pR04hbSGP1Hyaz/TGkbZF87m48\nzQsJnXoV+T2bKAzEsfpeJLvnWYod7WimH49RKqsd8uho0qbzyf9hcPfzuI6Dt24GtefehBF5N3Mb\norjJHl7+1W0EG2fji9Sx/X+/Q9uV76NuwSnsf+J/2fPAD5h3w9+OmZ1bljUtG/5kkTxjkVWx/zD1\nSJ5AIPCqZ0oPJxx2EfV7cBwbIcSE5zIMAyklhWIBr8dLumBxxbJmFaqqOKGoBLfXGKOjWJK5stNx\nOAnNO2MJuT3PYfUfQQ/Vo0caEd4gvnmn45u9ksKR7UjdQK9tRQtE8M07DSklvhmLh44kMAyN1NN3\n4adA83V/z+z3fJnY2dfji7UiNINEtljKiBaQH4jTu+sFgvUzaFhcSsiac+41ZHoOo6V72dDew2C2\nNM5UKkUwOD2zx0SRPP5YE2YgzJHnHsJ1bBL7tjJ4aCeOVRz/OFOI5BnplC4UCtMa90SUEw7zRQsQ\nRzWxmaaJQJDJ5dE1jZvPGNswSaF4NZmWMAghbhRCbBVCuEKINZPs9yMhRI8QYsuo5/+PEOKIEOKl\nof/WTmc8bwRGR7EU7aHAfSSuW3rsaV6IMLxIx6J//fcwQjH0UC2FQ1sYfPIO+h/+LtFzbkIzvRi1\nrWS2Pkpg3mqM0LA9PdvXRd/ul2i44F3o/jCapuOtnw1AYuNdbP3+J9j0wy9gBmuIzV9JtreDYMPw\n7Fv3ePHVNFBIdFYV2stms9MWhvEieVzXxZGSBWs/QM/OF9j4rU9yeNNDNCw5A29orNnqWCJ5hBC0\ntraSSqVelUzptqYwH794DjnLwZETrYLEcIY6gGaQt13+8oxGVQ5DccKZrilpC3A98P2j7PcT4FvA\n7eNs+zcp5VenOY43DKOjWGzXLYV+AkITOMU83b/6B+xUHD1Uj+aPYGcHcZK9RM/7E1Kb7sa1CvT8\n5p/QQ3U46V5qzvsTNMOAXLJy3GLvAbyROo5svI++7c9gBIe7uNWfdzM1Z7+TYOYIMl4q8OYU85iB\ncGVMyZxFUfPQ0z9IsK7IA5s7OW9+dFq1icptQzWnSNG2sezS847tIIRA1zVqWuex+k//Htu2cV2X\nrb++jeaV54851iuJ5Kmvr2dwcPC4O6VzuRwXzgvjW7ucrzy0g5xlj8nJMAwd27YRmkG6YKFrGl+4\neiVt/nRVO9RjQfV8ULxSpiUMUsrtwFFj1aWUjwkh5k7nXG8WylEsjuNQLOSRlgVIhJQ4VpHEE78C\nKam76pMY9bPIvHA/g0/diadhLr4Zi8jtbKTmoveS3vYohf0vYkSbCa+5hvSLD8BQboFEIjMDZHuP\nEJm1khnv+hJ27wG6H/4eZk0zntomQCBqZ5Fsf4pDm9aje3wUclk6BnKk8qU7diGXpYCJKDo8va+f\nd37/Ga5Y0cq7ztAmnOVmMhkymfFNPMFgkMbGRpbPyrNuR38lDc/r9Va+Y+meQwRizQjp0vn8eqxs\nktiiM3AcZ4yJ5pVE8kSj0ePqlC4Wi6RSKRobG1lbD21NIe587hAb2ntwhmYAolTbENdxME3BFcua\nuXlEnsj27dsxTXPKDn3V80ExXV4LzuePCiHeC2wCPi2lTJzsAZ1Mzp4T4uu2RUFoxF9cx94n7sMe\n+nUPvPQQeqSRhus+T2LDD7AHe3BSvSAdrPg+Bp76FZEz34EeqKFw8GWcXAodQfcv/w4n3Y90Heou\neDcApqEjhaD+tCtIFiWepvl4mxeSPbwNPVqanQrNwDQMrHQ/brCBni0bIW+hC4G0izipPryxVjQh\n8JtapZfAuq1dfOi8Vi5dNHbWXb75j6a8Wshms6xp9WIaOkIzxjige7Y9TffLjyNdh8jMNpZe93G8\n/gCu62JZFrquIxHTiuQ5Xk5p27bp6+ujpWU4nLetKcwXrl7Gxy5pY8P2bvb2ZkjmLSI+k3qvw3Vn\njo2kWrp0KVu2bMEwDEKh8cNfyxyPTHGF4qjCIIRYDzSPs+nzUsp7pnn+7wJfAuTQv18D3j/BOG4F\nbgWYPXv2NE/72iOXy3Hw4EE8Hg+XL29hQ3uc1rPeRtOatexP5HHSfRz59T8hgN57/gUAoevUXPKX\npDfdQ2DZxeQPvETyuXvQfEHCq68ms/URGq77Aka4jtQL9+NkB3AkBE3QY81IV+LaFmAgkbiORTG+\nH+Gci9RMckfaibc/y8zL3k862EL2t9/l8I//GmGYuIUsmj+CGW0k39/Bvvt/yZ50PwDBptl8vf8m\non9yyaQ3nYGBAYrFkuM4EAhUBKMBuGRJXyWSZyTzL76R+RffWPnbcRxc10XTNDRNw3EcBrMFrlg+\nvUieslO6s7OTurq6Y46ycl2X7u5uZsyYMe72aMAcEzEVj8cnHPPy5cvZvHkzbW1tE/a2OJ6Z4oo3\nN0cVBinlZa/WyaWUldZgQoj/BH47yb4/AH4AsGbNmnFySU88x8OGWygUOHDgALquM2/ePPL5PFcu\n0li/rQvL0TB1jYjPoN+N0fJn/171Wuk69K//Pv6FZxI5/Woip19d2Zb640N4GuejB2uQjgXSLZmS\nHItYTQBPZCWHIzFy2/+AbHsLhfgBit17kdFGDt3xD0jpEqypp/X8G8jVL8IEGi6/leTmDTiZQTz1\ns7HT/RT6DmKE6ll2zV8RqW8BKel48REOP/wjbmuYUZXj4LoufX19pbFLSU1NzYTmkVvOnMUj7T0U\n7bHlqkei6zqWZaFpAhA4UuDxmKxdUkNXVxdNTU3HXJZj9Oequ10sbIpw9alzpvS5Sinp6OiYUBQm\nwjCMCftiCyFYsWIFW7ZsYcmSJXg81YI5XrZ8w5IzWbx2eJ4Vb3+OA0/eQzE9gDdcy5wLricy7xTV\n80ExhpNqShJCtEgpy/0Lr6PkzH7NczxsuJZlsX//fqC0Akomk8TjcWzbZn6dn09f3sa/PbIPQ9fR\nZZ7EE3dQ7NyJW8iih+sJnbaW/N5NCE0nctYNAKReepD0Hx8kdvmHyO15jtDKy0m/vI70Hx+snLdz\n3ya851zNnPOvYdl1H2XXQz9l8LmHEcFa6i96L/45q4DSe5kZNRjIuxQsiaZpRJeeT2TpeSDBHuyh\n64FvUBzspallLpHaAAKBlC5CaBQGe3Bcl19s3MeHzy0tOHVdp76+fko36ramMJ956+LKjHYycTBM\nA8uykUInZzl89solnLG4BSkl8XgcXdepq6s76jkn+1zX7Ujw/ccPcPnylqPa5js7O2ltbT1mQaqp\nqZm0lIimaSxbtoytW7eybNmyKgEZnS0/sG8Ljj0clVVIJdhx/3+x7LqPUjtvBYm9m9l+73c549Z/\nxdF8k2aKK958TEsYhBDXAd+ktPq/XwjxkpTyrUKIVuC/pJRrh/a7A7gYqBdCHAa+KKX8IfAVIcSp\nlExJ+4G/ms54TgTTteG6rsvu3btxHIfm5maKxSL79++ntrYWv99fiYa5rhG8Hi//fP824qkcerCW\n2Fs/ih6qJX9oK32//Sremcupv+oTCE3HTvaSP/BHNH8Eq78DN5vEN/cUNNNH+NQrgVJsctin0xQ2\nsS0bf10Lp73n8xRtyYG+DILSzNSRkqjfQAjIFN2h9+QgEPRvvIv0rmeQtoWnbib+WctK+yJ46hsf\nwykWQLrMPOfteHX4/Y44n7xi6Ssy65Sv20SRPMPXFNJFF024fPaqZZXXCSFobGzEsiy6u7vx+/1E\nIpFX/LlatsODL3dMapvv6uqisbFxQr/EdFeZhmGwdOlS2tvbWbZsGbquVzLF/aaOO3MlBcsls28n\ndiFHIlsk4jMppBIYvgCx+SsBiC1YhW56yQ/0EGpZoHo+KKqYblTS3cDd4zzfAawd8fctE7z+PdM5\n/4mmbMM9sv4npA5tx7GKY8pGQMmGO/Digxx44l4+f/Dj8IHruGplM3v27KFYLFJTU0M+n6e/v59w\nOExbW1slosZxnIq55dR6yaJawWDWhzj1SsoZDcUj2wFBcNlFCKP0Q04+8xvCp7+d5NN3UTiyDd+c\nVWhmKXRUH6p/JCV4TB2vx4tEYlsWAoHP1GiK+OhK5hFSIoCoTydbdECIkrMZCRJqz3knNWddT7Fn\nP/mu3TSGAwS9JrZtccaHv45TLNDX/gz+aAM+j4eCY02rl8DaVS2TRvKUr/eVK1q4bEGQMxaNdWyb\npklTUxPZbJauri4ikQiBQGDM53o027xp6NSGNLKFAl9+cHtlfGV6enqIxWIY4xxjqqvMKxaGOFpk\nqsfjYcGCBWzdupUVK1bwi2cO0JsuUrBdyqkQecvFsRx6kgV6UgXC/ia8tc307X6J2PxV9O35I8Iw\nCTbMUj0fFGN4LUQlvS4YWe1zzjlvw3/V+9AMk2xfZ6VsRLh5LgC5RA+9O57HG4ri1TX+72834yQO\ns6S1plKOurm5mUAggGVZ9PX1IaWkp6eHdDpNNBoFIOsI9g5K5tSHGcgW6E4WsNL9ZNofx82lGHzi\nlySfvgs3n8GobcE3cxmD0qXQuZOGt364cuMxdA1taCXgHSqeJxCYpgfLttA0jZqAB9uRxNMFavwm\nPo+HZCFfKtc9MvFKgkTDbJpPfvfTxF94iNC5a/F4Sx3hTMOk9dS38PS3P8np7/8SaP5p9xKYLJJn\nfn2QS0fMtjs7O6uigEYSCAQIBAIkk0m6u7uJxWLs788f1TZf5sBT93LwyXtZcdMn8TYt4CsPtVds\n8319fYTD4TG2fzi2VebDW1w+t9Y8qjM4EAgwb948fvC75/jBcwPkijaGrlXMV5oQuKIUnSWRpAoO\n7szT2HrvDxCujabrLL3mQ+ieYae66vmgKKOEYYqMrPbpqW8d3jCibERZGPZs+AXzLrqBnQ/9DKtY\nQDoufzhY4LyVdQSDQQYHBzl06BA9PT0YhkE0GkUIQXNzcyWyBuD+rb04rsR1bUIejV5NwwjXEpy1\nDGPZhUTPvhHHytNz71epv+JDGAJ0Tadp7cfwz1iMRGI5shLuqgnwCId8PgdUJpfYtkPWcjENnT8/\nrYberMOzh3NkC/bQPiXHbinNThL0aAQNievV0ewspunBtku5DbqmI5C4VpFiegAR9R+3XgLjRfKM\npra29qgJapFIhEgkwp5DXXzhvp30ZQrktQDBVZejH9mOlO6Y15TF3hOMAoKAz0d/Os/PntrDJy+e\ng8/nGzda6FgjhfJFi3/53djVyHg8vi/NzzenSlFZI3p3j0FCoWMnA8/dQ8MVH2H2/IXoyQ623f1N\nlr/zrwk1zlY9HxRVKGGYAuNV+9y97ud0b3kS17YINs6u2G7jOzaV4ujr5iClRNd1gh6dJ/eneO6l\nrdQEPbiuSygUYtGiRWMclNFotGKK6H2hvxRtI0sdv/yGy8F1t4PQqD37BhAw+McHCS08A1+0vnIM\nV7qV8hkaEPKbleJ7tjCx5ShTjGmydmmMyxcEOXfFfIQQDGYtPvXrl3hufz+6ADeXoti1i5bFp6Dr\nBqnD7SR2v0jbVX9B797NeAIhgg2zsPJZDjxxN5rXT6CumZR1YnsJ+Hw+stkshUJhwhDTslln/fZu\nOgZygEQFvVSHAAAgAElEQVS0rEAKQe7IPtKZAToGcsSCnkpXu7LY7173i8pxogEvj7THuXFZmJWL\nF4x7nr/5yvcYaN9Irq+jaiWS7NjDgSf+l3T3QYQQRGctZsGlt+AL1SBl4aiRQuUVbNDrIVd0yNk2\nOsMJfk4uxeBLD4F0qL/ovRT7D+NrWYivcTbd6SJz6mcTbpnPwP5thBpnq54PiiqUMEyB8ap9Lrz8\nT1lw6btJduxh8NAOhG6QTibYueFXzLnyL3Hd0s3Zsi2QDhLB891FLpqtEY1G0XWdvr6+ijCU/+3t\n7a10PjvY1Yvr2AivF4/hIb3+F7i5NI1v/SD6kG+h2LkbO5Mg3f4EAG4hQ9/vf0p01aVET7kc6Uqk\nhPqwj6/deAr7ezMTmmKklHR2dhKLxbBzGc6fE6S9c5CaoIe8UWDno0/y0hN3IpB4I/UsuOQWmpas\noXvbM+z8/Z0U0wk0w0OoeS4r3vkJHASO49ASOrG1GmOx2IQmpZFmHduVaEKga1rFh1JywJdmz6m8\nTVPEi3XoZYRmEJu/CvjFiKO5IDS29EPjOJnSdzx7CCMQYc65bx8TJWTnszSfchG1c5cjNI0963/J\nzgd/zIp3fhJT1yha7qSRQiNXsD6PQTLv4EoXISVIl8ze59EDEaTjgHTxNcwl+fJ67P7D6LUz6Dyw\nh8HDu2g59S2VY6qeD4oyShimwETVPoWmEZ3ZRs+2jby87i6KqQTheafgjzaUbvSiFNNu2w5Sagw6\nXpqbm/H5fKUKmkcJZ6yL5KAzD1Ky66HbySc6WXrtR+izdFy3tAJovPIj4DqV13Te+1Vqz7oO/8yl\nQ+08XRxXcOvZzcwK2Mya7eWC2dUz6WJmgHim1EfBtm327dtHY2Mj582P8p9PHSKXK2B4gyy+/hOY\no8whtm1Rt2g1dUNd1BzHLa1YHJdCsQgurKwTbNu2DSiFZI4Xpz8RZZEcWaq6/HikqI78W9M0wuEw\nR44coaGhobLt3hcP8td//49kj5TCfgnECJz2NkKzlyMQ5Dp2MPjSgzi5JHY6Qd0Ff0KH5Wfg979h\n9S1/UzUu13WRbimM90jSJhaLVWVKl1eZM5efia4J0l37cVLDSf3lFWaZ1tWX8PKvbqv8PVlPidEr\n2IjfJJ4qIqXLwIsPknjmf3ALOYRuMLh5A57aZmpWr6Vm9VX0bPgRTi6F5gux4Ky11M5brno+KMag\nhGEKTNS3t4x0XXxY2Olu0p3b2bF7EwBOPsPhR37OzDOvInrKZXjDNcyaNYtcLlfJ+J2MOTEfIMgn\n++h++XE0w2Dn7Z/Hdku+g9pzbyK8cM2wwAhA09C9QTTThyMlILh+9UxuOX/JuOdIJBJYVmkmO3/+\n/Eo/gH379lHIJrly1Uwe2tKJz2tMqSPbSN3oz+S5sK0G3SkQiUaJRCLYto1t21POLYDh/tEwdEMu\n13ya4D/HcSr/9vb24vf72RPP8NUHtxOIxJh/7ifxhmPs2foSh9f/GO91n0WYXno2/Bf+WcvRvAH0\nQJT473+Mt2Ee+pzTcLxhbNtCShfbsikWC6Vr5Tp0J5IMDAxgmiZbt24lFovx8K5BipaDTwdHapXx\nT8TgoZ0E6oZXOJNFCo1ewRqaRthnlFaBK95Cdu8LNF31UdI7N2Ine6lZXQoQjCy7iPCyC0GWghLC\nkdIEQfV8UIxGCcMUGFnxtJhJMniwndiCVWiGh4ED2+jZ/gxtV/0FCy66jkI+j+kp1dN/8fYvMfP8\n64nOWUquUMRwS1mt40WujMd1Z0a5fVM3/kATF37mh1Xb8pZDIlMkmbcr1VdxoeWdXwRR6tsQ9Gj4\nDY33rq4jHo9XXptMJikWi0gpiUajeDwehBAkEgn6+/txHIe6ujpM02SRvocNuoYjBcfSqLOUsWzw\n/osW09YUJpFIkEgkKlFXsViMnp4eAEKhUFX46GjKKwbgmOoWRSIROjs7qamp4YEnOtE9PhZedH1l\ne838U+gK1VHsO4xbyOCpbcFbPxs7M0DN6qs49PO/x82ncYs5ntvxJF5Tx86l2fXAfzLrrLXMOusq\nhAVNtZFKUlpjYyPxeJyOVKmon2EYuK5EDvl97CFzkpRl86EkEz/MgafuZck1H8a2rdKqyy3iOC5b\nDsa5YPZwEUEpJduP9I8RmljQQypvk3jhAYJtZ6EHo+O6osVQEIFEUrBdirarej4oxqCEYQpU9e0V\ngs4//oFd634GUuKN1DH7ghtoXHw6QghMf4iiZWEaJkLTCURqCEVqcXJFZtaYtLe347ou0WiUYDBI\nbW3thOcd3f1rJD5Tp6XGT6MrSeaKFBx3aBYJXl0j4vdUZoILZrWQTCbJ5/MAzJw5c4xjNpFIUCwW\nWbBgAYZhkM1mSSaTXPuWs0iKLfzkxQQBj46p68BEs9/Sjc5yXHKW5KMXzKRGy9PbW0BKWQkXHRgY\nYMeOHei6TkNDA7ZtV0Sivr7+uHZSa2pqYueBI+O2CtWsNHYyjlnbQmrbY5g1zUOlQ0rZ22a4jsiq\nS/HNWIIroTmo0X7XbSy89BbqFqyqHGe0bb6hoYFk7iDSdQATTRNomo6maRhDviEpXWzbxkr10/6/\n32bBpe8mNncpUFp1lVp96tiaWZUJLaUkb3cA7lAkWOmzMIQgmOui48gOmq/5m6GV1fjXRAxFHhRt\np5IprsphKEaihGEKjOzb6wmEK316y+TyuRH+AoHH9GBZFmfc+i8IoQ3ZcDVuOGtxZbk+MDBAJpOh\ns7MTr9dLOBzG5/ONycw9Ws0gXRPUBsdG3xRtFwFctiBIT08P4XB43KzfZDJJLpejtra2IlL9/f1o\nmkZzc6mUxa1XnUE0uotvP36Qojt5LH6pl4DO5982cdXOuro6CoUCuVyOeDzO7t27AWhpaaG/vx/X\ndfF4PNTU1FRmxuP5Y0Zuk7Jk7/f7/fh8voq4aJrGpo48lu0S8g4fw3Vsujb8hGDbmZg1jeQObSXf\nvRcjWKrdlN79HNrQTdwM1uC4Lo6vtAJwNAPLBem4E9rm6yNBYADLLk0SRiOEhpNNsvnXX2PmWVfR\ntPyccd7f2EghIQTRgBch9Mr7Htobt2cPWjZBx13/WIpkswsgJVaik9br/q7qurkuSFfyd1eq6qqK\nsShhmAKTzdxBjrtkN01zqAw0pAv2GBtuuYDcjBkzyOfzpFIpEokEhw8fJhaLoWkaoVDomGoGAbiu\nQ96yyVuSv7l8IWcvnTPufuW+CKFQqBJNMzIqaXTDnZvPbWNJa5Q7nzvIxgPpCTOQR/cSGI/yDbxc\nAmTx4lLL0UOHDlXaazY2NlZWONFodErVTV3XJZ/PMzAwUAnXBdjVlSzNzq2SE1q6Lrt+90MQGrMu\nvIm0JfHPXoF/5jLqzrupdLMV0PE/X65kj7tS4gqNsz54G67rYNk2/aksF8yPEPaNNbLNbwghNA1d\nCPK5DFKWooNc20JoGsVMks13fo0Zqy+l5dSLsazikFO++ttUXo04jkN/f6l6bb3PxXEchNDR9eHv\nVOPK86lbfDoOGolMkc7n12Oneqk956bK51X60CDg0bn1ovmcVo9CMQYlDFNkopm7bTvo+viX0TRN\ncoUCAjGpDdfn81VuxFJK+vr6KmWbNU1jTbOfD53bwvc3dpCzGDNjd10Xx3VwXEnOkpjGxDP2XC5H\nKpWqKnMNkM/nSSQStLS0TBgtdcrcRpbPjLH7YAdb+mB/f27CDORXwqxZsyrXYPfu3RSLRQzDwDAM\nBgcHgZKZZqLxaZpWMVeNxNW78HlLgq7rOrvW/Qw7l2bJ9R9joABusYAWaSKz+1ksx0UXgG1hJ3sx\na1uGCgOK4VIWmo7QBF4PXNkWYfPmzdTV1TFjxozK2MqrzAMb7+fwxvsq0VU9255m9rnXlK75YJyD\nT93HwafuK41TSs79xLfQNI2i5YALpzTq9PT0VBUgLPueRk5JbNtGMzx4/AE0oREI2bixCINOhmg0\nApqGoWt4dY2g16TouLzn7Ll4hH3cO9YpXv8oYZgiE8/cJRNFnRZtl6Kr8ZHzZ9ISnFqlTSEE9fXD\n07hy85pLF8VoDsDDu9M8sXegMgMsl5vWNA1d07hyReO4M/ZiscjAwAA+n29Mo5zyDHuiUhIjMQyD\nJfNnUxvsZu3y+kmdxq8UIQRtbW2Vce/ZswfXdQkEApXeC36/n3B4anbxcvCAruvsfOinpONHaLry\nI+xLWCUTvRCYs1dhbbqX9L6X8M1cRvql32HUtmBEGkrZ7bLkv4HS55qzHD571TIuW9VCPB6nt7eX\nLVu20NTURGNj4/Aq072KeedfC5T8BqW+EaUVxpzzSgIhkThDmeOWVcSVkrwjuGxJAwtmjf1MRq9g\nXdfBdR10w0ATw5OW8nmldMkXCng9XjRNYzBXHLGCNSkWi2QymWn36la8cVDCcAyMV+1zPIZt7Rqf\nvXIJa1e1kEgkSCaTE1b3nIhQKFTp2hUMBmn07ufahR5e7LbozkLGcgl5dObW+bn2jAXUBKpNXeWi\nfKZpjts5bbyiclOhqamJgYEBCoXCpA706eLxeFi6tOSUTSaTHDlypCISmUwGTdOora2dNDeiHDxQ\nTPXT8cfHcNBJ/ORzFUGvO+9mfPNPJ3bxnzP4zH8z8NjPMBvmUHPBe0uCIks3b01KBnPFqs8VSquY\nuro6enp6iMfj9PX10dTUNGaVaRgmjmNTLBYRQyu+8v91o1Sh1jBMCraN5thcsXDibm3lYxdsBxwb\nw9DRhwSntDoZ3lcIDa/XS6FQQNPNMVFI0WiUnp4ePB7PMeWYKN64iKPFV78WWbNmjdy0adNJO/+u\n7tRQtc/u0pKfUjP3kbb2S5eMnbkPDg5WGtRMlfJMH0q9j8sF9mA4B0EIgWmaVbkR5ZpLZRPEeMft\n7e2t1Gd6pZSjl8qO6hNBuc9CWfAcx6kkzo1nEhnIFrnuO09iOZKeZAGBHPc9u1Jiuy5l90T5l6GJ\nUlG6lqiPC+ZHuGZFA4uawuOeq1Ao0N3dTSaTwePxsKnb5RuPHsBnCkxdqwiBRI7rlK6sRq5cwlwj\nwYwZM6o+85E88HInX7pvM0Gvjn+ED6acJzLa5FawbJLZAp9bu4xrV481bXZ0dBCoqZ928ynFaxch\nxPNSyjVH3U8Jw7FTrqn/wr5udnZncIWOz9RZ1hphaXNkUlt7KpXCsqxJbbq2bVccjaZpTmlGns/n\nSSaTFR9FudJn+eYwMuKpnMcwnmC8ElzXpauri/r6+innaBwvCoVCJf/C7/eTz+eJxWKEw+GqVdCn\n7nyJe17qwNBLRQ8ZyiOI/+F28h07cK0ieiBCdNWlBBedU8o9oORYd6XktFkR/vXq+TTWhIhGo5XP\nqJx1HYvFEEKQzWbJZDKk02ni8Tiu69Ke8fOjTb0gRMU/JKWLZdt4hhzOI1eZf3vFYs5dWMfdz+6m\nM+XQl8rSFIuyYNQNuquriwe39vCTF/qrKreWQl2Hv38jj/3xi+fS5kuzePHiqtXBru4Uv3zmAOu3\ndSGGVh4jy4Lrmjhq8ynFax8lDK8Co2vqO46NJkTlhzTVH082myWbzVbdmEf2YTAM4xU5A/v7+7Es\ni/r6evr7h5OgQqEQQghSqRTxeJxAIEBTU9Nx9w/09PQQCASO2rD+1WJwcJBcLkd/fz8ej6ciwA0N\nDXz6rpe5748d6JpAK4d5CrASXZiRetANrEQ3XQ98g8Yr/gpfQymay5USx5Vce2orX7vpVHK5HMlk\nshJOW77m5c8uFAoxe/bsiiAnEgm6u7s5knZZtyfDxgOpitNYCIllOaUufbrGpUsaOXt+jKf29PP7\nHaXVaGnmX9pP1zUMXeeSJY1cvbSWoJOira2N3T3pqn4VjuNMuoJNp9Ps37+fZcuWoWlaVf2ogFk6\nnzEqoKIsLprQJmxSpHjto4ThODNeTf1yFmt5dnYsP55cLsfg4GDFpKHremXWeawMDg5WbP3j2YhT\nqRSpVIre3t6KczSTyZDNZiv71NTUHJfZfjJZCg2dSNiOR5/so+G6Lr29vbiuSyaToTeZ5VO/68RF\n0Jux0MSwOJQud+mxNdhN1wPfpO7sGwjOX10KUZWSxrAXj6Fzx/tXo9l5hBCVFVpTU9OEAq9pGnV1\ndQgh6O7upre3F0f3sqkzT3cWcnYpT6HO6/DWFa281JGr+o4JZKVCb+nYNrYjydkSx7b43NtW8PZT\nh/tKD2ZLTZG2HIxja+ak0WKpVIqDBw+y36nlXx/cMVQWXKucRwhtXHPbSFOXEofXH1MVBuV8ngKf\nu+37/OiO31Do76Bx6VksXvt+JJL8YB8v/PDzGJ7hmP+ZZ15J85lvq0Qvjf7xSCkrFVTLNX2mEg00\nHqlUilwuRyQSmdAODSWTiWEYrFq1Ctu2q8pjlAVhYGCg4suAUhLaVGojjSYSiVAoFOjo6KgKfT0e\nfbKniqZpFUd7NpvlsYP7QQjCpobraPTnHFwhSvWvpKD/qV+T2vU00rbw1s3EN3MptltKEGwImkS8\nGsm8zYbt3fzJeW1V5yoWi3R3d2MYRuWalc/tum7lWuu6zuLFi+nu7uZcbAKBAB6Ph1gshsfj4a6n\nd/Mff9hP0OsZ0behPPkYWpHqBkJzKeTT+Px+bnt4J7qmVb5j5X4VF87xHdVMGA6HKfhifOnnz9O7\n8X9IHW7Hzmfx1TQw94LrCc9aQqpzLwefvGdMaXC/L3LUsuCK1zdKGI7Cru4UD+zOMPucq0kf3FYp\nnezYDrpR+sGe8/FvVMxJIyn/eBY2hiq5CUII6urqKrMxy7Lo6OigtbV1zOsnIpvNkk6nCYVC40Ya\njWR0RJJhGFWvSSQSFUEo+yGklJWaSVA9850KXq+XlpYWOjs7qaurY8OO/mn1yZ4OgUCA3oKGrhvo\nuqA2pBH0ufRnimSKLhJJ5OwbCJ91HVbPfgpdu5GaQdirEwt68XtKPxFdh8702AY+Ho+HpqYmLMui\np6cHTdMqN+WRAlVexZimSSgUolgsVgoKHkrafPvxQwQ8OgIH0HBti93rfk7iwDacQq5yww60LiQY\nDOJKF6/OtG7Qv92WKIXqBqOsetdn8IZj9O/bTPt932f1+/4PhUxqwtLgOcuetCy44vWNEoajcMez\nh4guOJWo38P++MERpZPlxB2zAI8hSOdtfvzYDv76otkT1gAyTZPm5mYOHz5clSA1krL5ZWfXIH3J\nDLVBH0tmxLhs6cSml6k6hEc6tvP5fKVmEQzXLSrf1Mpmx6k4xIUQtLa2cudTO/mPR/bS88Svx8xK\ny6Wnu15+jEPP/A4rkyTYuoB/Sr0HOPu4iUO5Om6pcqwLUlIfMKj1SbK2SzZfRGgGxuw24odewH/o\nGZpOvxSQWHapL7ZATtrhrCy+juPQ3d2NEKIqGW+0SPT19ZFOpzly5Aj/vVtiWTY+3UDXdCyriCZd\nvJE6lt/4KYK1TfTv28y2e77LKe/5//DVt6Cjo7kOmUyRXz13cKjtaclEFx9I01DTO6mJrly6OxaN\nUHP+NaVMak2jbsEp+KJ1pLsP0NC2Gtu2MYbMkyNLg09WFlzx+kcJwySM17ltJK7rgoBnv/93IAS1\nc5Yx6/zrMPylRKGI38PGA2n+LlQ7aUiopmnMmDGDI0eO0NraWtm3bH55pL0by3YQAgxdx5UZHmrv\nm9D8Ug4hnSyLeTwmysCG6gqo5dnxyNeNl5+xqzvFd5/swGeCL1LLvHFmpfnBPvY/fjcrb/5b/LWN\n7N1wB4fX/YjbIrWveCYspSSZTFbKa2hOkaJtY9mlsFPTNDHNklj6HYfagBfHcTBNk5QuKCR7K3kF\nUMphsPM2hmsRj8fHrd808rlIJILX66Wnp2eMQEDp825oaKChoYFoQwsbNzyGLm2GctwAgSM0Zp97\ndeWGHZ27HG+kjkJ/B+H6kmDqmo7PY3Dnswd5eGsXYii5TboOQksBE5voRpbu1jWz1P6zUEDYBXL9\nPQTqWhFCoOsajmOj60ZVafDJyoIrXv8oYZiE8Tq3AUO9jwW6189pf/oF/PWtFLJp9j1yB7sf/BEr\nb/xUZV+n6EzpxyOEYMaMGXR2dtLY2MjD2+J85aF2LMsm6DUIh3xjXjOe+aUcQjndvILRGdipVKoi\nBqPNUblcrkooyiJS7jIWDoSYe/61pWqgmqialSaP7KF+0RqCQ320Z51zNc9+72/J9ncf1VRh2zaJ\nxHDzm5E352g0WvG7rJxT5JHdg2PyBkaWUJdC0L9vM707nmPR2/6y0sNaExq6rqPrOitmN1RVOh0P\nKSWZTKbSnc913UqTonJJi/IYAR7ckUA3DKJ+P5ZlUSjkMYxSNz3HdjA9JpZtkR3oozjYS6Bu2OQ4\nkC3SnSzguJKQ41LrLxX5s+3qgIjxTHSjm0+Zpkk+n2P7vd+jccU5FQHQNB3btkl1H+Tgxt+y7B0f\nqXrd3t7MpNdD8fpECcMkTNS5reJfEH58DTNLfZ2jdSy64j08851P4xTz6CMc0lP98ZTNLz9/dCvf\nebKDgEcjHC416xmPcgP5ou3y5Qe3k0gkuP7MeeM2pZ8u4XC4UoJiZJlsKJmjRgpFOp1m14EO1m3t\nwGdqQ7WGtKHCgjZOPlOZlSaP7GHcMt6pnoqpQnPylYJ6IzEMo+pmOxEjq+NWiXxVCXUXTzjGgktu\noaHtNOwh/4qUknyxiHRdLl589LwPIURVtjpAc3NzJSlPSlnpKgdw+NkeHMfBsgUIgdfrw7Ksij8q\nnU5jFQt0bPgZ9cvOwhOtx7YtkjmbPc89Qnb3MxQTnWTb1hB9+5+Ty+XI9XWyf8PPyA/0AhBsms2s\nC2/k/95vk0wluWxxHT0DKaTrDK1SSoUF9z70ExAaredeX0mcNAwDK9XH1v/+D+ZfcjPRWYtGXr5J\nzWuK1y9KGCZh4s5tJf/C6Fjv8g1cymEn5bH+eJ5tP8h3Hz9I12N3kj6yE6dQbZPP9Haw84Efkh8o\nRbuEmucw7+KbMSP1/Oez3Zy5ZBZtx18XqhjPgV3uAlc2K728YwCh6fg8pcxkV5a2u67Djvv/k4Zl\nZxOoa6F2/gra7/s+zadciCdSz/4n70ECTjGHZdnc/ewubj5r3lFn6pMxUXXc0SXULcuqhPualdBN\nh2zB5aK2Gtx8mp7scA7DsSCEoLGxsWKiKzdDytkS0zCqVjOmaZb6hVul8hsdj/4KoeksuPTdGIZJ\n3nKIZ2zMYISaU68ke3gb4OAxPWCCE4qy+O0fJFDbCFLS8eIj7H/4x6z40y/y/Y2dnL6wlcaaMEJL\nV1Yn5cKCK2/4BHa5cq4myPR3s/WurzPn3KuJLaqOchyvLLjijYEShkkoF1+TroN03SHHZal0stQ0\nUl0HMHwB/DWN2IUsezb8kuisxRje4cSxqf54yjfX3+1MgoBQrJE5574Nf7SBgQNbKzZ5b6iGpdd+\nCG+kDqTk8PPraf/tD1jz/n9iMFc8KZEiIx3RZbPS5gM92I6NpNQSVEdHui47fvcjhKYz68IbKRaL\nhGcsYubZV7Ptf7+La+WZcfplGB4fgWg96Dq9Bf24rICO1tcCSmVNbNvGGNGf1JECj8fgz85vw3VL\nPouRPpZjzf8YaaLr6+tDsws47thoJ03T8Hi87HjgRxRSAyy97qMITcOyLPozFhJJaN5pAOTjBxDF\nVOW1vlAUoYnSe9EFQmjkEj14DK0STbS0ZdgntHvdz8j2dbDypk+jmx50oFDIU0wn2Pqbf6P51Itp\nOfUtQ82FqrOqRzcpUrwxUMIwCeXiawc33s/Bp+6tPN+9dSNzzrsWf6yJA7+9m2I2ieHxUTNnGUve\nfuvY40zy4xkcHCSfz1NbW0vWhj/s3Eo0FCI2VHnTtm1q5q2o2OTrF52O4SsJT9EqoGkahcGh1cNr\nIFKk3GfB1XvwGDqObQ+VlpDsW/dzipkky2/4BLo5fDOdteZyZq25HIBcfzcHn76fQP0McsfRVDGV\nvhZCaKW+CUOMTOZa3DKcJ1IuXQ5UfDoT1WmajLq6OlbOzbF+V2lSYBh6xYEMpRt2PtHFqps+jdQM\nikULTddJ5m1Gj96oLG1Ls31d03nmW3+NXcghgDnnvwMY/o6895y56BpkEnG6/vgYmm7yzHc+XTne\nwiveQ7LnCPmBOIeeuo9DG++rtAU9+2PfBKFN2KRI8fpHCcMklG3TM895e6VEcmnGZFA2GzUuPWvC\n15dt2uP9eNLpNJlMpio57b7Nh8c4uw3DIJvsJ9vfXXE8Suny1Dc+jmuVZrBzziuVV34tRYqUVlui\nMrvc9fDtZPs6WHrDJ3CFQA7NzF3bIpfoIVDfSiHVz66Hf8qM1Zdh+oNkc9ZxNVWMVx13dGCBYegU\nLIu8LcdUUS1TFj8oCYNtlyqmllcRkUhkTKOjiSh/xzTdwHEdpHTQNZ1iqn/cG3bD+TchZ5yK0LTh\nXt+Ad0joXHe4QOC5H/8mTrFA58uPl1aYDH9HNu3vHzKvyf/X3plHR3bVd/5z36tFVVKppNJS2np3\nL+5uO14axwvEYJs2OGYNa8JOAgmZnDBkCGY5OQycOQEyhITAEAwkIcsQggnghSW2McZgtzcG293q\nzb24F6m0q7RUqZb37vzxXr2ukqq0tKSS1P37nKOj0tvqp6vS/b137/19v7zkw18vG1vrTui89jYC\n/gC2tvGZTuLK5/NMTOW4dXebLFW9QJHEMAvlxqbd0dd5nV/wXC7+50mlUoyPj1NbW+s5pxUoN9lt\nW3mO/fgfad15HcGGFq9a+oY//RJWNkPfgUepcf/pveusgpUixT7ZU8lBr5P71Z13AE47brr5rTRu\nuoyD93yVTHIQM1BD/LIbvLtbWPqhitsub2drvK5EWwhKneiwLfbu7pjTiQ7wnhKKpTCGh4fx+Xze\nsNFsk+PlPmOWlccMR7nhz+6cscw5kUwzmnaGktBgA0GfAvdBZ7rEjRkI0nnVTez78gcJx9cRdj8r\nxwcn5zW8FqqpIZ2eIhAMeDUNNgaQ541Xd5Y9R1j7SGKYg/n885Qjm7dLdO+LjXKmJ4QC0ye7tW1z\n5FV6p0EAACAASURBVIffQBkml7z89zzxtcIYuBkI0v4bN7Lvy/+dq9/zaQK19atmpUjxSqCaaHPF\nu1KAPe/5FPl8nsL9r+1Imi7bUMXWeIRP3L7TLQrr4/jgZIkT3Q2bo9QYNtHo/GsoiqUwCraplmWR\nSCQwTbOkDmQ60z9jTpW2k2wce1jTSxCWBoWj9WTjtFONT6Fztjt57nMnrnNecgKNncuhp1Lkw1G0\nthmbys3TNlYRCtWQTqcJBIOk0hnyGNxx204iehKoLMUirF0kMczCaCrLs2eSbG+r45fPDxIwDYKm\norHOV1bWoUDx2PSmphD9/f0VjXKKKUx2g3Pnd/Qn3/TG5I0K9qHOP32W7MQogdr6VbNSZHaf7JkU\nT/jats3oZIYbtzaQmRjBrilfNb5YCtpC5ShejrtQamtrqa2tLZEWKVQ6AzOq4Ct10IX6iUKCMEzD\nsR3F9aC2LOKRACOmQcqysHJZtG0xdvYINbUN0BjHymU5u+8efDVhwk3tGD4/OpvBtBzvjvkMr4HC\nH6xhaCxFTTDA+34zzm9f3kEmk2FwcHDJ5NuF1YMkhjKUE3wL+X0Mpxz/5qFUnkiNj1htgBr/OY2k\nYt37P791G3vaTJLJ5JwJoUDx8Mv0lSIFRk4ewB+KUNvShZXL8MIvvuf903vXWSUrRc73aStvQyDg\n492/tZ3m5lqGhoZKJMSXw050OpFI5Lwc94op6GLBuSdGrTWnT5/25ikKtSGzddCFBGHbFgqNpW1M\nZcCRh9j/5H3e+z1x+Ek6rnkldS2ddD/47+QmRzF8AWrjG9j5O3+K4c73GIbBrnXN9PT0EIvF5jW8\nZhqK376iiyujU7zsqg309/fT2tpKJpNZdDtVohpKvEJ5RHZ7GuXktQtMTmUZy1gk0zls2/nHaQj7\nCReE1gzFTTtaePmWOjY3hWY1ri9HwWlMpUb51dc/imH6UUV3lpfsfTvK9PHCL75PdnwEw+enrn0T\nG1/yeupa12HZmnTO4vsfuGHV/OP88NlePvPjQyWyzrMxl6zz2NiYV+x2vr4V86Wvr8+xMF3iDqrw\nO6RSKWpqary5CNM0i9wBK8x/ACOpLE0hk3DQX0YBV5PJZrEt23sK8/l8ri+0xjBN0jnb+4wUDKEK\n7ViQ7p4+vFaQ7s7lchw4cIDNmzd78uoDAwNEo9ElM2maS4lXTIPOH/FjOA/m6sRy+Rx+nx/LdgTV\nUlmLbN7mhkuauHVnG1e2+Qn7KKlsXSifuqd73sMv0ymYvK82xcvZkm2B6Q5m8xHQy+VyJZIYc3k/\nL5RnXxjgO0+d4RcnRpelgyquhk6lUtTW1nr2rbN10H/74FEeOJggEnRWMhlKYU4batRak806q9aU\nYTjSHj6TkfEpbtrRwqdff4V37NTUFMPDw/O2ec1ms3R3d7Np0ybA8YyeLrN+vizksyKmQQtHEsMC\nOdo3znv/YR89D3+rrAqoZeU4dPdXmew/TWZsiMve/GEa1m937nCzOT77qi3s2dq56I7paN84f/DP\nTxP0GQue7M5aNne+/epVeRc1151wJZ/shVBYOgqVhf3mS6GDyuVyRGtrlr2DKtRGTE1NucVtgYrF\nc9M/I7Ztu2J7M6vxbdt2EoRS2FqR14ovvmk3rUGL5ubmks9rX18f4XDYG96aK97Dhw+zYcMG/H4/\n4XCYRCKxIPn46Sz106UwE0kMC+RT93Tzk2dfYPy5h4jvvt5TAT1879e46l2fRNXUMvjcI9S1beLQ\n3V9h++3vJ9J5ieMSltPcumvp7tQv5H+QuYYqloriIrTpHhhzUdz+PsMRTTTL+G0UWOr2L1TBJ5NJ\n6uvryxbPlfuMOJXJlqdxVMxUNst4Osf7r41z22XtNDY2MjY2VjIPAs4wVzqdrrhyrphUKsXRo0fp\n7Oz0tKFSqdR5De8Vkt3I/p8x1P0Yk4NnadlxDdtvew/gLNs+dO+dTCRemHFjtppviFYb4uC2AAry\n2sUVx0CJCmh08+V07tnr7FAGeSvvVbxGTL2kFcfzWylSOvyyFpICzL4SaCkpLkIr+B8UboIikUhF\nmY2jfeN87ieHSR54mONuB9W07Wouvf0PvGNGXujm2AP/l8zYEJH2zWx75bsJ1caWzNWsIDHS3NzM\n4OAgqVSKZDJJbW2tVzxX/jNi4Pc7hW+ej4Rhep+Rv3j15VzZ4qy4SqfThEIhGhoa6O3tJRqNEg6H\nqa+vp7a2lp6eHpqamggGgxXjDIfDbNmyhZMnT9LS0kIsFsPn83kmUguhoMQbrm8kfN3tjJ7Y75li\nFYh2bqXz6pdz6O6veNuKZT5W2xDqWmZRawCVUm9USh1QStlKqbJZSCm1Tin1kFKq2z32T4v2xZRS\n9yuljrrfZ3d/WSYqyWtnJ8c8FVBwOphcwefZ9J3zay6qOF4qbru8na+942r27mwjnXMmvJPpHGNT\nOe91Omexd2cbd7796jWRFFaKgv9Ba2srra2tntZRf3+/N/laoLiDWnfd7bTtvsGVz3YqyHKpcQ5+\n//+w4cWv5bo/+SJ1bRs5dM9XCfgMLNvm20+eXtK4W1tb6erq8la2nTlzhp6eHgYHB3nlZW1lPyPj\nmTypHEzmbCbSGV68qZ6vvu0qbru8nfb2dnbv3u2ZLyUSCUKu5HcikfA8pjs6OpicnJzRPtOpq6uj\nq6uLwcFBBgYGqKurI5VKeaKK86HY96R529U0b70SX6g0sRimj849LyfatRWmPb0VZD6SqZWv37lQ\nWOwTw37g9cBXZzkmD/yZ1vpXSqkI8LRS6n6tdTdwB/Cg1vozSqk73J8/ssiYFkyliuPD932N1t3X\nEYq1kclkMPyGo4JZYYJtqSuO5yrEWurhl4uF+vp6b/6hWBAvmc7z00NOB2VuuxqAicRJrHwOy7Yx\nDJPBo7+itrmTlu3OfdCG61/Nvi99kNRQL3WNbcumVVWojWhtbWV4eJhMJsORI0dobGzkQzdtnPUz\nEqkxGRgYoL9/ylspt3nzZrLZLMePH2dsbIympiai0ag3z1BfX08sFiOdTtPT0zPrxHRDQwOWZXkT\n6Z2dnQuyq610YzZfVpMUzIXCohKD1vogMOtKBK11L9Drvh5XSh0EOoFu4DXAS91Dvwn8jBVIDLNV\nHG+5+XdRSs2pfbOcFcfVGn65GCkuPHzk6TPkLQvbBtt2THoKGMqZ5E0N9lDbcu5vYQaC1DS0kBrq\nIdzUXpUOqjCG39zczMjICIlEAsMwePG6MK+7qrw9bDwex7btEk+IQCDAjh07mJyc5MSJE4yMjHhz\nMYlEglgsRigUoqamhr6+vhk+E8U0NTVh2zYjIyP09vbS1tZGIpGYl2FUJd+ThbIapGAuFJa+nHQW\nlFIbgSuBx91NcTdxACSAFZFqrFRxfOlrPjBLxXEpq6XiWDh/jg9MYBgmfp8fv8+PUgrLtpwaAO2s\n/LGyU5jB0vkJXzCElTlnJFStDqqQ1DZv3ux1zN3d3SQSCa/KupjC0FRrayuDg4P09fVh2za1tbXs\n3r2btrY2+vv7OXv2rGNzOj7O4OCg5who2/asFeEtLS1eYeDg4CDRaHTOoSiYzffEwbLycw5NrRYp\nmAuFOXs9pdQDQLm0/3Gt9Q/m+0ZKqTrgu8AHtdZj0/drrbVSquISKaXU+4D3Aaxfv36+bzsv5lNx\nDGAXTYZpK4+dz6FMn3eHtloqjoXzY3oHZRgGpmFiGK5lZi6PGajBypa6yeWzU5hB54lypTqogsNe\nPB5ncHDQmz+IRCIz6mqKTYMGBwfRWhOLxWhqaqKpqYlTp05x6tQpotEojY2NJBIJb/gtHA7POjHd\n3t7uWa4WtJomJyepra38v1F8Y1YOrR3dKMOYWa9RfIzcmC0dcyYGrfUti30TpZQfJyn8m9b6P4t2\n9Sml2rXWvUqpdqDi7YjW+k7gTnCWqy42pmIKgm+zadO37ryWp77xCTJjjoLm/ru+AMCL3vcZ/JEm\n0aa/AJitg1I4K9DCzR3073/U225lM0yN9hdJoq9sB6WUoqXF8abOZDKMjo5y+PBh6urqiEajJbUd\nhWMBBgcHsSyLWCzG+vXr6erq4tixYxw7doy2tjZSqRRjY2O0trbS0dHB0NAQqVSqxKSpwLp16zh5\n8iQDAwO0t7czMTFBMBicsYS2QPGNWVlTLNsiWBNkanLSsdRFbsyWm2Vfrqqcv9o3gINa67+etvtu\n4J3AZ9zv834CWUrOCb5V1qYHuOb9ny27vVBxLBPBa5u5OihlGDRtvYoTP/sOg0eeJrb5ck49dg+1\nLV2rUqsqGAwSj8eJx+Mkk0lGRkY4c+YMTU1NxGKxkuK2Yle5fD5PY2MjW7duJZvNcvToURKJBF1d\nXfT39xMKhRxb0lkmpjdu3Mjx48fp7e31zqs0GV2sxHtmmilWf/c+uq79bTa95HU8+6+fIpOUG7Nq\nsKgCN6XU64C/A1qAUeDXWutblVIdwNe11rcppV4MPAI8hyMfD/AxrfUPlVJNwH8A64EXgDdprecc\nlFyuyucLseJYmD8FraqQ38eZx+4p6aAA1l//ajbc8OpzdQzJISIdm9j2yvdQE21elVpV0yksUx0Z\nGcHv99PY2Fj2rr9QZBeNRgkGg0xMTHD8+HFs2/aK35qamvD7/bNOTB85csRbqTQ5OVmxcG42KZhi\nO9FcPodhGGjb9ratVimY1YhUPp8HF3LFsTA/LkStqkqkUimGh4dJJpM0NDTQ3Nw8Y95gdHTU8eZ2\niwITiQSnTp2ioaGBcDhMMBikpaXFEwYspyR86NAhlFK0t7dj2zYNDQ0zjpntxqzUh1uTy+UdOXLb\nQmPKjdkCmG9iqOqqpNXObZe3c8crdpDJ2yTTWU/TZzqWrUmms2QtW5LCBcZbr1mHoQyyeXvug4uY\nbsy0FgiHw3R1dbFr1y5CoRCnTp3i8OHDnhMdODUKhaLAvr4+6uvrueaaa/D7/Zw+fZqxsTHOnj2L\naZo0NjbS09NDNpsteZ8dO3aQy+Xo6enBsixSqdSMWAqeFOmcNUfbK0zTRGsbG8XEVIYP790uSWGJ\nkSeGMlRD8E1YvVzMT475fJ7+/n5GRka8grpi/4uCllJdXR2hUMhLJJ2dnZ474fDwsJcoinnmmWe8\nQr14PF62YK6cumrpE4N7Y5bK4PeZfOiWS9gTNxcl3ncxIUNJS0C1BN+E1cdySYWvJSYmJujr62Nq\naoqmpibi8bi3AmhiYoJUKkUoFMLv93PgwAEsy6KlpYXGxkYCgQCjo6MzJqaffPJJb8iqUmc+/cbM\nsix8PnPGjdlNG2u4fvdmz0K1o6Nj0bLfFzqSGARhkciTo0PBN2JgYIBAIEB7e3uJmurExAQ1NTVY\nlsXhw4fx+XzE43FPvqMgzFe41qOPPkpnZyfhcHhWd8NkKscPnjpGX0oznrFm3JhlMhkmJyeJxWLY\ntk1vby/t7e3LYgN7oSCJQRCWCHlyPEc2m+Xs2bOkUikikQhdXV0YhkEqlWJ8fNxbwXTs2DHq6+vp\n7OwkGAySzWa9mgmtNY888gjr16+nsbGRaDRa8f3m8pQeHh72DI601vT29hKPx8s42wkgiUEQhGUm\nmUxy9uxZtNZ0dXURjUaZmpoimUwSCATo7+/nzJkzdHZ2Eo/HSafTNDc3EwgEsCyLn//852zcuJH2\n9vYSLbJiK9WB0QlaGupmtVItPCkU6OnpoaWlZUnd/MrFthZ9qCUxCIJQFWzb5vTp096Q0oYNG7As\ni9HRUQzD4OTJkySTSbZs2UJtba3nTpfP53n44YdZv349W7Zs4djA5AyvZ21bKFdmu5KVaj6fZ3h4\nuGRYqq+vz5vrWAouFB9qSQyCIFSddDrNqVOnyOfztLS00NDQwOjoKJlMhpMnT5LL5di6dSumadLe\n3k42m+WRRx7hNM188/+NzpjsLy5um81KNZlMehajBfr7+z1jo8VwIflQi4ObIAhVJxQKsX37dsC5\naz969CimabJ+/XoCgQBDQ0McOHCAaDRKJpMhHo8z3nAJX773ANHaGiKhyo5xpqGIhgJk8zaf+fEh\n4JzbYTQapaenh1Ao5K1MKqjI2rZdkjAWQunS5crd5WyxrUXkiUEQhGXFsiyOHTtGLpejtraWUCjE\nyZMn6enpQde38YUnJ6nxm0ylJolEIvQ98zB9+3/p2qru4dLbf3/GNctJ0RRkwad7QAwPDxMMBmdV\neC1HuWrsR//mj0t/t3yO9itu5JJbfm/W2FYLUvksCMKqwDRNtm3bxq5du2hsbGRwcJBwOMzll1/O\nvd3DTKbSaCtPbW0t4+Pj+GrrPVvVSpSzUjUMw7tGMbFYjGw2O2P7XBRsXouLHK//4Je9r9/8wOcx\nfX7PzW+22NYakhgEQaga0WiUXbt2sXv3biZzmkNjPiI1Jul0ivHxMWpqggTil9C89YoZvs/TKef1\nHIlEmJycxLZLZTUaGxuxbZuxsRlWMGUp9qGuxOCRp/GHI9R3bZtXbGsJSQyCIFQdpRRHJ2vw+QPU\n1dYRCoUxTR+jo0ny+TzJ5Bha27NWMhd7PRcTj8fp6+ubcXyhXmJ0dHTO+ObjQ9134DFad11fNsZK\nsa0VZPJZEIQVoeD1bBgGoVCIUChEOBxibGyc4eFhJsYnCMxD4mK6lapSimg0SjKZLCme01pTV1dH\nMpmkt7eXaDSKZVnYtmvbalnesc+90I9l5cnny7/n1NgQyVOH2faKdy0otrWCJAZBEFaEcl7Pfn/A\nMRJqivHM/p+RtbLk8jkU5ROEti36RhyPaXA6f3CSQ39/P5OTk/j9jn+31tqxazVNlFIMDg7S0tKC\naZqYpolhGN7dv2324ff5vKWy0xk+/BThto3URCtXZa9lH2pJDIIgrAhzWak2NDQwNTZEPpfH5/fh\n9/lgWoJQOU28sb6sbEZzczO9vb2eFMd00uk0ExMTZffP5UPdd+BR4lfegmVZFeU3VtrmdTHIHIMg\nCCtCsZVqMdq2HK9nbaOAgM/EzufJ5nLky4ztzGalGovFGB4ubwoZCoWor6+nv3+m1Xyl2ADGzj5P\nZnyE+KXXzJjkXkhsqxlJDIIgrAg3X9qKaTDDEOvUY/fxyy/8EWce/xH93ft49G8+QOLp+1EolFLk\ncjlnTsDWc3o9FxzpMplMxf0NDQ0kEol5xQbO00LskisJhmvRWpfMTRSYT2yrGRlKEgRhRWgIB3jZ\n9vgMK9UNNzje2uXI5/PeXMDo5BS37GydU7wuFovNENorJhAI0NzcTE9PD+3t7SilKsYGsHXvO8jl\nc4DCMBS2bc8YTprI5Ni7s21NCOuVQ54YBEFYMRZqperz+UBBJpcjEPDz2staSSQSM+xEp9Pc3MzA\nwMCs121ra3Oqsd0J7NliK57pME0Tyzo3xLUWbV6nI4lBEIQVY/5ez+ewbEXGUrz3RS1csbmNtrY2\nJiYmSCQSFcf8/X4/fr+/rN90AcMw6OjooLe3F9u25xebcoa3bHfIqWDzutZ9qCUxCIKwotx2eTt3\nvGIHmbxNMp0tO64PrtdzOkvWsvnoKy/l935rJ729vWSzWWKxGPF4nMHBQfr7+ymnAVdQep1NH04p\nRXt7O4lEgnw+P2dsPtPnPC0YBsOTU2Qt+4Lw/hYRPUEQVgXna6U6MDBAKBTy7EYLYnqBQIBYLFby\nHpWE9sqRSCSIxWIEAoEZseWtPH6fD63Btiz8fh/Xrq/jPTeu7icF8WMQBGFNcj5WqslkEsuyShJB\nNptlZGTEW5ZaYGxsDKUUkcjcHXh/fz/RaNRb3VSI7bkX+rHMAPU1fsIqSyQS4ezIJMPjaVqiszvO\nrSSSGARBuKhIpVKMjY3NeBoobK+vr/d8GRKJBK2trRjG3KPpAwMD1NXVEQqFSraN2jV864nTPNDd\ni3aX0tqWhWHO7ji3kkhiEAThoiOfz9PX10dbW9uMJaRjY2OkUilisRh+v59EIlFxCet0hoaGXC2n\nMLZt8519z/OVX/Z4rm7azuPz+b26Bp/Ptypd3cTBTRCEiw6fz0dnZyeJRIJoNFpyl19fX099fT3D\nw8Nks87wz3ShvUo0NTUxPDyMbdvc92wvX3rkDOGAz3N1KyxaKmgywdp2dZPEIAjCBUdbWxvDw8Pk\ncrmS+QVwCt601gwMDDAwMEA4HMbvn3suIBaL8fTzPXzxZyeYOPwoJ7ofY3LwLC07rmHL3rcD0N+9\nj6P/9S+gtZskbOx8jl2/+zH+6r8UW+N1q2ZYaTYkMQiCcEESi8UYHx9nYGBghlCeUorW1laam5vZ\nv38/XV1dM1YwleO+g6PYGmrqoqy77nZGT+zHyucwDAPbtmjdeS2tO68ll8vh9/vpe+6XnHrsXho7\nNjE2lePbT57mE7fvXK5fecmQOgZBEC5YIpEI0Wi0pKK5GMMw2LZtG9lslkQiMavDW8HVLVLjo2nr\nVTRsvsxzmTMME6uouM7n85HP5+g78Citu65DKbWmXN0kMQiCcEETCARob2/3iuGmU1NTg9/vJxaL\n4fP5SCQSZSuki13dTNPEUArbnimgB84TyVRyiOSZI8R3Xw+sLVc3SQyCIFzwKKXo6OhgdHSUiYmJ\nGfubmpoYGhoiHA7T1tbmrW4qTiQFx7kChmG6chjuk8K0B5Khw08S6dgyw8xnLbi6SWIQBOGiobW1\nFcuyyno0NDU1eU5w9fX1xONxT4PJsizPca64/1fKUXrN5XP4/D5yuXPDRP3dj9Fy6bUUn7FWXN0k\nMQiCcFERjUapqamZ4cEQCAQwTZN0Ou1ti8Vi3gonw8pil5mnUErhM03Hac5nksvnGDv7PNmJUeK7\nfpNckbnQWnF1k8QgCMJFRzgcprm5mbNnz5YY7TQ2NjI6Ojrj+JaWFnata3YMgvJWicsc2kZbFqah\nyOctTMOk99lf0Lz1KnyBkPvAcC6hrAVXN1muKgjCRUmlYrh4PE5fXx/xuOO+NprK8uDBfg4lxhnL\n2KSymuQv72Xo6R+hlOPM0N+9j/XXv5r117+KzFSKoSNPsf1VfwiA3+8jl89jGE53O5nN81c/PsR4\nJk8k6FuVukqLksRQSr0R+CRwKXCN1nqGToVSah3wz0AcJ23eqbX+W3ffJ4E/AAoOGh/TWv9wrvcV\nSQxBEJaS4eFhTNP0qqDHxsY4MZTmB/uHeOhwH5Y7vzw8mSGdtTANA9DUBU1itQFCgXOdukaTyzlS\nGIbhfE1OZeifyGG47nAAhgK7SDm2GrpK1ZLE2A+8HvjqLMfkgT/TWv9KKRUBnlZK3a+17nb3f0Fr\n/b8XGYcgCMJ5M70Y7hcnJ/nLHx4AwyAS9GMazpOBqWzOjmqUcuYWJjIWE5k0LXV5GmqDGMpAoQj4\n/a43tWZsKk8imcHWmo1NtYSDM7tdy9bc353gwYP9q0JXaVGJQWt9EPAepyoc0wv0uq/HlVIHgU6g\nu+JJgiAIVSYSiRAIBPjXhw9w5+N9hIN+lLa9pAAQ9BnE64MkxqYwUJiGga01AxN5QBEJmvh8PpRS\n+P0BhsbT9I9nwVDE6wKEgmbZ915tukpVnWNQSm0ErgQeL9r835RS7wCewnmyGKlmTIIgCAVOjWb5\n+hP9+JWN3/ShtYFlWRz4zucZ7znhWXmqUD2x13yMvLYxlQIFA5M5J5lYeTSQtRR94zmUUrSETGKR\nGvK5PH6/n4GDT/DCo3eTGR8mEI6y7ZXvJrpuGwGfsx7or/7r8IrqKs2ZGJRSDwDl7I4+rrX+wXzf\nSClVB3wX+KDWulB3/hXg0zhzD58GPg+8p8L57wPeB7B+/fr5vq0gCMK8+dYTp7G1JhKqIVfQQNI2\nWsOWW95K887r8Pmc+YSpnMXIZJaxKWc5qq1t+samvDmEkckpavyKjoYwJjbZTBbDNBg+eYATP7+L\nHa96P5G2TWQnkyUxBHwG6Vx+RXWV5kwMWutbFvsmSik/TlL4N631fxZdu6/omK8B984Sx53AneBM\nPi82JkEQhGIKWkh1Qafj9/v8WFYehaOSCqXFbTV+k/aGEK22ZiydZSpvk8nb3LorzvpYmK89cpza\ngIm2bc8QyLZsXnjk+6y/7lXUd2wBIBhpnBFLQVfpT27auiKrlZZ9KEk5ExDfAA5qrf962r52dw4C\n4HU4k9mCIAhVp1gLqYBp+rBtG601Jx7+LscfvovaWDsbXvJ6GtZvd44xFI21rvVnOselbfVuAnEK\n3zBNTzbDti3GEydp2nolT37to9hWnqZLrmDTjW/E9AfOvW+RrtLrr+6qVhN4LCoxKKVeB/wd0ALc\np5T6tdb6VqVUB/B1rfVtwA3A24HnlFK/dk8tLEv9nFLqCpxEfBJ4/2LiEQRBOF+mayEVMAyDLS99\nE0ZdDJ/fT/L4M3R/7++48h1/QaixdeZ1BidnKLkWlq3mUmNo26Kv+3F+460fQRkm3d/7Eqf33cfG\nl7yu7LVWgsWuSvoe8L0y23uA29zXvwDKLlvSWr99Me8vCIKwVBS0kMpR3+kM+1i2RXz3DQwceoKR\nE88Rary55LhiLaRy1/IHajAMg46rbiJQ1wBA54v2cuqxe2ckhpXUVZLKZ0EQBCAS9HkFZ5UwjcJy\nU1XW36GghaS1Lnstf6iWQKQR3zwc41ZSV0m0kgRBEIDNLXVlt+enUoyc2O9oI9kW/d37SJ45QmzT\nZeWv01xb8VoAbbtvoOdXPyU7OUYuPcnZp+4ntvnyitdaCeSJQRAEAbj50la+9NBRLFuXTEDbtsXJ\nX3yf9HAClCIca2Pna/+YUCxecn7hvJsvjaPRZa8FsO6628mlJ3jqGx/HMP207NjD+utur3itlUAS\ngyAIAtAQDvCy7XEeOJggGjq3QigQjnDl2z8x5/kTmRx7d7Z5y0vLXQvAMH1c8vK3ccnL3zbva1Ub\nGUoSBEFwees16zCUQTZvz31wEdm8jWkYvPlF65blWtVGEoMgCILL1niEP791O+mcNe8OPZu3Secs\nPrx3e4mExVJeq9rIUJIgCEIRBfG6z/3kMOlcnroiddViLFszkclhGgZ3vGJHWdG7pbxWNZHEDMuX\nrAAACHdJREFUIAiCMI3bLm9na7yObz95mgcP9WO5a0+VcpaRglOdvHdnG2+ew0NhKa9VLRZl1LNS\niFGPIAjVIpnK8eDBPo4PTjI2laO+xs/m5lpuPg/XtaW81vlQLaMeQRCEC5po2L9kekVLea3lRCaf\nBUEQhBIkMQiCIAglSGIQBEEQSpDEIAiCIJQgiUEQBEEoQRKDIAiCUIIkBkEQBKEESQyCIAhCCZIY\nBEEQhBIkMQiCIAglSGIQBEEQSpDEIAiCIJQgiUEQBEEoQRKDIAiCUIIkBkEQBKEESQyCIAhCCZIY\nBEEQhBIkMQiCIAglSGIQBEEQSpDEIAiCIJQgiUEQBEEoQRKDIAiCUIIkBkEQBKEESQyCIAhCCZIY\nBEEQhBIkMQiCIAglLDoxKKXeqJQ6oJSylVJ7KhxTo5R6Qin1jHvs/yzat0kp9bhS6nml1LeVUoHF\nxiQIgiCcP0vxxLAfeD3w81mOyQA3aa1/A7gCeIVS6lp332eBL2itLwFGgPcuQUyCIAjCebLoxKC1\nPqi1PjzHMVprPeH+6He/tFJKATcBd7n7vgm8drExCYIgCOdP1eYYlFKmUurXQD9wv9b6caAJGNVa\n593DzgCdFc5/n1LqKaXUUwMDA9UJWhAE4SJkXolBKfWAUmp/ma/XzPeNtNaW1voKoAu4Rim1eyGB\naq3v1Frv0VrvaWlpWcipgiAIwgLwzecgrfUtS/WGWutRpdRDwCuAzwMNSimf+9TQBZxdqvcSBEEQ\nFk5VhpKUUi1KqQb3dQh4OXBIa62Bh4A3uIe+E/hBNWISBEEQyrMUy1Vfp5Q6A1wH3KeU+om7vUMp\n9UP3sHbgIaXUs8CTOHMM97r7PgJ8SCn1PM6cwzcWG5MgCIJw/ijnpn1tsWfPHv3UU0+tdBiCIAhr\nCqXU01rrsvVmJcetxcSglBoAXljmt2kGBpf5PRbDao8PVn+Mqz0+WP0xSnyLp5oxbtBaz7l6Z00m\nhmqglHpqPpl1pVjt8cHqj3G1xwerP0aJb/GsxhhFK0kQBEEoQRKDIAiCUIIkhsrcudIBzMFqjw9W\nf4yrPT5Y/TFKfItn1cUocwyCIAhCCfLEIAiCIJRwUScGpVRMKXW/Uuqo+72xzDEvU0r9uuhrSin1\nWnffPymlThTtu6La8bnHWUUx3F20fdm9LubZhlcopR5zvTieVUq9uWjfsrShUuoVSqnD7u9+R5n9\nQbdNnnfbaGPRvo+62w8rpW5dinjOI74PKaW63fZ6UCm1oWhf2b93leN7l1JqoCiO3y/a907383BU\nKfXO5YhvnjF+oSi+I0qp0aJ91WjDf1BK9Sul9lfYr5RSX3Tjf1YpdVXRvqq0YUW01hftF/A54A73\n9R3AZ+c4PgYMA2H3538C3rDS8QETFbb/B/AW9/XfA3+0EjEC24Ct7usOoBdoWK42BEzgGLAZCADP\nADunHfMB4O/d128Bvu2+3ukeHwQ2udcxVyC+lxV9zv6oEN9sf+8qx/cu4Etlzo0Bx93vje7rxpWI\ncdrxfwL8Q7Xa0H2P3wKuAvZX2H8b8CNAAdcCj1ezDWf7uqifGIDX4HhAwPy8IN4A/EhrnVrWqM6x\n0Pg8lKqa18WcMWqtj2itj7qve3Ck15dTIvca4Hmt9XGtdRb4dzfOYorjvgu42W2z1wD/rrXOaK1P\nAM+716tqfFrrh4o+Z/twBCarxXzarxK34kjeDGutR4D7cQQzVzrGtwLfWoY4KqK1/jnOjWQlXgP8\ns3bYhyMo2k712rAiF3tiiGute93XCSA+x/FvYeaH63+5j4FfUEoFVyi+GuV4VewrDHOxAK+LKsUI\ngFLqGpw7vGNFm5e6DTuB00U/l/vdvWPcNkritNl8zq1GfMW8F+fOskC5v/dKxPc77t/tLqXUugWe\nW60YcYfhNgE/Ldq83G04Hyr9DtVqw4rMS3Z7LaOUegBoK7Pr48U/aK21UqriEi03k18G/KRo80dx\nOsMAzpKzjwCfWoH4NmitzyqlNgM/VUo9h9PRLQlL3Ib/ArxTa227mxfdhhcySqm3AXuAG4s2z/h7\na62Plb/CsnEP8C2tdUYp9X6cp6+bqhzDfHkLcJfW2irathracNVywScGPYuXhFKqTynVrrXudTut\n/lku9Sbge1rrXNG1C3fKGaXUPwL/YyXi01qfdb8fV0r9DLgS+C5L5HWxFDEqpeqB+4CPu4/NhWsv\nug3LcBZYV/Rzud+9cMwZpZQPiAJD8zy3GvGhlLoFJ/neqLXOFLZX+HsvZac2Z3xa66GiH7+OM9dU\nOPel08792RLGVmAhf6e3AH9cvKEKbTgfKv0O1WrDilzsQ0l343hAwNxeEDPGKN2OsDCe/1qg7OqD\n5YxPKdVYGH5RSjUDNwDd2pnFqobXxXxiDADfwxlPvWvavuVowyeBrcpZlRXA6RimrzwpjvsNwE/d\nNrsbeItyVi1tArYCTyxBTAuKTyl1JfBV4NVa6/6i7WX/3isQX3vRj68GDrqvfwLsdeNsBPZS+pRd\ntRjdOHfgTOA+VrStGm04H+4G3uGuTroWSLo3StVqw8pUc6Z7tX3hjCk/CBwFHgBi7vY9wNeLjtuI\nk8WNaef/FHgOpzP7V6Cu2vEB17sxPON+f2/R+ZtxOrXnge8AwZVoQ+BtQA74ddHXFcvZhjgrPo7g\n3AV+3N32KZyOFqDGbZPn3TbaXHTux93zDgOvXKbP3lzxPQD0FbXX3XP9vasc318CB9w4HgJ2FJ37\nHrddnwfevRzxzSdG9+dPAp+Zdl612vBbOCvwcjjzBO8F/hD4Q3e/Ar7sxv8csKfabVjpSyqfBUEQ\nhBIu9qEkQRAEYRqSGARBEIQSJDEIgiAIJUhiEARBEEqQxCAIgiCUIIlBEARBKEESgyAIglCCJAZB\nEAShhP8P7mTIl8xXGNIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "emb_dfs = loadEmbedding(\"emb/karate-2-0.2.emb\")\n", + "plot_embedding2D(emb_dfs,node_colors=None,di_graph=G)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXe4XFd57/9Zu0zvZ2ZO0dFRt1Vs2ZZlGRds3AvVxg1C\nLoQkkEDg0i9J4AfJvfcJgV/CJRACDgSwwTZ2CBeDq1xwL5KbLKsXq5xeprfd1v1jnzPSsSQ32ZKM\n1ud5BGdm9uy9Z87x+q71rvf9vkJKiUKhUCiOPrTDfQMKhUKhODwoAVAoFIqjFCUACoVCcZSiBECh\nUCiOUpQAKBQKxVGKEgCFQqE4SlECoFAoFEcpSgAUCoXiKEUJgEKhUBylGIf7Bl6ObDYrZ8+efbhv\nQ6FQKN4yPPXUU2NSytyrOfaIFoDZs2ezevXqw30bCoVC8ZZBCLHj1R6rQkAKhUJxlKIEQKFQKI5S\nlAAoFArFUYoSAIVCoThKUQKgUCgURylKABQKheIoRQmAQqFQHKUoAVAoFIqjFCUACoVCcZSiBECh\nUCiOUpQAKBQKxVGKEgCFQqE4SlECoFAoFEcpSgAUCoXiKOWItoM+VBTrFveuH2HbaJVKyyEeNJib\ni3H+ok6SEfNw355CoVC8KRyUAAghrgS+DiwCVkgp92veL4S4GPgOoAM/klJ+42Cu+0axebjCjU/u\n4v6Nw7ie/5wmwJP+z9+7fwvnLsxzzSkzWdAZP3w3qlAoFG8CB7sCWAtcDvzwQAcIIXTgX4ELgN3A\nKiHErVLKdQd57YPi9jWDfPOujXjSIxY00TWxzzGuJ1m5boh714/wpYuO5dKl3YfhThUKheLN4aAE\nQEq5HkCIfQfPvVgBbJFSbps89ibgvcBhE4Db1wzyF5/9EvX+jUjHIhBN0rviIrqWnkVtbIBNt/+Y\nZnEUgFjXLGaefTXfuNNfFigRUCgUfygcij2AGcCuvR7vBk49BNfdL5uHK3zzro3MOu2dJDo+imaY\n1McHWXPTt4jm+win8ix6718STHSAlAw8cx/b7vh3jvvQ1/jW3RtZ0BlT4SCFQvEHwStmAQkh7hFC\nrN3Pv/e+GTckhPiYEGK1EGL16OjoG37+G5/chSc9Up29aIY5dVGEgGZxFCMUIZTMTq5qJEJoNAoj\nBAwN1/P45apdL3t+hUKheKvwiisAKeX5B3mNfmDmXo97J5870PWuBa4FWL58uTzIa0+jWLe4f+Mw\nsaA/8G9Z+XOG1z6C59hE831k5h7fPvbRf/kUrtUCJLPO8LUuFjS5d8MInzp3gcoOUigUb3kORQho\nFbBACDEHf+C/BvjgIbjuPty7fgTXo73hO/+CDzHvvA9SHthKaddGhL7n6zj909/FtVoMv/AooUQH\n4L/P9ST3rh/m8pN7D8dHUCgUijeMgyoEE0JcJoTYDZwG3CaEuGvy+R4hxO0AUkoH+CvgLmA9cLOU\n8oWDu+3Xx7bR6j7PCU0j2buAVmWCTQ/9loHBARzHAUAPBOk+4Ww23v5jrFp5z3nGaofsnhUKheLN\n4mCzgH4N/Ho/zw8Al+71+Hbg9oO51htBpeWwn2xPAKTnYbgNDMNgcHAQwzQIBgJEIxFcu0mzPE4g\nmkAIKDftQ3vjCoVC8SZwVFlBxIMGngSrVmZ0/ZO4VhPpeRS2r2V0w5OkZy1GKw8RcmtEwmHwHDbc\ndT1SD+IG4rRaLRzHwfBsRkdHabVah/sjKRQKxevmqLKCmJuL+T8IweBzv2fzyutBSoKJDuaecw0d\n809kdONqtt93E1a1gNANYl1zWHz5pzCDIWr1Gk0HzOYE0Eur1aJcLk+7RiaTQdf1Q//hFAqF4jUi\npHxDE23eUJYvXy5Xr96vu8Troli3uOz7jxA2jf1W/k7hei5I//8d28E0TSQS23awPME3zutgtH8H\nQgh6enro7e2lq6sLIQSFQgHXddvn0jSNTCbzSsVyRxzKH0mheGsihHhKSrn81Rx7VK0AUpEA5xzb\nyT3rh0iGAwc8Ttd0bNsmYAbQhIZt2+i6ji0NzpwboyMeZsHppwOwc+dO1q5dy7PPPktnZyednZ3k\n83kCAf/8rusyNjaGlLItAsFgkEQi8eZ/4NeB8kdSKI4ejqoVAPgD3J9f9xRBQyNgHHgLREqJ6zoY\nhonrutRbFo4H37lyCUtn5RgbG6NSqZBMJolGoxSLRfr7+7EsC8dxSKVS5HI5UqkUsVhs2rkty6JU\nKk17LhqNEolE3tDP+lrZ2x8pbOrULJeW7eFJiSYEQVMjGjBo2A6a0JQ/kkJxBPJaVgBHnQCAP9B9\n484NhE39ZUXAcRx0XcN2oday+ejJGS49vhvP8+ju7sayLAqFArVajVgsRjabpVQqUSqVmJiYwLZt\npJSEw2E6OjqIRqNkMpn9XqtWq1Gv16c9l0wm2yuJAzEVqlk3UGLDUIWm7RIydRZ1J1jUnXjVIZup\n70QTUGk6VFoO7O9PQ0AiZBCb3FD/8sULlQgoFEcQSgBeBa/WDbRUaxIImHzxwmM5e16C0dFRYrEY\ntm2TTCaJRCLU63XK5TKtVotQKEQ6nQagWCxSKpVoNpvU63VM08Q0TRKJBOFwmGw2i6YdWICKxSK2\nvSflVAhBJpNB07R2qOauFwYpNxwatrvP+8MBnUTI5OLjul42ZDO1Kmo2m2xe+QuagxuRrTpmIkdq\n+buJzFxMdcsqxh/5JQD+n4yHLl0Wf+Bv+MUXLlfhIIXiCEEJwKtk83CFX67axb0bRnAng9xCTA1w\nfuXvWfPSvG9pnpPm+bPcer3O+Pg4hmEQiUSwLItcLgdAuVymXq/jeR6GYZBMJgkGg20RKJVKuK5L\nrVYjFAoBEIvFiEQipFKpV5ztSykpFArctW6E7z+8m2rLpWr5A78uxLSNZonE8yRSQjJsEguZBwzZ\n/P1v13Hrs/0UKzUqa+8jfsypGLE0jV3rGL3/Z/Rc/mXMeMe095Q3Pk7p2bs49kN/x2XLevnKuxa/\njt+AQqF4o1GbwK+SBZ1xvvKuxXzq3AXcu36YbWM1yk2bRMhkbjbKeZPhk6GhofZ7IpEIuq4zMTFB\nrVYjnU4zMDBANpslkUiQSCQoFos0m03K5TJSSuLxOMlkkmw2y/j4OMlkkmazSaPRoFQq0Wg0KBQK\nBINBIpEI0WiUaDS6z/0KIXh8d4t/e3QQxxNULRdNgMAf+PcWcyEEuibwpKTcdAgYGt+4cwMw3dK6\nWLe464UhSg2b+pYnaO56gfKalUTnnkzu7A9hxDNYY7toDmyk9Nw9uI0ywc65eK060fmnUG453LF2\nSPkjKRRvQY5qAZgiGTFf1tsnl8sxMjJCPp8H/Cyejo4OxsbGKJVKpNNpSqUSgUCAZDJJKpUCYHx8\nHNu22/UCsVisfY5KpUKj0aDZbGIYRjt9tNVqUav5VhPRaBTTNNshpSkra03AWLlG4bFbaA5sojWy\nHek66NE0gXQXiaXnEj/Gz1IqPXMnxadvp3nxJ5i7+MR9LK3vXT9CuWkjBBiRJMkTL6LZvx7PsXEb\nFZzyKJ7dpLD6d3Rd+inMRI7RB66nsu5Bcuf+CQK/Mlr5IykUbz2UALwKdF3HMAwsy2qHaQKBAJ2d\nnQwODlKv1wkGgxiGwcDAAN3d3Qgh6OjoQErJ6OgoQghc12V4eJhIJEI8Hicej+N5HmNjY+RyORzH\nwfO8tpiUy2VCoRCFQoFYLMZ/PLATV3rUWy6e52LG0qTe+Wk8u4lTHmXsgV+QOe1Kxh64jmDHTLRA\nmPqLz2JEkkig3LAImzo/eXAjnzm7j3Q6zbrBEg3LxdAF0TknAmCN7cS1Jxj9/c+Izl+BXRgkOudE\nAml/5aBHkn6cTHpomqBhuawfKh/o61MoFEcoR5UVxMGQyWSYmJiY9pyu6/T09LTj/o1Gg+7uboaG\nhtoZPUII8vk82WyWer2Oruvous7IyAjlchlN08jn8+Tz+fY+wFT6aEvq/Ncz/fx41Qhfv20Tv3th\njHrDotSwMMwgyWWXYMY7CGZmEJ19IkY8g10cRAiBUx5j/NFbSJ/yHtB1NCGoWh6xUIDHdlQJxFJU\nq1XW7BxHIkH6ISSJREpJY8cahKaTOe2K9utT1Lc/gxaKYhcG2+GndQNKABSKtxpqBfAaSCQSlMvl\naUVcmqbR29vLwMAAqVSKoaEhuru7KRaL1Ot1stls+7iuri5s22Z8fJxgMIhpmoyMjLTDPJFIhEgk\nwqahMj99aDMPbS0gAU9KGpZL3XKpA64EKSQaEl34Gj76wPXUtqyiNbqTUH42nmshNR2zZxFS+hlN\nrisZLjfxpOSTv3iahV1xto238Dywkf5QLiW1LU/i2S06zvkoaBrhGYsZ+/1PiS86A7dRpTW6Ez0S\nx3P2ZCi1HO/Q/SIUCsUbghKA10AkEmFwcJB4PD4t40YIwYwZMxgYGGhvCnd2duK6LgMDA+RyOUzT\n3yA1TZOuri6azSbFYpFIJEIwGGRkZATDMHh8d6udnhoPBxFC+nsDtkTT/KIspC8CrgtS89CRuPUS\n6dOuJDJvOfX+9Uw8dScdF34C1/Nn9K4ncaWk2LARwJPbJ3hi+wTOZPbTVBZU6bGbsesVwnNOQjMD\ngCQ841hSyy5l5N4f0xp5kWDnHLxWDSOabH8HwZepp1AoFEcm6r/a10hnZycHalXZ09NDuVymo6OD\n0dFRPM+jp6eHYrG4j2lcKBSiq6urvQEci8V4eEeN/33bCxjCIxkOoGsCTWiYhunnpwJIEOx5aLse\nI7+/DjSd+IrL0HJzqG1ehR5JYiSmp25OIQHbk4BE36v8walOUN/0KF69SPWF37PjZ19g58++RHXL\nKhKLz2LG5X+NEc+SOvEi8DzMdHc782hR95FpbaFQKA6MWgG8RjRNwzAMWq0WwWBwn9enBCKRSFCr\n1dp1ArVajcHBwbZp3BRTYZ9ntg7yj7etZejhm6nu2ojdrBJM5ph79vvJzF2KJgT17c9QevoOnFoR\nPZoiftI7ae5ai1uvkLvg41Q2Pk5j6xO0dj6PZZgMlX2h8lpVJu7+NwCEYWJmZ5E884OIWAZN21P4\noEeSdH3oW1SfvRO3XiJ1+tUgNAwhaU0MoCU7yb/3S0w89HOii89GmmFcKQmbOouVACgUbzmUALwO\nMpkMQ0NDdHV17ff1XM73CgqFQniex/j4OB0dHYTDYYaGhtoVxHvz23UFEBBOZJh5xWeJpvMUXnye\n9bf+gKUf+irC1Zh44Ho6zv8zjK6FtPrXMfrb/59A13xix52H47lo4RiB7oU0dq4lNGMxmQs/DsDY\nb76FWy+SPOODNHc+T+2F+6g+vxI9kiLxtitInPxu7OIQY7d+C3t8JwBCN6lveozEye8msugsxu/7\nKW5lHGEGicxfQfTES7BdXzgCumR29vD6GCkUiteOEoDXSSKRoFQqkUwm9/t6NptlYmKiXTE8JRjd\n3d0UCoVpG8TFusU964eReoDw0kuoSEml0iKQP5ZgMkdroh89GEcEwkRnLsFyPIxUN16zij3Rz/hd\n30PaFgCB/Bwic09Gj2XQw0lA4jWr6IkcodknUnr0JpKnX01twyNEFpxK8cHrCfYcg5mZSe6yv0GP\nZQBJff1D1Dc/TuzEiwHIvfd/sLej9VTNmSb8f5+7eY0yh1Mo3mIoAXidTA3qiUTigF7/mUyGUqlE\nq9Uil8vR399Pd3c36XQay7LYsH0XK7fV+eXq3fQXm5OxfdGu7nUbFYojA5SNNN1dfUQ6uqluX0Nw\n5mLsid2EeheTu+xvEMb0UFTl6dtw68XJR4LIorPAc/DqJbRAiMQpl2ENbCLYcyx6JEnthQfInP8x\ntKA/i5eeB0LDrYxN/0B7ZYMKQNdAExpdyTCaEPutNFYoFEcuSgAOgnw+z8jICJ2dnQc8JplMUi6X\nKZVK7UyhCSfAfz03wu/WDDBe89MwpwZWKSUeIHCZeOA6YgtOxYrkeHG8TnLBcgYevB7p2qDppN/x\nETQjOM20U7o2ja2rsQv9NHesQY9nEWaQQH4Obq2INbyN4Rv+B/bEANbodtx6EWk32+8fuuHLSKcF\nEgKd8xj73T9hFwYIz1lG6sw/QjA56580z5Mb7mHVqts47qrPEZ2xsF1pnIsHVUMZheIIRwnAQaBp\nGoFAgGaz2TZ32x9TG8JjY2M8Oyb4h9ufpWZ7VBoOhqbhSA9XAlOJPp5H4cHr8YRG8m3vx9AEtYGN\njD32G2a951M4iRlY47sYXfnvZC74C8zMjPa1pOchghHC804hfe6f0tq9jrHbvo0eSaIv6ABNI7r0\nAhpbVuHVi0i7hTD8AVkA3R/8Bq7dorF1FU51nGB+Dq3+DUjXTx8N6GJSoAQpWWb39mcJTKaDBgyN\nctPiM798lrrlqIYyCsURjhKAgySdTr/shvAU0WiU29b084Wv/m9q/Zuo1yogJVogjNusEZx1Arg2\n1thOrKEtSNfGzM5k98+/jEAQ6Ogh1DUfL91HJmwwTh+B3CxaAxunCYBmBgn1LsatFxFCIzTzOIxY\nBmt4K0LoGPEsjR3P09jyJEaqk+iScxDGHhdSQwNpBokcezrDN32F+JJzscd2tUNKHhAP6nTEQmz5\nzY+Yc/b72bLyF4C/lzFetRipWMzPxQgE980ydj3JynVD3Lt+RO0ZKBSHGSUAbwCpVIpisdg2gdsf\nm4crfPf+7cQyWRInXEQrmKC0+lbKz60kPPcUPCDQORfpWFhDW9CiSbr/6B8Rwm8w741uY/S+H9MY\n3YWTmYFb6Mca3kbk2DPb15CeC9JDSg+kRLo2brOG9Bxks0qzfx3oJq1tqxGaTvTYt2OXBokec0b7\nHI7nrwSklOBayEYJIfznYkGdmZkoAsnIhieRQiPRtwiAatOhVm6iCYEO1CyHgLGvvbWuCZLhAJbj\nqT0DheIwowTgDSAUClEsFqf1/X0pNz65C2GYzD7jvWwZqaEJScepl9Ps34h0mohgjGDfUsqr/i/S\nsfDKdYZu+GsAkm+7iuj85cSWXsz4/T/Ba1QwwjFSJ15IbOaiyaIuqK5ZSfW5O9vXrG9dhRYIE1lw\nGqFZJ1B67Gac8ihaMEL28q9Qfuxm7PGdZC/9DK2BjWjBKGamB2lbVJ65DT0QIZrtxtq1Bk9AWAfP\ndcC12fXorRx/5efQDQPX8xivtYgkYfyB62j0b2LQs4kl0/SuuIiupWfhuQ4bfnct1aEdtMrjHH/1\nF4n0LNjHnfS1oprXKxSvHyUAbxCdnZ0MDw/vNxRUrFvcv3GYWNCk3PT9c4QQ2PUSTnmUaLYPx3Ux\nYhl6PvJ/GLrhb3BqE2hmGAS0BjcRnLGQ6KK3E138dpBg6AJ9cmo+JQDxEy8mMZm26UmP4oPXI+0m\nyVPfD5pO5qJPMnTd5/DqZUZv+RrCDCJbDRpbViGCEcpP/MoPHekmZraPjgs+joc+aScBNhrD5SYj\nj/6K9ILl6FHfFdR2JWH8PZHE0gtInXEN8XCIhFtg3c3/TDTfRzTXS3LGAmacfAEbbvWL0gKGRsN2\n+OWqXa+5oYxqXq9QHDxKAN4ghBCEQiEajQbhcHjaa/euH8H1/PBHy54crTyP8QeuJzL/FLRQDK1W\nnAy9ALpO6u0fInrMaXjNOqXHb2H01n9Ej6RwCgOE5iwje9aHQJs83rUorfoNzRefQXp+jYCRyOE1\nKnSc/3GEpiMBI5ah9xM/bd+X26gwcvNXCc05CS0QJjz7xH0+l+VNOj8DlaaNEIJy/xYKmwrsfub3\nGJqgVasyfv9PcZaeT+qEC3A9iWHo6FJDIqmNDxLKzqDn5PP9FZKmt88fC5rcvW6YWR0RhkrNVzWL\nf7XtPNVeg0Lx8igBeAOZcgN9qQBsG622f/akREqPsQeuR2g62dOvpPDU7QgEhib82bzQMFNdCE1H\nC8dJvO0Khq7/AvHl78Ue2YZ0/GbzUoLjSaqP34znuGTf9zdowQiFe3+EUxomc+Ffwl4ZPq3RF9EC\nEfREFmk1KD/5KwKd89EC0+93ipfuKeA6aLpO1yV/hfQcXE/iSWj97p/oeNvlhHsXIaVk4tFfMrR9\nNZrnEM33kVtwErph4DiubzfteUjp0rRdJmoWpYbNt1duIhYyX3EWP9W8PmzqBIwD//mqvQaF4pU5\nKAEQQlwJfB1YBKyQUu63ga8Q4j+AdwEjUsrjDuaaRzqpVIqJiQkymUz7uUrLYWqSKoCJh2/Ea5TJ\nX/QXCM1gKv/T0DUkbnslsKfDo0ALRgj1LsEtDuM6Rd8N1JF4pWFqO56n68q/Q5ohnOoErf51CM1g\n5Ob/r30PybddBUJQfOY6vEYVYQYJ9hxL6uz/ts9nKD54Pa3BTTilYdx6CT0cRwvF2LVtNZHZJ+EU\nB3CqEwRzs0mc8QEQGphhNNNPhc2ccTWzLv1jasPbqOzahNB1QGBMDthC06i2XIbHa+1r6rogGZ4+\n25+axa9cN8Q7js1jOx63PruTiUduoTW4EawG4XSe2W+/nMzc4ykPbGXHw/+X6vBOhBAkZx7LvPM+\nQDiUOOi9BoXiD5GDXQGsBS4HfvgKx/0U+B5w3UFe74gnFApRKpXwPA9N89Mg40GjPasdfeQm7OIw\n3Zd+0g/NuHa7u5Zn1dEQSLuJVx7Fy85EOvYBZ+oBXdAo7MaMd1BbcyeVzU+ihZOk3vEnhGedMO3Y\nqSBJeO7J7eeKD17P2K3fQjoWWiRBbMm5RI45jcCMRbj1EtJz0SNJnMo46fM+TiA7k5H/+l90nHEN\n0dnHUXr6Dgq//xn5K74GTDail36aaCBoYvYew9i6J9i56h5mve3idvMYx/WYqNmEkwJNCBzPw3Zc\n7Mn+AoauI4SG7XrUWi7lps0NT+z0w01NGy+UJHXBX6HH02jDG1l36w9Y/id/h9Os03XC2aRnL0Fo\nGlvvuYFNd/6E46747Ovea1Ao/pA5KAGQUq4HDpj5stdxDwohZh/Mtd5K5PP5aRvCc3MxAJqlMYrr\nHsH2NHbd8BWc6gROtYAeS2OEYhRW3YoWjCIMg7Hb/w/Scwl0zifUd9w+M/WgIRAInFoBqzBAeNZS\nZn7gf1Ed3MbEvddiJDsxU3s2pMVeoZUpoksvIHnGNQjdxCkNM37n9zAzvejBKJGFZxLqWYhbHWf4\nlq9RfuI/iR13Hkaqi9DsE9F0jcQJF1F64QGc0jBmshPb9e2lk2G/faY/4EvcWgHHtjHNAE3bpWW7\neM/eycRDv8Br1dHjHfSe+T7MzHIAxrc9z8aVN1AvjRPIziJ39ofQommajkcgGCRz8qXApOB0LsQJ\nphjeuZVZx5867fP1LDuXNTd9C/D3Gu7dMKKa1ysUe6H2AN4EhBCEw2Hq9TqRSITzFuX53v2bMeMd\nnPXFHzFQbFBp2uiTK4S900f3/tlyXLy9uzFO2jw4hX527XweI9FBIDMDIXTfo196WDuewSmNMHLL\n1wn1Lqbjkk8DkAybhE0dz5OMVi0kklCmq+3vEzSEb/ZWHycxdxnjj/yS4Yd/4RekdczEa5RxSkOY\n6R7/nqTECIYx4lns4pAvAPUKZnErtrmIYCJFtX8TYxueZP4lf4oQGlazwVjVX/FooRjZ065Ei2dp\n7l7Hzjt/TCzbQyoW44Xf/ID4266mY9ZxlJ6+jdH7f0ru0s/4X4GEqS1kgYBWFac8SsXsoNSwp4WR\nSrs2EemY7GOsCVxPqub1CsVevKIACCHuAfZX5vq3UsrfvNE3JIT4GPAxgL6+vjf69IeMZDLJ0NAQ\nkUiEVCTAOcd2cs/6IZLhAJlogErTwZMSbWrgR7ZDJG38CXQbb9LmIbpgBZ0X/Dn1nWsZufuH7e4w\n4w/fhOc5ROefgjljCcHOee3mMboQdMSCTNRafqMZTeB5konHbqa1bRXSsdFTM4j2LUYTgtyZ15A6\n7Qrqg9upPH0bWiiOtFtoIX81406GrfRACGk3kfiDbHHdI4w9cguu6xJMdDD77KvoXLgc13V46j++\nSrU4jgSc7c9Q2/4Mucu/SqD3OLRohsEXt7K7WcVyJeXn72H8weuJzDoBe6IfuzSCSOSpbX2akTV3\n4taKaNEUeC6xBSsIpDsZKjcJGhohU6c6soudj/2Oxe/75LSvdNtYjdeKqjVQ/KHyigIgpTz/UNzI\nXte7FrgWYPny5fIVDj+imWokn8lk+MCKmdy3YQTL8QiZOl3JEEOlJh6SA0XQBMJvyI6fkSM0jejM\nxb6Hj+sQ7l1MIDMDuzLGxOO/ovbic+TO/Shj9/+EjtOvQkvkcTy/12+xYRMK6G3hQQqiAZ2Z7/ww\nYfOjbNv4AmM7NoAw2mJk6gbBcJjRnc8RW3ohQjPwJgd7T4KQ4NktgqEwhibQInE63vMZOsI6mqbh\nOA4Atm2DgL4P/k8matYemZvqRdOs4FZGCWZ6KK57ED3VTWTJO3AGN4Lr+KuMwiC6HqDw0M/JXfBn\nRHsXMXjrP1N/8Rk6L/mUX/kMFOoWKa/MC7/6DnPPvYbkzGP2fJ+Cdh3Gq0HVGij+0FEhoDeRQCCA\n4zh4nseCzjhfuujYdkriVKhiqNRsrwSm++378XRn8nF1zUpqz92JEL4oVLesIrHkHJzKGNl3fITx\nh2/EGt/N8J3fQ2g6Y/f/hORJFxOedSLZWIBqy2FWJkK5abN7okY6pBMIGAjA9TyCnXNx1z1OZf1D\nxJecjSY07PIoo3f9gHDvIkzTRE92Ut2yCk34RVzpIIw1C/TNnsOI9FNcQRAIBnBsB93QkZ6k2Wzi\n6AGKdWva9yMl4LkUH/o50fkrMJN5PKtFMD+HcN9SymO7wPEtrKXTwq0X0QJhgj2LGH/4RjQzSKBj\nJm69iBlPo3mS8ZEhdtzzffre9k46l5y2z/USoVc3Y1e1BoqjgYNNA70M+C6QA24TQjwrpbxICNED\n/EhKeenkcTcC7wCyQojdwNeklD8+uFt/a5DL5dobwlMDxDfv2kjDdogFTWZ1RCjULcoNG1f6oSA8\niTe5FxAyNDwpSS+7mPwp7wRASg/puYzc/UOi81cQ7ltCfPFZeM0qqZMuIXnCBbRGXmT47h8y94oe\nktk+BBrzUhrNFkzUDKKRIFO5Qa7n+mmq0sMpDFLf/gxGsouxe64l1LeE2pbVpE66mGB+NqXVt2Lt\nXEP6mBNLOR9CAAAgAElEQVSoPHs3sVwvmc5etLrFQKmB67ogwTRNpPRwHBfNDDJUaAB7spE816b4\n2C3UX7gf6bQI9x1HdecLCCOIZzfbB7pS4lpNNDOEme3DSHUyesd3EZ5DfMk7KK76DcHMjMn+CSVG\n7/w+3SecRcfi09pZRbqmoU0Wn83NRl/xd6ZqDRRHCwebBfRr4Nf7eX4AuHSvxx84mOu8lRFCEIlE\n2hvCly7tZkFnjF+u2sW9G0ZwPUkkYBDQBE1XYjsuCEFfKsg7T+jlbXM7+G//8QTNyQpivwBMMvbA\nzxGaTvq09wO+C6jQdVInXYTQdILd8wn1LEAb3Yoxdy4CF0vqnLpoDo8PbMaqVZjYsY7U7CUYgRD2\n0Cbq256m4/QrKT9/H7Wtq9HDCbRAiMyplxPpOx6A/Hl/ytijt1B++Oeke+ex8N1+28lUJEDdchEC\nCrUW0YBOMGBimhqjtTpiMqDl4a8SPNfFGd5CpHch+Xd+mtbAZkbv/ynRJefSGljf3vuQroNdHiOY\n7kIKjUDPQgr3+FnH1Y2PYqa62HXD39JxxtU45VGcyhhDq25n/Ok7kNIP+5z26e/StCyk53FSl/my\nnk2bhyt8866Nk4P/HjfTZmmMLSt/TmVgG0I3yB57MvPOvQah7TlO1Roo3mqoENAhIJFItDeEARZ0\nxvnKuxbzqXMXcO/6YbaN1RgulMklo3THDd6zbA5WrUgulwNg+cw4D28rtauIJx66Ea9RIXfhX4DQ\nEAiCe1lCe5NVwtGAga6BbTsIXSObjHHeojz/cs8mWrbN8HMPsO2eX/jppvEO0qdeRnTBCpzKBNb4\nLjQjiFOeoPDkryk8+Wv6Pvwtgt3H0P3+v2VuR4SAuefPx/UkibDJP115Arc/P8g964epVRq4nkex\n4ey1vS3QgMrTt2KE43Re+kk0I0h45hL0eAdaNIldHKKx4zmk52INb8VI92CmO6nu2kDthfuZ+ZFv\nE873YY3tYmTltXRe9JcEOvzMnviJlxAPGfSk/JoJPwQnablw0XE99HVlGR0dbd9NKpUiENjjWnrj\nk7vwpLfPzH/Lyp9jRhKc+ol/wmnVef7mf2bgmfuZcbK/RXYwvkYKxeFCCcAhIpPJtJvDT5GMmO2U\nxNHRUTRNI51OU61Wicf9WWSj0eD8hXnWDtUpNWwmHrkZpzRM58WfAF2fbCGpEeqejxFNU3j2bhIn\nXECsNsjYwEbS51yBaZoIx6Y7rmNVi5x9TAf3bZQsvvJz7Vx9CYxUbKoth/TJl5KeyrWXEolEE/4s\n10WSDJkYurYnxKLrVFsO5y/M0Ru2+diKLNcsTfHoi2Xu3TRBZWeJcNDA1ARjFQuvNkFt46MI3WD3\nDV/1r+M5OM0aqbM/TOYdf0LpiV/5PQxCMbKX/Hc8D5yJfoKd8wjm+gBBINdHIDebRv/GtgDAnm5l\nAIZh0HIcpOdx+Und6LpOPp9vv14oFCgW/V4HLam3TfteSrM0Rs+yc9EMk4CRJD3nOOrjA9OOUbUG\nircaSgAOEYFAANd1cV0XXdf3eV1K2a4ebrVaJBIJAMrlMu9aNosfPrwDgzIDmx/DEzq7bvgKU4Hy\nzBlXEZ13Ctnz/5zKY79kdN29VJJZjr30z4jlZmDZDtJzOffYHIZwuXRhit9vGsN2PUxdwzAMBIKO\nmG/RsHd6qhACf1tiqg+YIB0NoGkanoRivUW91cTxJENjRR7YkeTCJd3Mz5vM7+thuL6B7RNNIoZA\naALLkZRFhjl/9l08z8OTnt9f4K4fEI5lMZKdEM+Se88XqTx7p29FEUngeS6B/Cyqa++lNd5PKNuL\nPbab1tAW4ovOnPZdBvcK3ViOR9OW/PWlS8gHXQqFAul0uv363j/f+Pg2LNslqIPn0f5eAGYsv4DR\n9U+SnHksTrNOYdvzzDrzfdOuq2oNFG81lAAcQvL5/Mt2D3tpXLrZbBIMBjGlzYreCE/25znrC9dS\nqzew0HHR8DyJpgmChkY0Oxcx78v+wCUEruti2zY1y+OseSl0t0XLdZnbEebT75jNvzyw07ddmBzk\nXpqeurcI+IO1JB8L4LoO/dUm1ZbbdgpNR0zWjtk8d88m/uXeTZy9oIMPnzl/0gdJYJomnueRCGpU\nmn6YStN8O9OR+34Gmk72jCuwPaisWUllr74GjW2riZ9wMellFzPr9Hcx9OBPGKmW0YJREidcQKjn\nWDzPm6yHkEQMQcuyqVkuuib4xJm9nNJtYBgGruuyc+dOuru7Mc3ps/TdRQtd1zENE4nEdZx2GUa8\nZz5Dzz3Ao9/5FEiP/JLT6Vhw0n5/j6+n1kChOBwoATjERCIRarUa0ej0bJT9bUqWSiXy+Txbtmzh\nj06bw6r/XEe5WiMWCZPcK24tpcRxHDRNoGv+IOd5HkIT2J6HwOPdS7KAL0K6rnNFPk8kHJmWkeRn\ntexJT3UmZ+dSChCCjrAGSHYXLd8hVAiEEHQlgqQie+7H9SQPbCnwwOYnmNsRxp1Motc0jVg4SM7x\nGKnZSOlRePgmaNbIXfhxhNDQhN/XIH7SxXs2gvHz7/OxAKkVF9B38nnYHhTrNuWWw2SKPp7rETZ1\nmq4/G7/k+B6unszRl1Liui6W5Q/yW7ZsIRgMtldaAKPFKtJzcZyp38VkgMzzWPuf3ya7+HSOu/pL\n4DlsuuMnvPjgr5hz9hUv+T2+tloDheJwogTgEDO1ITwlAFNVps/vGKFmuaQiA8zNxzjPDBMIBBgY\nGCAajdIZi3Jxj8XvdgVA2/Nr84utJKZptmf8AAhoWg6WC585Zy6nLZ69z73sk5Hkejieiy4EqbBO\n3fZo2v6gGgsZOK5krNJCiMnmL0GDdDRAyJwe0tI1QSrip0euHaojpUd0sj+wYRhk4mE0XWPdHddh\nFwbpuuST6GYQKSWa8PxCq70tMIBEUCcZCeB6np8eawpyMZNsLECl5VBvOTgS3nlcJwuzAS48rocZ\nuT3hHSF8N1LDMPzq7FSKer1OqVSis7MTTdPIpcYQWqXtWjqFXa9gVQr0rbgAzTABk87jz2THQ7/e\nRwBeS62BQnG4UQJwGOjo6ODJDTu5c3O1XWXqun6oxJUSY8M43//9Ns45NsuZPTqnLZ7Ngw8+yEcv\nOJkTRyTfvGsj9ZZNyBAEAwaeJ7EdGzlZoup4Hk0bTFPnb9+58IC56ZZlkdKa7U3bx3ZUGK77M9hE\nyGRuNsopszOsenGC1Tsm+M3TO6k/cQuN/g0Iu0Et00nw7ZcTmuuniA6teZBdT9yBXSuT6J3Pgos+\nQiYaZ/tYnXREEAnqOJNhFaNZxN76+OR+xlfb95Q+4ypCc072K43xZ9SagO50BKQ/1xdC4Hp+82JD\nE4RNgSZMPnvuHM6cFSWRSOC6LiMjIySTSYLB4H4/fyQSIRKJMDIyQigUapv2vRQtGCGUzDK85iF6\nT7kIq1Fn6PmHieb3H+d/NbUGCsWRgBKAw8DK9WP8w+2bQGjEQ37oxXdN8Kt8DV3HsuGuF4b4/SaT\n817YzifefRq5XI6L8x5pvcntG0s8uHmceq3lN3CXfiMZTdMwDYNLlubb4Y8pLMtqZ7yAvzE9lWqa\nB+YfwHppZkeEtQNlUmEdPd9J57mXQSBKeec6Nvz2hyz7yNdplsZ58aFfc/zVXySczrPt3hvZeNu/\ns/SaLxEyNUYqTWYHYxiTDWqMdI7TP/eDyStolBotLAekEOgaWJZNzfKzkxJhEzwPD4mu6ZPFcr4l\nQ6Vho2nw2XPn8fbZUUKhEJZl0Ww2SaVSNBoNisUi2Wy2vfm+P2+fGQmTBWk/BOV6sl3563l+E5vF\nl32SbffdxO4n7gTN7zXQ9/bps/+p9523qPNg/0QUikOCEoBDzFSVaSQYQEj3JRYDkzN4x+/ElY4E\nKJZrrByJcMqgw2lGAcuyWNiTojsquPzYMI9sLzFuGTjCIBkJMjcb5bxJkzLLshgZGWmfPRAITEuB\nfLVM9TROxmJkznjPnhdmLSEQz1Ad3kG5fyvZY5YTzfYAMPO0d/HkD75IozBCPp5h50SdhuUSDviD\nsBAa5mS2juu6JMNmewVjGAaaFqZUbzFWaRIydGr2pCeStHE9D01oGJrgrPkp3rc0z5xMqF0k12w2\n226slmWRTqcpFApsHqmycmuN+zeO7NfbR9cgoEnGqw3yiYi/8e1JDMMglu9j6TVfmva9eJ6H7diY\nk6JWbdlcuLhLpYAq3jIoATiETFWZ9t/zUyq71uNYLQKxJDNXXEx28Wm4noeh6ziey67Hfsuux3/H\n8Vd9nkhyEf9w+wt8893zyAVdGo0GkUiEOTM6OWnJse3zt1otSqUSrWqBkSoEg8HXNeC/lL17Gu+N\n5lo0CsMEUp3Qv5XpUXuf+lg/HQvypCImE7UWOS00rcIW/DoCHR2QOI6/j9GyXdANvnXVSWSsUdZX\ndCYssx2empkKcHJ3kETIaJvugb/KAdobvuFwmGq1ysoNY/zwsUFs2yEaNIiF9x2kXU9SqFmM1xyk\nVyMTDeyTKTTt80/aedu2jRQ6uqZx9SkzX8tXq1AcVpQAHEKmqkxnnfZOwpd8BM0wKQ/vYt1/fptQ\nRw+hjhl4QqM6NsjoxtWEExk/vOO6WLbDjU/s4Avnz6Wvr49AIECr1WrP8IUQr3uG/0rs3dPYR+LY\nFut/+0PyS05Di6RIz1nCht9dS9cJZxNOd7Lzsd+CELiOPyBHAgaLuxNsGKpMyzqajkBoOk3bQzNM\nPrA4woJQlRnz5tM7MUGtVmPhwukdRaWU7creZDJJpVJBCNEWAsuyuHv9KN9/ZICQAaGQga7r2LaN\npmnTajJ0TZCNB0FIRsr+ZndHXEPX9q3bmELTNGzPo9po8ZV3HadsIBRvKZQAHCKmwiixoIke7mk/\nrxu+/XKjOEowM4NWq8m2e29k3jlXse3eG7At2w+RRIKsGZNYGJRKJaSUb8gM37IsKpWKn0d/AEaK\nlcn0SP+x9Dy23PkTdMNkwQUfQtMNiC1h1unvZf2t/4bbajLj5PPQzSDBmJ+JIwTkE0E+f+Ex03yQ\npl6T7TCM4MLFXe39i0ajQX9/P8FgkGAwyKpVqzjuuOMIh8OT7xXt76BYLCKlJBQK4TgOjuOwebjC\n3//bDZQ2Pk5jfIDcwlOYd9GHAWiMD7Dxjv+gVRpDIIh1zWLuudeQSOQQiRAjlRaIFomgQShoAtMF\ny/Uk1Zbf2OevL13ECR3ey/oMKRRHGkoADhEvDaNsWflzhtc+gufYRHK9JGYuwrIshtc9gRkIEOya\nh5x01QwETCTg2h5rRj0uPzm3z/k9z6NSqbRnvkIIf/UwyUsfT2GaJul0uh3O2B/51DhCq2IYvpHa\n5pU/xa5XWPL+/+4P/pP0LDuXnmXnAtCYGGbn47cRyfoeRVPpkfvzQdo76+i8lzRZCYfDzJ8/n4mJ\nCRzHIZFIsGrVKjKZDEuWLJk22KZSKf/ajQbNZhNN07h9QxEjnGDmqZdQ3LEez7FA+t+HHk5wzLs+\nRjiZw3NdRtc+yPpbf8Dyj/49HQGBlNAxaaVdrzYRQkPXtQOKled59Pf309PT87Lfp0JxpKAE4BDx\n0jDK/As+xLzzPkh5YCulXRuxbJfR0SFGn76bY9/3VwQCAUS7R4BfkORJj7U7RzlrVgigPaALIfwi\nq1iMZDL5ht/73umRW1ZeT318gOOv+jy6uaf4y3NsGoURItkeWpUJNt/9M2YsOx8zvCclcu/0yL19\nkF4NmUwGz/MYHh7mxBNPpFQq8dBDD7Fw4ULC4XDbOwl80QiHw0xUm/x+8zjdi0/G1HWqIztplX2B\nlFJihCKY4ejkrB1sx6VZHJ30K4V0NEDNcrn+o6ey6sUJ1g9MUKy16Ewn9itWmqYxY8YM+vv76e7u\n3q/lh0JxJKEE4BDhWyJMf05oGsneBYyse4zWukdwagV6lp5JpnsmmuandOqTxUsAhiFxNJNsNntI\n732qp3GtMMrQcw+i6SZPfP/z7dfnX/jHZOYuZeNt19IojqKbITqPP6PtlfNGpUdqmkZ3dze1Wg3D\nMFi2bBmbNm2it7eXRsPvN7C3u+f9G8eQQqPhwES9RaXh4NoepaZDNKBhaBpSejz5/c/hWk2Q0Hf6\nu7Esh0rLwfEEDdvl679dy6XH9/BX5y0iHtIZHh4mmUwS2U+2jxCC3t5eBgYGyOVyL7uJrFAcbpQA\nHCLiQaOdbvhSpOehWzWawy9SqkwwvOZBAOxGlQ23/pDeFRcz89RLDluV6Z6expK3f/FHBzxu2Uf+\nbr/Pv9HpkdFolGg0yujoKH19fYyNjRGJROjr62u7e26faPKzx3YyVGq2PY1arsRxPMZqNuM1iAV1\nkiGDZR/7Jp5jM7z+CZpmku0Tvpj45QaSVS8W2DxSm9YCMmLbjIyMHHAPpqenh6GhIdLp9AEL0RSK\nw40KVB4ipsIoVq3M6Ponca0m0vMobF/L6IYnSc1axPFXfZ6T/+TvWfaRr7HsI18jEEsy/8I/puek\nc/ac5zBVmX5gxUw0oWE5B94s3h+W471p6ZG5XI5EIkEymcTzPNasWUMqlWL1kMv/+O1Wtg5XAIkm\n/Hi9Jvx/hqahCUG56bCr2KRqSZoEaM1cQf991yGbFfSp9yDQhCQW0AibOivXDfHn1z3FIzvqZDIZ\nBgcH26uPl9LV1UWpVDrg6wrF4UatAA4RU2EUz4XB537P5pXXg5QEEx3MPecaOuafuM97hNAwQhH0\nQOiwV5m+tKfxS3P594fleDRsly9fvPBNS48MBAJ0d3dTLpfRNI3v/uZhbt5gEQ2aRIIGdsOZbD4v\ncRplis/eBdIje/Yf+yEgYLTmpzdpSKRj+xbU4fhkXbZEn3RDBY940MDxmNYCslAoUK1W21XVe5PP\n5xkbG8PzvH0MABWKw40SgEPEnjDK0D4VpQdixcf/sf3zkVBlur+exgdqlj6VHvnliw/sRfRGkkgk\nGKrDLRs2oUsH6e4lUp4H0qO+7WmMSALPdfBch9bQFrRQDJnoorb2fipP3YpdHKK05j7y53wYicQa\n2cHu5+9g+/huhKaR6D2GOe+4mlA8vVcLyDS2bTM4OEg6nSYUCk27t2w2y8TEBK7rTnMfVSgON0oA\nDiEfWDGT+zaMYDneq5pBT/FmhlFeK/vraQwvn8t/qLhplT9Ix4IRWq0WuuvP7IvP3MXEE7/CazUQ\nukl5zT0EUl2Y6S7GHv1P3HoRabcwk51EZp+AputtWwnPrtN9/Jl0zD0Ooelsv/8mtt79MxZe9iks\ny+WmJ3fy1XcvwTRNuru7mZgsWNu78xv4WUzFYpFSqfSmZGopFK8HJQCHkCM1jPJaea25/IeCvQvt\nNE0QDocxTZtgs0508TuobXuKrks/RWXDo9jlUdInX+ob7808Ydp56s/ejlsvoWkajueRnbOEbMT/\nz0Rogu4Tz+aFW76NlJJIQOeutQP80UkdzO31m/xkMhksy2JwcJCOjo5p/YZTqRTlcnmfrmQKxeFC\nCcAh5kgOo7xWXmsu/5vJ/vyKDMOkMx3l2Uf/i+j8U9GjSSR7KnWnVi/tAl851R3Zb88pgFwiQsj0\nrSMcx6GwcyPhTPfk2ySeJ7lv4yimtInH4+001O7ubsbHxxFCkMlk2veUSCSoVqv79IdWKA4HSgAO\nA0dyGOWtyr5+RT5uYQAxupXYJZ/FdbypHl/Anu96b6ZaXHpAPmqi4+G6fsOdVmGI4afuZt4lf47j\nOOiGjodk22iVZl8Iz/Oo1+skEglisRgdHR20Wi0GBgbIZrPt1UAsFkPTtJdNI1UoDgVKAA4TR2IY\n5a3M/grtAEo7N+LWJhj/9f/Ecjw82wLpYhWGyL37C9OOnRr4kdCVCJGKBHAcB9f1qIzuZMN/fYc5\n51xDfv7xSCStZgs8j3LdmjzOd2ptNBpUKhUymQzBYJCenh7GxsbQNK29GohEImiaxvDwMJ2dqn+A\n4vCgBOAwcySFUd7KHKjQruuEs8gtWgFA03bZ9ugd1IqjpE+7ajLY4//PlHaYQhCJmO0ex4Zh0CyN\nsek3/8qMUy8lveBkWq0Wmq4RDAVpSZ1MPEyj0cCyLCKRCI7j0Gq1qFQqJBIJcrkc2WyWRqPB4OAg\nuVwOwzAIhUJomsbAwAA9PT373rxC8SajBEDxB8GB2jnqZhDd9CtxA0A6GSfo1enKd1Bq2NRaLpom\nwPOb8IQDAtH0aDXraJqG16rz/C//iZ6TzqH35PMA33jPdV1azRaO4zG/M8GyZQspFovs2rWLiYkJ\n4vE4tm1jWRbj4+Nks1ny+Tzd3d2MjIwQCATa+wX5fL5tIqecRBWHErE/h8gjheXLl8vVq1cf7ttQ\nvAUo1i0u+/4jhE1jv5vq+8PxPLaO1NAEFJ+5g+LTdxA09fZqoO/0d+N6Hrsf+x2aGUSIKVs+OP0z\n/4rrSWotmx+8fx5es0oymWxbP2zYsIHx8XFCoVC7Gb1pmnR1dZHJZNoN6fP5PLqu43keAwMDzJgx\nQ4mA4qAQQjwlpVz+qo49GAEQQlwJfB1YBKyQUu4zWgshZgLXAZ34K+5rpZTfeTXnVwKgeC38/W/X\ncc/6IZLhwCsfPMlAsUG5aSPwew93J8MHPNbzPFzPbT+uWZKLlnTxlXctBvx+BIVCgXq9TkdHB9ls\nll27djE4ONhuU6nrOvF4nBkzZpBIJNoN6ROJBFJKZSetOGheiwAcbAhoLXA58MOXOcYBPi+lfFoI\nEQeeEkKslFKuO8hrKxTTeD2FdplogHLTRgLpyMsLx5RDK4DluAgczp8XZWRkpN1XIZVKIaVkfHyc\nrVu34nkexxxzDFJKtm/fzvj4OI1Gg0KhQCaToe//tXfnwZHW54HHv8/79qVWq3VMH2rNMMDAMMME\nY7wMkwDZ2AYywARDzMZrqMRxnLjIJlsu16ZigsuubNZbqRCym2wqVCpLnGxuhw0bYmIIGIaxveEI\nDBvAMAeDh2NGrT4kjc6W+njf3/7Rx7SkltS6W+j5VKmm+31/b78/vYj36ff5XTt3ApBMJunt7V1w\nJtFGi9nvioa4STsMqGVaUQAwxhwHFnxkNcYMAAOV1+MichzYDmgAUKtqOQPtLBHCAS8i1GYNXUx5\ncJ7Lfbfu40cuL48JKFZmB63q6OggEonU1jAYHh6mu7ubiy66iLNnz9Lf38/4+DgDAwPs2LGDnTt3\nkslkCAaD9PX1MTAwUOtFdCo9zjdeOsORk+mGi9nXz1KqXYbVUqxKG4CIfAf41UYpoFnlLgK+B1xh\njBlb7HM1BaSW44nXB3jgqZO4xm1qoN2XDu4BWPIxCw3OGxsbY3p6uvY+EolQKpVIJpNMTk7WFqs/\ne/ZsbezArl27iMViTE5OEo/HGRwc5Ln3p/j9I+80VS9LLO69eeF6qQ++VW0DEJFngN4Gu75ijPlm\npcx3WCQAiEgI+C7wm8aYv1+g3D3APQA7d+68+r333lvsd1BqjlPp8UUH2t24NzZjoN1yjmmG67oM\nDQ3VVnCrNgyfOXOGUqlELpcjm82SzWbp7u7miiuuIBgM8tz7OX738Gna/R783vLDevL/PUv6jeeY\nHOwnuvcAew79fO089dOGaBDYutatEbjuhN9hgQAgIl7gW8BTxpjfbfZz9QlArdRorrjkgXbLOWYp\npqenGRub+QCczWaZnJykv7+fZDKJG4rxt/1hAl4PPo9dXsPYthl86xUQi5F33sApFWcEACgHgYLj\n8tBnrtZ00Ba1no3AzVRGgD8Bji/l5q/UaljOQLu1HpwXCARmTBl97tw5otEo0WiUtrY2LrnkEn7r\nybcYn8jheEHaQ9ie8vrCkcuuBmAi9S7O+Lk5n+3zWEwVSzz88pla7ySl5rOivmYi8kkROQtcCzwu\nIk9VtveJyBOVYtcDnwFuEJFXKz+HVlRrpT5Auru7icVixGIx9u3bR1tnhLNuFz0dAWzLZnh4iKGh\nIaanpymVSot+Xsjv5fCJDKO54jrUXm1mK+0F9CjwaIPtSeBQ5fU/c36kvVJqAbZt8/qgi1g2HW0B\nXNchFAoxOTnJ4OAgxhjivQvPHWRbguMaDh9P6zQjakE6FYRSLaZ+ZlPLsvH5bHw+H93dXUxNTZMa\nSDE+NoZfFm6/Oz04udZVVZucDjdUqsXMN7MplBe6ufjiiwmFQkxPTzM1NYXjOHNLCoxNawpILUyf\nAJRqMfPNbApgXAfjuoiA3++nVMjjlIr4/AEsS/B4PIBgDIQDOjpYLUwDgFItZr6ZTQHef+Fx3n/+\nsdr77LEX6TtwK30HDgEWxWKlkdgYdkXa17imarPTAKBUi7nx8hgPHjmF45o5I38vvP52Lrz+9jnH\nFIsFjAHHcbBsD+ByZdRifHycjg4dD6Aa0zYApVpMV9DHx/fEmcg3n8P3en1IJQU0NlXguos62Nkb\nqa06Vu1BpFQ9DQBKtaC7D1yAJRaFktv0MV6Pl6Lj4vXY3PGhWG3eoVgsRnd3N9lslkwmQ6FQWMOa\nq81EA4BSLag6s+lU0Wk6CBRKLgVX+MJHL2Tf9m4ikQjFYpFUKlULBLFYjImJCdLpNOPj42v8W6hW\npwFAqRZ16MoE992yl3zJZXSqUJugbjbHNYxOFSg4LvfdspdP/cilWJZFoVAgkShPClcoFEilUhQK\nBXp6eojH49i2TSaTIZvNanpoi9JGYKVa2KErE+yOhxadpfTgvt4Zs5R2dHSQy+UYHBwkkUgwOjqK\n67qMj4/jOA6xWIxgMEgwGMRxnFoQ6O7uxudrfkU1tbnpmsBKbRLLmaW0uih9IpGgVCqRyWTo7Oxk\nfHycYDBIOByeUX54eJhSqURbW5v2Htqk1n066LWiAUCplXMch1QqRV9fHyLC8PAwxhgCgQDj4+P0\n9PTM+dafy+WYmJhARIhEIrpQ/SbSUtNBK6U2lm3btWUmY7EYPT095PN5hoaGiEajjI2N1dJCVZoe\n2hq0EVipLUBE6OvrI5vNks/n8fv99PX1MTIygmVZbNu2jVQqNadnkG3bxGIx4vE4ExMTZDIZ7T30\nAUtQboUAAB5VSURBVKIBQKktpNognMvlAIhGo/j9ftLpNLFYrDZwrFicOwitp6eHWCymvYc+QDQF\npNQWE4vFao294XCYYDBIW1sbmUyGtrY24vE4Q0NDuK5LNBqdc3x9eiiTySAidHV1aXpoE9InAKW2\noJ6eHqC8HCWUU0TxeBwRIZVK0dPTQ3d3d8O0UJVt28Tj8drgMk0PbT4aAJTaosLhMD6fj8HBwdq2\njo4OYrFYbdBYb28vIjJvWqhK00Obk6aAlNrC2tvbsW2bdDpNPF5eatKyrFpbQSaTIRaLEQqFahPK\nNUoLVWl6aHPRAKDUFhcIBLBtm2QySSKRqPX57+zspFQqkUwm6enpIRKJUCqVSKVShEIhQqH51y2o\npodAB5e1Mk0BKaXwer309vbS39+P656ffM7j8dDX10cul2N4eBiPx0Nvby/GGFKpFKVSadHPrk8P\npdNpTQ+1EH0CUEoB5dTP9u3bGRgYIBqN4vWen16iOngsmUwSjUbp6Oigo6ODbDZbGy28mGp6yHVd\nstksgKaHNpg+ASilaqoDxoaHh5menp6xr37w2MjICFAeR9DZ2UkqlWJiYqKpc1iWNWdq6rGxsVX/\nXdTiNAAopeaojvydnJycsy8ajeLz+Ugmk7iuW0sfLSUtVFWdmtrj8WjvoQ2gKSClVEORSIRz587h\nOM6cWUNnDx4Lh8Mz0kLV6SWapemhjaFPAEqpeXV3dwPlnjyzzR48Vv3mHo1GCYfDpNPphk8QC9H0\n0PrSAKCUWlA4HCYQCNS+mc9WP3isOseQ1+slHo/XpqJ2HGfJ561PD6XTaTKZjKaHVtmKAoCIfEpE\n3hQRV0Qazj8tIgEReUlEXquU/S8rOadSav1VF48ZGBhouL86eKxQKJDJZGrbw+Ewvb29DA8PN3yK\naPbc8XicSCRCNpslnU7rwvarZKVPAG8AdwLfW6BMHrjBGPNh4CrgFhH5kRWeVym1zvx+P9FolP7+\n/nm/iXd1ddHd3U0ymSSfz9e2R6NRQqEQ6XS69pSwVNX0UP3U1JoeWpkVBQBjzHFjzMlFyhhjTLV/\nmLfyo89xSm1C1YFhyWRy3rSO1+ulr6+PycnJGd/6fT4f8Xi8Npp4OWmhqurgsmp6SHsPLc+6tAGI\niC0irwIZ4GljzL8sUPYeETkqIkfnyzkqpTaOiLB9+3YymcyCqZienh7a29sZGBiYMZFcNS00NDS0\n7LRQVTU9tG3bNrLZ7KJ1UjMtGgBE5BkReaPBzx3NnsQY4xhjrgJ2AAdE5IoFyj5kjNlvjNm/0KRT\nSqmNlUgkGBkZWTCl4/f7SSQSnDt3rjZ4rKo6ydzAwMCy00JV2ntoeRYdB2CMuWm1TmaMGRGRI8At\nlNsPlFKbWHVxGcdxFpzoLRaLkcvlSCaT9Pb2Ylnl754+n49EIsHY2BgDAwPE4/HavuWqrnWQy+Vq\nM5LqwvaNrXkKSESiItJVed0G/DhwYq3Pq5RaHz09PbiuO+cb/mzBYJBEItFw4ZhqWmhwcHDFaaH6\n88ViMbZt20Ymk9H0UAMr7Qb6SRE5C1wLPC4iT1W294nIE5ViCeCIiLwOvEy5DeBbKzmvUqq1dHZ2\n4vF4GBoaWrCciNDb2wswY/BYdd9qpoWqLMuasXKZpofOk1ZuOd+/f785evToRldDKdWkXC7HxMQE\nsVhs0bKu65JKpejq6iIYDM7ZPzY2Ri6Xqy1Wvxb1XGl6aCRX4PDxDKezE4znS3T4PeyKhrjp8jid\nQe/iH7AGROQVY0zDcVlzymoAUEqtpkKhwODgIH19fU2VHxkZoVAoNAwaxhiy2Swej6eW219NruvW\nVjrr7u5ueu6hU+lxvvHSGY6cTONUlk+wBNzK7dS2hBv2xrjrmgvYHV/fRXA0ACilNpTruiSTSfr6\n+pr69l4sFslms2zbtg2/3z9nfz6f59y5c4TD4YZPC6uhunJZIBCYM/ldvSdeH+CBp07iGpeQ34tt\nzX16cFzDRL6IJRb33ryHQ1cm1qTOjSwlAOhcQEqpVVddXCaVSi24mHzVfIPHqvx+P729vbVBZPWr\nlq2W2YPLGs099MTrA9z/5An8HovONl/Dmz+UnwA623z4PRb3P3mCJ15vPIXGRtPpoJVSa6K6uEw1\nzx8IBBY9ZvbKY/WrkgG1aafXMi1UPzV1dV6j7u5u3juX54GnTtLmtfF5Zn53zh5/ifeef4z8+DC+\nYCeX3fo5Oi+4rFbud759kt3x0LqngxajAUAptaZ6e3vJZrO4rttU+qa68lgmk8Hv99PZ2Tljf7W3\nUD6fJ5VKrVlaqNp7CMrpoT/97mlKTomOWYHs3Ltv8s73HmHvJ36Rjt6LKUyOztjv81hMFUs8/PIZ\nvnrbvlWv50poAFBKrbloNFrLsS+UX6833+CxqmpaaHR0dM4gstXunWMFQrz4/jghv5diqZzS8no8\ngPD+c4+x89pPEO67pFyvju45x4f8Xg6fyPCFG3ZvWO+gRjQAKKXWRU9PD2NjYwwPDzeduqmuPJZO\np2lvb2842rizs5NwOEwmk+HMaJEnTo7N2zvnwSNvL6t3zuHjGRwXvH4bsDEYiqUSxnUZT71Lz6Uf\n5uU//jKuU2LbpVdx8Uc/he0936PItgTHNRw+nubOq3c0fd61pgFAKbVuwuEwk5OTDA4OEolEmjqm\nOnisOl1Eb2/vnH77IsIraZfffvItSiWHjjZf5WY9k+Manj6W4vDxTK13TjNPC6ezMxe8FwSvx0t+\n/ByuUyJ17CU+fPevIZbNsUcf5MyLj3PRv/3knPOfHlzaCmlrTQOAUmpdtbe3Y9s26XS6lmNvRjgc\nro0Snj14rNo7p83rwdfmw3FKFItFvN5ymqaq2junUHL5r48f4+9eOcO7Q5OLPi2M50tUO/y4xsVx\nHARwK4Go98Mfw9veWZ4p9ZqDvP/Ct+YEABEYm168R9R60gCglFp3gUAA27bp7++nr6+v6ZG4lmXR\n19fHyMgIk5OTRKNRTqXHeeCpk4y++V1OH3uBycF+onsPsOfQ5ygWSwyefIl3nvmb2mcY41IsFOg5\n9J/Iju/kwp4goba5t8Lq08Izx1Jc3OOnWCpRLIElFl5P+cnAE+rCH+7Btm0cx8Hjmf+WagyEA62T\n/wcNAEqpDeL1ekkkErUgsJTpHrq6uigWiySTSf7q5UFc4xIMdxO89jZG3nkDp1QEpLw28b5riew5\ngG3bWJbF6Ve+y3vPfwt/dCcGGJ0qEvSfvxXWf8MPegXHhdeTk1iW0OOZewPvveJ6Uq8doeuifRhf\ngP6jT9Oz68qG9d4VaV/iVVpbGgCUUhvGsix27NhBMpkkEok0PRUDlANIsCvCkRPHCXgsOi+7GoCJ\n1Ls44+dmnMOyLBynxMRUkbOvPUf7pddgWxbGGMami6T++veZTL8DYiOUe/Ls//xvls8D9GDx7tAk\n4YCXdv/M22bfgVsp5Mb51z/7z9geH9G9+9l57W0zyjiuwbaEGy9vPuW1HjQAKKU2XLXff0dHB21t\nbU0fd/h4BsTC67EpFosLpmBs28PQYIp8+gdEfuzu2ihfA5Rcw6U3/TS9V/5Yw2PbfDZtXovs+DTt\n/tCMfWJZ7D74GS6+4S48DZ4QACbyRQ7u622pLqCgU0EopVpELBZjcnKSiYmJxQtXVHvnWJaF1+ul\n5JTmTBNhjEuxVGS6UCD15gsE4rvwhis9kKTco8dpYk60WEeAqaLLdHFpaxkXSi62ZfHpay5Y0nHr\nQQOAUqplRCIRSqUSo6OjixeGGb1zALweLyLgug6G8k3dcVxEhKkS5N5+mdBlP4wg5YZnU55x1Bh4\n93t/zwsPfpHX/vq3GHn/5JxzBf0eOtu8DE8WKJTOB5mFQkeh5DJVdPjSwT0tNw0EaApIKdViurq6\nGB8fb2rAWIffU+u2WSVSzvmXiiUsy8Lj8eC6DkPvncTJjdJ+8VV1ZQXEEPvhO7jgwgvxeP1kT7zE\nsUf/gI/87K/T1j1ziup2v4fLEx2cTE0wVSzR5rHw2I3HG0zki9iWxX237F3X2UCXQp8AlFItp6Oj\ng0AgUJuMbT67oufz8cZ1cEtFjHHBGGwpbysWi1iWxehb/0LbhVci3pnTTQtCzwWX4vEHKToO8Suu\nJ7z9Es698/055xOBeDjAH//s1Rzc10uuUGI87zA6VWSi8u/oVJGposPBfb089JmrW/bmD/oEoJRq\nUcFgEI/Hw8DAAIlE45vojZfHePDIKRzXcPaFx3n/+cdq+zLHXmTndbez8/pPkJ/KMf6Df6X7Yz8H\nxmAquf9qQ3C4zYdVySWV2xBkzlTQcL4v/+54B1+9bR93XdnF61mX04OTpM+NEe/uYFckxI0buCLY\nUmgAUEq1LJ/PRywWm3fAWFfQx8f3xHnmeIoLr7+dC6+/veHn+Nva+dA9/53sRAGRcvdPg8ExhpAU\nGXvvTTov2IPX46H/tf/L6Nm3uOSGuxt+Vn1f/nDAw51Xl9NEU1NTlEqlhvMVtSoNAEqplmbbNn19\nfSSTSeLx+JyunncfuIBnT2QolNw58/TX6wr6GJwo4ppyo7BxDQJ0Bmze/vY/MDWcAhECXTH2fOI/\n0NYzs8/+7L78uVxuRpfVtrY2stmsBgCllFpNIsL27dsZGBhg27ZtMwaM7Y53cO/Ne7j/yRMA8wYB\n27LoCHgYny6CMbhAvMNPwGfxkc98tVbOGJdCsYjrujNGJ8/uyz8xMdFwHePNRAOAUmrTSCQSZDIZ\nQqHQjMngqg2tDzx1kqliad61ejvbvIzkilhW+eYf8gm2x6ZQLFS6kEqtF5HjOLUAMFVwyBUcJvMl\nfv2bb9Dh9xDxu9wZ6t4Uuf75aABQSm0qsViM4eFhHMeZkW45dGWC3fEQD798hsMnMjiV/qEi5cZb\nKM8G+rE9UY4NjNHu9+L1WBRLRWzLplQq1eYLsi0b13WZnC5wLldiPF+iK+jluR8M1WYMdRyHv3gl\ns6z1BVqFNGrpbhX79+83R48e3ehqKKVa0OjoKK7r0t09dwWu0VyRw8fTnB6cZGy6SDjgZVekvdY7\n54nXB3jgqZO4xiXk9yKY8gRwUh4gZts22dEc2VwRjJDoCtAdPJ92co2LcQ2IxUS+iCUW9968h2sS\nHqLR6HpehjlE5BVjzP6mymoAUEptVhMTE+TzebZt27bkY0+lx2c9LRhcx8U1humSy9h0iZDfQ3eb\nh1DbzLEDpVJxxrw/1RG/v3Rdgrt/dO9Kf60V0QCglNoypqamGB8fX3aD7Oynhdx0nsMnsnQGPAS8\nNrZt4xqXl/7gi7VjjDG4TonEVR/l0pt+GqgEgXyRP/ncgQ1NBy0lAGgbgFJqU2tra8O2bZLJJIlE\nounFZao6g94Z6/R+7R+PEWrz4fdAsVjAtgNgDNd+8cHaZ+dz47zy0H1E95y/z/o8FhPThodfPsNX\nb9u3Or/cGlvRVBAi8ikReVNEXBFZMOKIiC0i/yoi31rJOZVSajafz0dvby/JZHLObKBLMZIrcORk\nmg6/F5/Xh8/vZ3Iyh1VpJIbyt/+hU6/iDXYQ3nHZjOPbfTbPHE8zmmutpR/ns9K5gN4A7gS+10TZ\nLwLHV3g+pZRqqLpcZCqVolhc3g348PEMjkutC6nH9hAI+Mnn85jKSmGOU2LwxIvEfui6OU8bPp+H\nkuNw+Hh6xb/PelhRADDGHDfGzJ03dRYR2QH8BPD1lZxPKaUWIiL09fUxPDzM9PT0ko+vri9Qz+v1\nVUYfC1NTU0yPDjF65hTxK66be/7KHEKnByeXU/11t16zgf4P4F5g0WczEblHRI6KyNFsNrv2NVNK\nfeDE43EmJiaYnFzajXj2+gI1Aj6fl7a2NtJvPk/njksJdEYafoYlwtj0ByQFJCLPiMgbDX7uaOYE\nInIbkDHGvNJMeWPMQ8aY/caY/Rvdn1YptXlFIhEKhQJjY2NNH9NofQEAj8dDsTJQ7NxbrxD7obnf\n/qtcYwgHNsfo4EV7ARljblrhOa4HbheRQ0AACIvIXxljfmaFn6uUUgvq7u5mbGysqcVlYOb6AvWE\n8mPBWP/b5CfOzej906hs/YyhrWzNU0DGmC8bY3YYYy4C7gKe1Zu/Umq9hMNhAoEAzaSUb7w8hm1R\nm0ainsf2MPD9fyay+99g+wINj3dcgyXUZgxtdSvtBvpJETkLXAs8LiJPVbb3icgTq1FBpZRaqWAw\nSDgcJpVKLViuur7ARH5uDl9E2HXTT7PnJz4/7/ET+SI/esnmmSBupb2AHq18u/cbY+LGmJsr25PG\nmEMNyn/HGHPbSs6plFLL4ff7iUQi9Pf3N1ztq+ruAxdgiTVj4fcq27ZxnFLD4wolF9uyuONDm6ft\nUtcEVkptGR6Ph0QiQTKZxHGchmWq6wtMFZ05QcASC7dB8KjOBfSlg3vYta1tzv5WpQFAKbWlWJbF\n9u3bSafTFAqFhmUOXZngvlv2ki+5jE4VZrQJ2JZdCx6OaxidKlBwXO67ZS+HrkzQ3t6+5O6nG0Xn\nAlJKbUl9fX0NF5epWmh9gWKphMf2YFvCwX29fLpuPYBgMEg2m6W9vfV7AulsoEqpLW14eBiv17vg\nWr6zZwz1Wy67Iu0c+vDOhg2+2Wx2w9YF0NlAlVKqST09PYyMjDAyMkJXV1fDMrNnDAVIp9ObprfP\nfLQNQCm15XV1deHxeBgeHm76GJ/PN28bwlKnpN4oGgCUUgoIhUIEAgEymUxT5bu7uxkZGWm4r5VT\n6/U0ACilVEUwGKSrq4uBgYGmyovIvN1JNwMNAEopVcfn8xGLxTh79uyii8tEIhGGhobWqWarTwOA\nUkrNYts227dvZ2BgoLYSWCPVXP9mSfnMpgFAKaUaEBG2b9/O4OAg+Xx+3nKRSGTORHO2ba9oacr1\nogFAKaUW0Nvby9jYGLlcruF+y7LmPAF0dnbO20DcSjQAKKXUIqLRKNPT0/MuLtPT0zOjC6k+ASil\n1AdIdUGZc+fOzdnn9XrntBVshnYBDQBKKdWkcDiMz+djcHCw4b7R0dENqNXy6VQQSim1BO3t7di2\nTTqdJh4/v/JXIBBgbGyMkVyBw8czfP+9DK6dpsPvYVc0xE2Xx1tu6ggNAEoptUSBQADbtunv76ev\nrw8R4VR6nL98foDvnnoDg+A4Jbye84vMP3jkbW7YG+OuuplDN5oGAKWUWgav10sikaC/v59Xh4T/\n9u1TuMbFb0HA76VUEjye87dYxzU8fSzF4eMZ7r15D4euTGxg7cs0ACil1DJZlsVrwxa/cv8fMnHq\nJaaGkkT27OeyW38eANcpceJbDzGReo/82BAf+vSX8Pft5v4nTwBseBDQRmCllFqmU+lxfueptwh3\nR9jxw7cS+6HrELFw3PPzA3Vu382en/g8vvYwAD6PRZvX5ne+fZJT6fGNqjqgAUAppZbtGy+dwTUu\nicv3E997DZ5AEGNcBAEBxGL7/h+nc8dusOzacT6PheO6PPzymY2rPBoAlFJqWUZyBY6cTBPyn+/Z\nY1Vu8iKCcQ2uO/9MoSG/l8MnMozmimte1/loAFBKqWU4fDyD44JtzVz8RaR8W3Uch4XGgtmW4LiG\nw8fTa1nNBWkjsFJKLcPp7MS8+2zbLi8eXywCC/f9Pz04uco1a54GAKWUWobxfAlrgZUfLcvG77fn\nLwCIwNj0xqWANAAopdQydPjPD/IyroNxXYxxwbi4pSJiWYhl45bO3+CNUyrvsz3ldgID4cDGjQ7W\nAKCUUsuwKxqqvX7/hcd5//nHau8zx15k53W3c+H1t3P0T75Kfqy8atgbj/weANfccz+Bzkj5cyLt\n61jrmWQlM9aJyKeA3wAuBw4YY47OU+5dYBxwgJIxZn8zn79//35z9GjDj1RKqQ01kivwyT98jjav\nZ05DcDMc1zBVdPiHX75+VecIEpFXmr3HrrQX0BvAncD3mij7cWPMVc1WTCmlWllX0MfH98SZyC8v\nhz+RL3Lj3tiGThC3ogBgjDlujDm5WpVRSqnN5O4DF2CJRaG0tMVfCiUX27L49DUXrFHNmrNe4wAM\n8G0ReUVE7lmooIjcIyJHReTo7HU2lVKqleyOd3DvzXuYKjpNB4FCyWWq6PClg3s2fFbQRRuBReQZ\noLfBrq8YY77Z5Hl+1BjTLyIx4GkROWGMaZg2MsY8BDwE5TaAJj9fKaU2RHVCtweeOslUsUTI723Y\nJuC4hol8EduyuO+WvRs+ERw0EQCMMTet9CTGmP7KvxkReRQ4QHPtBkop1fIOXZlgdzzEwy+f4fCJ\nDE6lf6gItdHAtiUc3NfLp7fSegAi0g5YxpjxyuuDwNfW+rxKKbWedsc7+Opt+/jCDbs5fDzN6cFJ\nxqaLhANedkXaufGDtiKYiHwS+AMgCjwuIq8aY24WkT7g68aYQ0AceFREquf7G2PMkyust1JKtaTO\noJc7r96x0dVoyooCgDHmUeDRBtuTwKHK69PAh1dyHqWUUqtPZwNVSqktSgOAUkptURoAlFJqi9IA\noJRSW5QGAKWU2qI0ACil1BalAUAppbYoDQBKKbVFaQBQSqktSgOAUkptURoAlFJqi9IAoJRSW9SK\nFoVfayKSBd7b6HosQQQY3OhKLJHWeX1ondfPZqz3atb5QmNMtJmCLR0ANhsRObrZFr3XOq8PrfP6\n2Yz13qg6awpIKaW2KA0ASim1RWkAWF0PbXQFlkHrvD60zutnM9Z7Q+qsbQBKKbVF6ROAUkptURoA\nlkBEekTkaRE5Vfm3u0GZj4vIq3U/0yLyk5V9fyYi79Ttu6pV6l0p59TV7bG67ReLyL+IyNsi8rCI\n+FqhziJylYi8ICJvisjrIvLpun3rdq1F5BYROVm5Pvc12O+vXLe3K9fxorp9X65sPykiN69VHZdR\n518RkWOV63pYRC6s29fw76QF6vxzIpKtq9vn6/Z9tvK3dEpEPttCdf69uvq+JSIjdfvW/jobY/Sn\nyR/gAeC+yuv7gN9epHwPMAwEK+//DPipVq03MDHP9v8N3FV5/UfAL7VCnYHLgN2V133AANC1ntca\nsIEfALsAH/AasG9WmV8G/qjy+i7g4crrfZXyfuDiyufYLVLnj9f93f5Stc4L/Z20QJ1/DniwwbE9\nwOnKv92V192tUOdZ5b8A/Ol6Xmd9AliaO4A/r7z+c+AnFyn/U8A/GWNya1qrxS213jUiIsANwCPL\nOX4FFq2zMeYtY8ypyuskkAGaGgCzig4AbxtjThtjCsDfUq57vfrf5RHgxsp1vQP4W2NM3hjzDvB2\n5fM2vM7GmCN1f7cvAjvWoV4LaeY6z+dm4GljzLAx5hzwNHDLGtWz3lLrfDfwjXWoV40GgKWJG2MG\nKq9TQHyR8ncx9z/ob1Yeq39PRPyrXsPGmq13QESOisiL1bQVsA0YMcaUKu/PAtvXsK5VS7rWInKA\n8resH9RtXo9rvR04U/e+0fWplalcx1HK17WZY9fCUs/7C8A/1b1v9Hey1pqt87+r/Dd/REQuWOKx\nq63p81ZSbBcDz9ZtXvPr7FmLD93MROQZoLfBrq/UvzHGGBGZtwuViCSADwFP1W3+MuWbmY9yt69f\nA7620jpXzrca9b7QGNMvIruAZ0Xk+5RvVmtila/1XwKfNca4lc1rdq23EhH5GWA/8NG6zXP+Towx\nP2j8CevqH4FvGGPyIvKLlJ+6btjgOjXrLuARY4xTt23Nr7MGgFmMMTfNt09E0iKSMMYMVG46mQU+\n6t8DjxpjinWfXf1GmxeR/wX86qpUmtWptzGmv/LvaRH5DvAR4P8AXSLiqXx73QH0t0qdRSQMPA58\nxRjzYt1nr9m1nqUfuKDufaPrUy1zVkQ8QCcw1OSxa6Gp84rITZSD8UeNMfnq9nn+TtY6ACxaZ2PM\nUN3br1NuR6oe+7FZx35n1Ws411L++94F/Mf6DetxnTUFtDSPAdUeBJ8FvrlA2Tn5vMqNrJpX/0ng\njTWoYyOL1ltEuqtpEhGJANcDx0y5NeoI5faMeY9fA83U2Qc8CvyFMeaRWfvW61q/DOyWck8pH+X/\nkWf32Kj/XX4KeLZyXR8D7qr0EroY2A28tEb1XFKdReQjwP8EbjfGZOq2N/w7aZE6J+re3g4cr7x+\nCjhYqXs3cJCZT+YbVmcAEdlLuXH6hbpt63Od17qV+YP0Qzlvexg4BTwD9FS27we+XlfuIsqR3pp1\n/LPA9ynfjP4KCLVKvYHrKnV7rfLvL9Qdv4vyjelt4O8Af4vU+WeAIvBq3c9V632tgUPAW5S/nX2l\nsu1rlG+eAIHKdXu7ch131R37lcpxJ4Fb1/FvebE6PwOk667rY4v9nbRAnX8LeLNStyPA3rpjf75y\n/d8GPtcqda68/w3g/lnHrct11pHASim1RWkKSCmltigNAEoptUVpAFBKqS1KA4BSSm1RGgCUUmqL\n0gCglFJblAYApZTaojQAKKXUFvX/AXxu6cke6cOtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "emb_bfs = loadEmbedding(\"emb/karate-2-10.emb\")\n", + "plot_embedding2D(emb_bfs,node_colors=None,di_graph=G)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYXNV5/z/nlqk7M9uLVmXVG0gCSWDABtOFsLEBF3CJ\nS4Jjx7HjxA5uieO0XzBOcYtj40IMtgFjjHFASIDoCAwSiCKtVl1o++7szk6f287vjzs70kqrApKQ\nBOfzPPPMzJ0z956Znb3vPW/5vkJKiUKhUCgUo2jHewIKhUKhOLFQhkGhUCgUY1CGQaFQKBRjUIZB\noVAoFGNQhkGhUCgUY1CGQaFQKBRjUIZBoVAoFGNQhkGhUCgUY1CGQaFQKBRjMI73BF4P9fX1sq2t\n7XhPQ6FQKE4q1q1bNyilbDjUuJPSMLS1tbF27drjPQ2FQqE4qRBC7DqcccqVpFAoFIoxKMOgUCgU\nijEow6BQKBSKMSjDoFAoFIoxHJFhEELUCiEeFEJsKd/XjDPmfCHE+r1uRSHEe8uv/a8QYsdery06\nkvkoFAqF4sg50hXDV4DVUsqZwOry8zFIKR+RUi6SUi4CLgDywAN7Dfnb0dellOuPcD4KhUKhOEKO\n1DC8B/hF+fEvgPceYvz7gPullPkjPK5CoVAojhFHahiapJQ95ce9QNMhxl8D3LbPtn8VQrwkhPgv\nIUTwCOejUCgUiiPkkAVuQoiHgOZxXvr63k+klFIIccAG0kKIFuBUYNVem7+Kb1ACwE3Al4F/OsD7\nPwV8CmDy5MmHmvYJSypvsbq9n+0DWTIlh1jQYFpDFRfNbSIRMY/39BQKheLQhkFKedGBXhNC9Akh\nWqSUPeUTf/9BdvUB4G4ppb3XvkdXGyUhxM3Alw4yj5vwjQdLliw5oAE6UdnSl+G2Z3fzSEcfrudv\n0wR45U/yg0e2csGcRq5ZOomZTbHjN1GFQvGW50hdSX8APlZ+/DHgnoOMvZZ93EhlY4IQQuDHJ145\nwvmckKx4qYfrblnHQ+29hE2DRNgkETaJhczK47Cp8+DGXq67ZR0rXuo59E4VCoXiGHGkWkk3AL8R\nQvwpsAt/VYAQYgnwaSnln5WftwGTgMf2ef+vhBANgADWA58+wvmccKx4qYcbVm4ibOoEjAN/3bom\nSIQDWI7HDSs3AbB8QctrOpZyUykUiqOBkPKk88qwZMkSeTKI6G3py3DdLesYfuVRkhufJjfYRcOc\nM5i9/JOVMa5dYsejdzLQ8RzSdYk2TmLu+/8Wy/W46aOLD8utdCg3la6J4+KmUoZKoTixEEKsk1Iu\nOdS4k1Jd9WThtmd340mPSLyGyFnvIrXjFVzHHjNm6wO3Ij2XxZ/8F8xQlGz/qwQMjYLtcMdzu/m7\nd8076DFWvNTDjas68KRHVdBE18R+Y1xP8uDGXla393P9pbNf80rktaLiKQrFyY2SxDhGpPIWj3T0\nURU0qZ+1mPqZp2GEq8aMySd7SG5dz4xL/oRAJIbQNGLNbQBUBU1Wb+pnJG+Ps3efUTdV0NBIhAPj\nGgXY46YKGho3rNx0TGMYKp6iUJz8qBXDMWJ1ez+uxwFP1gCZ3h0E43W8+tQ99G18mkC0minnXEH9\nrMXomsD1JKvb+7hq8cT93rulL8ONqzoY2fAY28dxUxVHBnnupq+gm3tKQyaesYzmMy7n2w90MLOp\n6oiu1sdzE2WKDg9v6icaNI55PEWhUBw7lGE4RmwfyB5yTCk9TH6wi/pZiznzM/9BpnsbG+76HpG6\nFiJ1E/z9DObGfe/huKkAzvr89xCaPmbb4bqpxuNAbqKi7TGYLSEExG2T2mgAL93H1od+TbZ3J2Yk\nxtTz3k/9rNMr+woY/oL1aBgqhUJx9FCupGNEpuRwkMUCAFIIhKYz+azL0XSDxKTZJCbPZnjnRgCE\ngHRx/5P94bipDsbhuKnG42BuItv10AToQpAu2uwcyPDib79P7bQFLP3sd2h8xzW88oeb2LFzF70j\nBYZyJVxPEjA0XM/jjud2v6a5KBSKY4cyDMeIWNCoBFvHw/E8nKombNejK1WonCyl3GNNpIR4aP/s\nncNxU43y7I+/zB9/9Ldsvv9m7HwGYIyb6nA5WDzD9TzfEGoCIQSGpuGk+8mNDGNNOYvtgwWK1dPQ\n69vo3/A0IwWHgYzF1v4s3akCpqa9LkOlUCiODcqVdIyY1rDnCl56LtLzkNLDcV06B9NkLQ9ZMxUi\n1XQ/ez/xBRdjDeyif/sGoqe/i6Lt+vupj+6370O5qVzXxQxXsegjX6eqaTJ2IcfWh37Jpvt+yqnv\n/+s9+zmAm2pfRuMZXQ/9L5nd7bi2RSCaYOIZl9K84FxSuSKDq3+GldyNmx2mefnnkIEIEknWcgka\nGrqmIQS4Iz0VoyKlJF20yRQdYiHjgPEUhULxxqIMwzHiwrmN/OCRLbiepPPp+3h1zR9wPYntenS/\nvIbq0y4jcdoymi7+FMknbqPrpYcwYrU0nPsRSuE6diVzJMImF87dX5fwwG4qSaFQAKFRcAVWpJl0\n2kIXJnVnvY+OX3wN1yqiB0IHdFPB/oHl9btTpAsWk85cTvSyj6MZJvlkDy/d/m2ijZMpBeoJNE0j\nccr5DDz8cxzPQ69qQAtVkdvwMPr8d2L1b6PYu5VQy6zKcYQQGELgSclIwWbVxl5lGBSKEwBlGI4R\n1ZEA589u4qH2XqaccwWJ05bRmy6iCYEm/LO653kEalpoueJv9nu/47oUHY+ntg7ul7Gzr5tKInEc\nm5LlMFySZIrWfvtzCw4l26V7OE9DrTmum2q8wLKUkp6RIkJAljixrENtVAMhEAKKqQFobiI+/3x0\nTSCFhutBqWMNIBh+5OeknvgVVTOWEm07DaEbFLo6SD59J252mGDDFOrP/QgiUs2abUm29GVUEFqh\nOM4ow3AMufaMSTy8qZ9M0aYvXUJ4DkNr7qTQvRmvlMOI11Oz5Aoik+YhXYeBR39BafBVnMwQjcs/\nR+ucU8fN2NnbTWVbJaxSiZLjkS25mLkCuqZjJzvRAmGMRANeqUDqj3cRaplJThrkk3liIWOMm+pA\nhXLDeQtNCP+kLyW7Hv4VG7c+iyFd4s2TiU+ZS7Io8aSH8PwxAFokTnzpeyh1z0Y6Ng3nfoT++75D\nePKp9D/0U+rf8SEiU05heN199D9yM03v+hsEvO5sKYVCcfRQhuEYMrMpxvWXzubLd72ElBJNSvRo\nDQ3L/hJRVU1x90b6H/45ze/5MoGqaoJN06iadx6DD99MXTRILGQyUrD2O1leOLeR7z7UQb5QpPe5\nFbz69H3Y5Uv8/Pa1VJ+2DCPRRGrt/+EWMmiBEKEJs2k8/+PomoYnPUYKNq6UpPIW//ngZn70H/+P\nQvdmcCwCVQnazryMCYvOZXj3Nvqfvgc7uRuERqhlBhOu/jpWZghzaDuW7WLqGpoQiL38W+G2hdhD\nXdhmCMcqkn75YbxCGj0QwKxtIdy2EAkkFi0j8+uvYaf6qJ80idWb+vncBTOVZIZCcRxRhuEYMeqn\n39gz4mcgeRKJQXjBpYAvDxGYeApatJb84G5ktJbA7HPRgKBpUBX0/zSjqaWjJ8tcLkcxk+GMiVGe\n3p1lwlnvwZ51MXg2w+XVyMjLj2DG66k9+wNEJvkGJdOxhp57v4NbSBNonMqE8z/CP9+7kW+v2sRQ\nziYy/0ISZ1+D0E3sVC/t93+fQqSBUj5DdNZZhCd+AqHpDD39W5JP3k7jJZ8muW0tg+3P0Hr6BSTz\nDo5b9m+V7UNh21rSz9+HdCyYdRZNyz5LeuNjBGtb0TQ/Ic4zA+hVdVipHqpnTSdbclQQWqE4zijD\ncJTZ10+fLTmUbI/RkMDeGaxuIYObHsCs3tMHyQOKjstgtkjIdgmZOq4nWflyJ+9siyClRErJdRfM\nZe0vX2AwU0Lir0aMqhqaL/88RlUNhd0bGXj4ZiZc9RXc7BDDa++lefnn0GP1JJ++i66HbqZ+2eco\nOQIBhMoFdRKJEAKBIDXYR6jtNIKArvvb4vPPpe++76PrOkiP1EAfU02TeMhhOG+N+ZDxpe8B3cDN\npag/9yOYuoa0S2h71VxoQkMLhAlhY5WKWJbHlr70sfrzKBSKw0AZhqPIeH76wWwRb5yx0nNJPXEr\n4RlnYCSa/Its4dcuSCBddNiVzNMUD+C6Hpt7RjhvSphIJEI8Hiectzhzag13rusECVIzqVq0DF3z\nT+CRyadgxGqxBndT6t9BdOoijOpmHNcjtugSeu/4B7z0IKVYPQHNP25yzW/IbX0W6dgE6iZSNWU+\nnhA4nsTJZ7F7t2Bnk5g1TRQ62ylsf57IOz+G60mqg4KhjI0EpOsgHRs0Y48lLBs0YQbxrKJvgPAz\nkjy7SHU8RjgcxhYWXQNDbNiwgZqaGiZMmPBG/fkUCkUZZRiOEuP1XRjIFMlbHqnHb6XUsxnpWGiR\nONH552P1bEFoOvEzrwYgvX4l2RdXUnfxZ4CygZAevekS8aDOSN6isbGRbQM5vvPYRh7p6KsUhHmA\n50kE4LgSTRNQzGCPDGBWN1Ho247nebieBAHCtXGyQ/T8/t9AM3y309J3U//2D1J/zgdIPb+C1Aur\n2P2rv8eI1RBdtJxA4zSG1q+ksP0FzOomhv54NzVnXkVo8ikM5Qps/9U/kBlO4knJ0EM/AqDx6r+v\nfD96ufgtUNNCdssfQYKHh2OVEPkhqpsmlj+3YHJzA/Pnz2ZgYIANGzYghGD27Nn+KkWhUBxzlGE4\nCmzpy3DDfa/Q/dhtZDo34RTz6FV16KdcRnDiXIxEE4VXX0IApe4OCpufASEItZ1GqXszRryB4q4X\n0cJxJOCmBxi49z8Ql3+BqolzGCm6BEJhVr7SN2ZFktUcdE1gAK6UeJ5/ge44DkOP3kJ4+lJEvJFQ\n6xxSj92CmHcOMtpA+sUHELpBfPG7Cc89F7vLdzs1v/d6EDqpFx8i2Dyd0KRTCFY30v/w/1JzyWfx\nSgUmXHk9VTPOqHx215O4UnDmp7/NcN6id6SI60mk5wJ+UZ+QEqSD52qEJ5/K0LO/J7tjPeHJ86Fj\nNbHGiZiJehzXAfYU9TU0NNDQ0IDrumzatAkpJRMmTKC2tvaN/hMrFG8plGE4Ctz27G5czyFSXc/U\nt1+PDCXY9OJz9N7zLYzqZpASPVpNZM47yL70IJZdQo/WIu0i/Xd+Az1aS/X5nyC7fiVONolbyGDE\nG/FcB5BIKVi/e5jHN/cT1MEUEtsqUrIdP9upXCiGAa7rkXzyl2iaTuLMqwnp0DR9FtHiZXQ+9HOk\nVaJq/rmY8UbMukkIoRGadAp6VS1WshM9kkAPhjETDch8iujCi9CExvBDPyK2+N1Epi+puIFGGa15\niIcM+jMCTROk1q1kZP1KwI9F79q+lsRpl5E47TLqL/gk6T/eRfapX5Fonca8Kz6NaZg4rov0HBY0\naORyOaJR30Dous78+fMB6OrqYsOGDZimycyZMxHi0LIgCoXitaEMwxEyKmiXqKqi9pwrAHz9n9b5\nmA1txBa/m+yLKynueJ7C5qf9N2k6TqoXpIu0ijhWN4O//zeQkuLuDRixWuyh3Qze/30C1/4rRlUd\nm7qGcJ6/i3zXFpxijmC8nvjiy6F5LtZQD8knfomdHsRJ96OZQVqu+hqBgIHlQTAUpmbBBbjT3oEm\nwB7pJ/3igwRqWpCAPdxDqX8nZqyOQF0rwgyS3fgkjcs+Q3rTGqyhLmrf+SdEZp+DK/0fjSwHD6SU\n6GXFLV3TyvLbNjWLl5M4/TJiQQNd1/A838UVNDTijUvQT1+K67p40qsU/OUsl0tPmcCMyRPI5XL0\n9/cDUF1dTSAQAKC1tZXW1laKxSIbN/pig1OmTKGq6vBFBBUKxcFRhuEI2VfQzvE8MkUHt5BBFrME\n6iYSmXU2kVlnkXry12iRauzeLQQnn0rVwktJ/uFb1Fz+N2TX/QFnqAvpOrRe9yP6f/tPJM6+Bq2q\nDkMXWI6HFq1hzlWfx6yqIb27nc0rbqb+3ddjxqppvOhPSa1/EHuoi8iUhQw9eRst7/0ynpQk0zmc\n9AAy0oSbTzH01O3E552HFozguC4ja36DFgjRd/8PKkFi6bkMrP4Zbj6DHq4i+/JqMi+trnzuKR//\nNgKBEBJdSOyy5HciZJDK22iapDkeojoSOOB3p+s6OjpSeuRLJaQnef/iVgCi0WhlxTA8PEwqlQJ8\n95IQglAoVFlF7Nixg127dhGNRmlrazvqf2OF4q2GMgwH4XB6Fu8raJcu2Hiuw3A54yjX/jiFrc8i\nXRs9FENoBggN6ZRIPfozjNpW4vPPo9DxJPbALpAeTjo5Zp+O56GZASILLkEL+QYoPmkeoXgtpeRu\njCkL8bw82Y41CF2n0N2Bk0my+9brqT37A8iJ80iu/gWlkUE0M0h05plUL7kcz/NIPfFLtGCIKR//\nT/+9nR0MPnIzTVd/jUDdRKxkJwMP/YSmSz6NUTuRcEDH1AXpouMLAwKGbjAqjCqQnNUWZ/NAnqAO\nftTj4O4e2wXb0/jK8tnUGhb9/f1UVVURiUQAqKmpAXwJkYGBAQACgQDV1dUATJ061f97pVK88sor\nCCGYMWMGwWBwnKO9dlTvasVbjSM2DEKI9wPfBOYCZ0gp1x5g3DLgu4AO/FRKeUN5+1TgdqAOWAd8\nVEq5v9jPG8hr6Vm8r6BdyXJIPn5rJeNo9H74oZ+Qa38MzyogDBM3O4S0SiA0Xv3ONUgrDwjQdDLP\n31vZn1auKwDQNI1AwEAAdj6NnR6koXECloBAvB4tEEY6JfRAmLqLP0VikV9M50rJpKu/RslxK24b\nKSVDT92BKGWpv/jP0XT/p2APdRFqmUG4sQ2AUOMUgg1TKHR3EK2ZgIagPhKkNmwwmLeZXBNhwaRq\n4iGTafVRLiyfLP3U3U0MZUpEghq6JtA1vVLYBn7gOluy0TWNryybM0YTKpPJ0N/fj2maFcOgaRqN\njY0AWJZVcTWNri6qq6uprq5GSsnmzZtxHIe6ujqam/fUiRyr34HSd1K8mRCj2javewdCzMXPmPwx\n8KXxDIMQQgc2AxcDncBzwLVSyo1CiN8Av5NS3i6E+BHwopTyfw52zCVLlsi1a8e1P0fMgTSD9mb0\nhKYJjdnNVbT3ZEiETaSUrPv9T8gND1Bz4Z/7BqCQwerdQnDiPHrv+AZ23zZAoscaqL3wOtLP/Iaa\n8/+Uvt/9C7KQBjSM+olouoEww8RPvZD4ggsBiBqCuoiOQLL13h8Rrmlk0vkfZlcyjxB+Yx/XKpLb\n8ixGVS2RyacgkbieJKgLSq7EKJ+YB5+8HWuoi/lX/xVJS0cIv9is2LOV/tU/pfmyvyRQN5FSspO+\nFT+g4fyPEZgwh8Z4kFhAw3JdipbD353XyJwJ1USj0TFX+eCfWO94bjerN/XjehLP8wCJVw6Ym4bO\nhXOa+OBBTqyWZVXcSHV1deOmrGazWfL5PDA2HgHQ39/PwMAAuq4za9asMYbpaP4Orr90tmpPqjjh\nEUKsk1IuOdS4I14xSCnbywc82LAzgK1Syu3lsbcD7xFCtAMXAB8qj/sF/urjoIbhWDFeLcJ47N2z\n+LkdQ2iaIBE22frgrdipXmov+HMwyi4GIch3PMXI07/B7tsKnocWimJEE0SmL0ZaBVJr7gC7hJ5o\nws0kqTnnw2RevJ/40iuJTZ5T+W4jIZOAqbP5/p/hSWg68z14dpGasCCZd9EAPRAiNvftdP7qawSv\n/jp6OIYmBAFTx5YuCLDTQ2Q71hAIBNh8y9/heB6WI6k75wNUzVhK4rTL6F/9M19nKVRFfOHFBFtn\nI6UkYghs16XkwFcvP4XLFraSz+fJZrP09fVRKBQQQlBbW0t9IMDfvWsen7tgJqvb+9g+mCNdtImH\nTNpqwyxqMoiHDKBAoWAQDof3+64DgQCNjY3+CmdoCNd19zNAVVVVleDzvvGIxsZGGhsbsW2b9vZ2\npJS0trZWViHjcc+6XXz+q98k39WBV8oTqm6g7R1XUTvtVP8Yuzay7aFfU0onibVMY+olH1e9qxVv\nKt6oGEMrsHfvxk7gTHz3UUpK6ey1vfUNmtMYRpvRBIXHzgd/SerVdpzi/icF1y6x49E7Geh4Dum6\nhOonEr7gLwhaaXpffBxP6PT+5ht+cx6rQPXbP0LtpZ+l1LmBvju+gTACCE2n1LOF7p/9JSIYIVA/\nBX3WWSTOuZaem33ZClGWijCDkXLbTEF1JMj2B36BW8gw972fRTMCCAQNYQ1dKzGQs3EcDw0Pz7Fx\n8yPo4RgSiaFrRAN+DESvqmXpF348JjCcylv0pUu4UhKfdy6J+eeN+X5cz6MqZFB0Jbqm87eXTOes\niaGKz18IUTlBe57H8PAwlmVVCtTawmHmt0Vpa5s5ru8/k8lU9qVpGrW1tWMuNoQQ1NXVAf4Kob+/\nH8Mw9qtpOFg8YjRY3dnZSXd3N4FAgBkzZow5zpa+DP++ahNV1XXMOvd6grFahna8zKb/+zGnf/yb\n6GaQ9t//kJnLPk7d9IXsfPL3bFtxE/Ou+arqXa1403BYhkEI8RAwnqP261LKe47ulA44h08BnwKY\nPHnyUd//bc/uxpMepg7BeB0Lrtn/pBBK1LP1gVuRnsviT/4LZihKtv9VkobGCFHO+usf4Xge2wYL\n2IUsqUdvZuTZ35F68pcYNROIzHsnAokz1En8rA+S3/Q4bj6N53nEFi5j8A83YsTqCTROofF9/4AG\nhE0dy5FEgzpbVv0v+YFO5l71VyAMXMdBAsM7txCOVTOlpoXkSIbONfegBSPoiSY86ccTHMclZGrY\npkZtxCAaEHiei6b5rpnqSICQqTOcs0gXHb/0uoxXfhw2DS6Z13xQ188oTU1jGwxls1nS6TTr16/H\nsiwMwyCRSBCJRCrZR6M4jkN7ezvgZy41NzeTSCQqr48aINu2K3GG2tpajL1WeQeKR1RVVTFx4kQm\nTpxIoVBg48aNSCmZOnUq0WiU257djTBMpr3jvZV91U1fSChRR7ZvF3YhS7S+lYbZ/mp8ytlX8MwP\nvoAz0ocbqVOy4Yo3BYdlGKSUFx3hcbqASXs9n1jelgSqhRBGedUwun28OdwE3AR+jOEI5zOG0VqE\nUV/ylHI9Aow9KXiOTXLres749LcxgmFAEq6fSK3l0DVSwnI9ArogHtRJySrqln0Ot5hl4K5/orhz\nPQBCN9BCVX5QeumVDD3wPxQ6nqC4ZQ1mQxt1l/8NQvfdULoGsYBGuigJWiNsf+UpNMPg+Z9+1Y8p\nIJhxyUeRCNr/cDtWNoVmmESaptD6ns+iR4K4EiQ6X7xkNu9eOIGntg5yw8pNeOhogOPs6eJmCKiv\nMmiIBcgUHUquh+34MYH3Lmrli5fMft1ZOKMn81HtI8/zSCaT5HK5ypV9LBYjEolQX19fMSye59HZ\n2UlXl/+z0DStsnKAPS7Mbdu24bou4XCYWCxGLBarrExG3VGwZ7UB/upi/vz5SCnZuXMnvUNpHnil\nn3gkNGbuVi5NYaifSN0EetY/SrRhj/KrHggSqm4gn+ympqZZyYYr3hS8Ua6k54CZ5QykLuAa4ENS\nSimEeAR4H35m0seAN2QFsjf71iLszd4nhUzvDoLxWnY8cTcDG5/BjMSZdPa7qZ91OvGgwXDepiEW\npiEeJl3M4gF6qIrmD994wGNHZr5t3O0CiJg6joQzp8TZORTk3Ot/yoFSP5vmnTnu9uFciXOnV3Pp\njAhWLsXSFoPPnN3CD5/sRCKIhwP7fW7XdYmYAikF4aDGZ97eysVz6omFjp5WkaZpFcmLUdLpNLlc\nbsxqobq6mubm5kpA2fM8BgcHK+8ZjTeM7ieXy5HJZOjp6SEajY4b+xrdtmPHDhzHqbipdvR6IAaw\nSkUAgqEgeB4d9/2ExlPOIlLXgmsVMSNjV0tGMIxbKqJrAteTSjZccdJzNNJVrwS+DzQA9wkh1ksp\nLxVCTMBPS10upXSEEH8JrMJPV/25lHJDeRdfBm4XQvwL8ALwsyOd02tl31qEUWzb4qV7fkxkxlKS\nxBjq6WGkr5PE9EUs/fS3yfftZMNd3yPeNImqSANzW2J09GbxpEd9LEB/5vVn3QogGjL5+uXzmNlU\nxXW3rMNyJAHj8CUgLMfDNHQ+ce4sGhr2nMyubWhgycxWfvn0dh7ZNOC7m/AzhTzpy13ousayU1u4\nZulkZjbF/JqHVArXdcccwzAMqqurj4o0RTweJx6P09LiB3Adx2F4eJhXX30Vy7KQUhKPx0kkEsTj\ncWBPWiv4J/z6+nqi0Siu65JMJpFSUlNTg2nufwU/akxG4xEbXh3AdT3MYACJJJ/Nsv2BX+B5kinn\nfRDLskA3ca3imP04VhE9uGeVsX0wd8TfhUJxPDkaWUl3A3ePs70bWL7X8xXAinHGbcfPWjpu7FuL\nULRdkpkiOx/4OZ4DDUuuImd7WMLEQ8OZeQGDBY+a5hkkJs9meOdGYvPPoyke4kuXzK6kaFaVXLKW\ne+ADHwANOH9OI1+5bE7Fl3/9pbMrmS8B49Apl5bjUbBdvrJszrjxgJlNMf7xvQv5m7y9X8bQtPoo\nb59ejbALQJGBgbEnQtM0SSQSCCGwbXvMFfwo48UOXiuGYey3qhgZGSGVStHZ2VmZS01NTSUIPeqW\ngj2riaGhIRzHqbiZ9kXTNJqamtBDA5hmHolf/d31xG/BLjL3PX+B63kIIYjUtdC34Wls28Y0DVzL\nopjyV5Tgpwyni/Z+x1AoTiZU5TMQCxqVoqWRgk1PqsDQk7/GK2RouvTTaIaBlJJQbSsjwi9yShds\n0gUHyxnVDIJ4yGRmU2xMiuZdz3fyzI4hX/J6HwR72hWM9mOIBnS++e75vG/JpDFjR9Mgb1zVQcF2\nDplbP17R2HgkIuZB3B7j6w9ZljWuMYA97p9isTjmJF05XiIxps7gtZJIJMYEoi3LYnh4mI6ODrzy\nyTuRSFBXVzcmOC2EQNM0+vv7K3GKfVc5saABCEzDZMsDt5BPdjP36r9CMwMEdAOJJDH1VHY+fhf9\nHc9R03Yq3c+uINowkUid/z2P/g4UipMZZRiAaQ3lHPhMnvaVt5LZ8AheMUdkyqkUe7YSmTQPJ5Ok\n9/4fYI9U8eAYAAAgAElEQVT0seN//txXS21bSH5XOxPOucrfT/2eK+RExOTK01t5x+QgGztr+Nkz\n3TzbVaDk7DEQflGZr1MaCehcPK+JT583/YAZP8sXtDCzqWpM0djofkaTiHRNHHbm0OslEAiMuYrf\nG8dxGBoaYrzCSU3zVVNHRkbGbB+tezjc4rN959LU1DQmC2p4eJju7m4KhQIAwWCQ2traShGc4zjs\n2rWLSCQypiBu9HdQHBmk98XH0XST52/6CuBndk296EM0zj2T+Vd9li0P/IptK/+XaNMUZi77BLZj\no5czvPb+HSgUJyNHXPl8PDjalc+pvMXl33uS3uQII+vuJbvhEYQZRNol7FQfgfqJVC+5gtRz99Dy\n3i8z9NQdWENdGLFaEqdfTmjKAhpjIVZ8/h3EQjoDAwOkUqmKJMNo17WRvM3/vdjNo5v76Uv77pmm\nWIh3zm7g3QtbX1Mmy8gBXEAXnsD6PaP1DX4F9Njt6XSaWCw2prL5aMUvLMtiYGCAdDpdOXYgEKCq\nqopMJoPjOLS2tiLNMFf+8CnCpjHuagz8WIzj+GU3mtAQAgqFIp7nYQQClBzJrX+ygLYJjUc0Z4Xi\nWHC4lc/KMJS5/LtPsKk3TcAYm3nT9bt/o/q0ywjUTaTrzn9iyif+C6GNHWM5LtPrQ/zXsuZKhktd\nXd2YvHrFwRkvuG3bdmV1kUgkKgHkcDh8RDLbo1XUg4ODvvS35zE0NEQkEuGXGwqs7bGoiR5agM+T\nXmW+uqYxkM6zuNHgSxdNq8Qy6uvrX9dKSKE4FrxhkhhvBlJ5i1TBQtdERccHwC1kcNIDmDV7/PSd\nd3wTgFDrbKqXXoEWiCIEZEoeE6fOOmGv1k90Rqud92XChAlIKRkZGcG2/aBuMplk926/kH40UykY\nDFbuD8XexnuUQqFAb28vl0wfZs3ONIOlApFwANM0MQ0/9rDfnIWGVk4EKFo2QdPkQ2e1USgUKobG\nD1KbxONxQqHQfvs4HJS6q+KNRq0YgLvWdfLd1VuQUtKbLvp+f+nRt+p/MGL11L39g3hWEXukH7Nm\nAl4pz9DTd+LZJRou/QzN8RBCCL5w4UyVv/4GI6Ukk8lQKpUq93sTjUaZOHHia7pq9zWz2tE8FzwH\nz/PQdc3vdhcKoutjr6f2zgBbvqCFoaEhUqkUuVwOTdOQUlZkOUKhUCXV9lAcSt1V14RSd1W8JtSK\n4TUwWscwqh3UO1Ig+dgtIHTqzn4/AMIIEqif5F8l6nGq3/Y+um//expC/vtGCrbKXz8OCCEqJ9rx\nAuLpdJqtW7fuV3+h6zotLS3jpq/unQHmaToRUwc8PM+jVLJw3QKifIJ2NJOAYYzJAKutraW2thbP\n89i0aVMlI2pgYADXdWloaMA0zXEzo0Y5kLqr43mkCzaW4+F4kjvX7ub3L3Tx1cvm7JfJplC8XpRh\nYGwdQyJs0v3wrehWlsQFf46H5ouKI0D6vQ0QfkrioKGRCPtfocpfPzEZLZrbF9u26e7urtRDjBIK\nhaiqquLtbVFmfPR0frO2s5wBBiDwpIYn/N4SuiZYXC84p1lQldrCc8910tTUxKRJkyrGYN68eTiO\nQ1dXF5qmYZomPT09GIbB0NAQ1dXV+xXgjafyW7RdhnIWmaLDvhRsl6/87mVWvNzDV5fPVasHxRGj\nDANj6xi2PngrVqqXpdd8EYwg6YJFyfXI9uzADEWI1TYR0Rx2rL6bmslzMIK+/LPKXz+5ME2TKVOm\n7Lc9n8+Ty+VIp9O4mQxXTxdcMrGelwY9ujMumZJDIhygrS7M2yZXUR+PVDrJ5XI5ent7eeqppwC/\nN4Su60ydOpUpU6aQzWbJZrO0tbVh2zZdXV3k83l2795Na2srsViM7qzHjas6ykbBd3+l8hYb/+8n\nFLo3g1NCjyRILLiQ2Oyzy7MWuJ7HY1sG6bj5Ob6+fK6S/1YcEcowMH7++h9/+MXK6zMu+ShxIdi1\n6hY682mMQIjqKfOY8+5Pjd2Pyl8/6YlEImN6PYwyJ52uxC8syyKdTmPnRhiR/soD/EZCNTU1lVaj\nyWQS13V58cUX0TSNaDSKlLIi3XH66aczNDTEyMgIW7duxTRN7tzqYTsOsXKgOpW36E0XiS+8mIZz\nP4TQTaxUH733fZdA3USC9b7SsK5p4HnkLUf1hlAcMSr4jP/Pd6j89YPhepKC7fL7vzhHZYm8hZBS\nMjw8jOu6SClJJpM4joOUkubm5jEB71wuR7FYJJFIMDQ0hG3bpFIpwuEwiUSCadOmsb2rj4/f+goB\nXWLoOp7Q6RopkW1/gtyWZ7GGu4lOW0z1wovpXfE9at92NdFppwOQev5+hl9YQeOln2X2qafheJKb\nPrqYhlhQZTQpKqjg82ugOhLg/NlNPNTeSyL82uUasiWbS+Y1q3+0txijFdujjEp7Dw0N0dfXh67r\nlcZBkUiEmpoaHMehvr6eoaEhGhsbyeVyJJNJent7eSEVQAqBofuZTMls0Vf9jcRJLLqEoTV3MrJ+\nFbmtzxKobSU8ye/7YKcHyO1cjxH2pUIKtovrSr5wx3rylqP6VSteM8owlLn2jEk8vKkfy/EOS6Ru\nFMvx0DWNDy5VGSEKn9GspNF+1VJKGhoaKJVKlEqlMd3o6uvrMQyD3t5edmz1e06YpknJssm7vqBi\ncNIpvtruzDMITphFfM45FHu2Vvp2JNfcSc3SK0iu+Q3g63gVLJeBbInpDVUEgvv/nl1P8uDGXla3\n96t+1Yr9UIahzMym2FFXMFW8tdm7X3UymcTzvP36VYOfUltfX48ZySDwW6Lm7LL8uSEQ+CuI0ZvZ\n2EZ267Nk2p9ADycQukFk0nyS+N32siUHU9eQEnIlm4Cxf9Hf3n3LVUxCsS/KMOzFsVIwVby1GQ02\nw57+EXv3qx5Np22qSWIGcoSDOiOWLwDoG4M9+xHCT5v2PJfSUA/Fnsdpvuwv/AHS/20KIdCEwJWS\nnvWPsHPbc+QGu2iYcwazl39yzNxGL4BUv2rF3ijDsA8nioKp4s3JaNvR8fpVj2bHaZqGFBrgIhB4\npQzF7i3g+TUM+c528tufJ9g4jej0JWjRGlzPrUi4730to4XjTDrrXaR2vILrjF9nEzA0Craj+lUr\nKqispINwMiqYKk4+RtNabWHykV+sJ2waDGSKjBQcNA3cfIaBh28mv+slpGsTnjiHqrnnkml/Ejc3\nXBF1dIpZhBmmesGF1Cy6BNeTJCIGzfEwO5+4m1JmeL8Vwygqs+6tgcpKOgocvImNQnF0GA1E53I5\n3jY5xuPbUhUXj0Cgh6I0XfYZUutW4uZT1L/jWiSCSNtCcF0oZxv1/OHfqT7jSqIT5/hps0IQOEyN\nKNWvWrE3yjAoFCcI0WiUT543m6d3rQXpIpF4UpJev4rUCysBP+aQ3focNadfRuK0y5BlB5J0JUJo\nmKEoZiiKJz08T+IWsyRLmUoPiUOh9L4UoAyDQnFC4WfHzeGGlZuoChhkSw6J03wjsEdwb6+ANAJP\nekig5f3/gFleaXgSEuEADdUJQNJdLJDLZOkdKeBK0IUfW0iEA5UEC6X3pRjliDqICCHeL4TYIITw\nhBDj+q2EEJOEEI8IITaWx/7VXq99UwjRJYRYX74tP5L5KBRvBpYvaOEry+YQDhhI/K5xCCrpqkDF\nSDieh0QQNgSaJpCexJMeAkFNNEDRdulOFcl7Bg46wzmLbNFmpOAwkLHY2p+lO1WgaLtK70tR4UhX\nDK8AVwE/PsgYB/iilPJ5IUQMWCeEeFBKubH8+n9JKf/9COehULypGM2O+7f723l88yACWTYGEukB\nwq9zqI4EiBiSou1hFTzQ/EByU8w3Cr2pPFK6ICUaIN0SYKIZBgKBlJJ00SZTdIiFDKX3pQCO0DBI\nKduBA2rKl8f0AD3lxxkhRDvQCmw84JsUCgUzm2L8/ONncOfa3Xxr5aZylb0vmRE0NKKmQAjQhMDQ\nXJL5ItKDlkTIT4fNeqRffID0+pWVlUZu21riiy6l5vTloPn/u4bw3VEjBduXlVe85XlDYwxCiDbg\nNOCPe23+SyHEnwBr8VcWw2/knBSKE533L5nEoknV+9XWFP2FAFK6SM+jrcZkpCgRnstQwUMgqT59\nGbWLl+M5Fsk1d1Ls7iCz4VEKr75CzdJ3EZk0v7xygFjI4IePbmPRpGpVn/MW55B1DEKIh4DmcV76\nupTynvKYR4EvSSkPWFwghKgCHgP+VUr5u/K2JmAQkMA/Ay1SynETrYUQnwI+BTB58uTFu3btOvgn\nUyjehBystmbjjk6++PvNZC2PvO2hC4FTNiKeXSK74REi05cSTNSSf3UDQ4/dSsuVX8aI1SOBKbUR\nSo7LJfOaVaHbm5TDrWM4KgVuhzIMQggTuBdYJaX8zwOMaQPulVKecqjjvVEFbgrFycaPH3iRbz3S\nWclaGu+/W5RvA3/4FonTLiPctpDGqgC1VSFV6PYm53ANwxFlJR3mRATwM6B9X6MghNhbZOhK/GC2\nQqF4nezKlOsayjdRucnKYwnYhQz2yAAi3kRD1CQRNrFte0yhm+Kty5Gmq14phOgEzgLuE0KsKm+f\nIIRYUR52DvBR4IJx0lJvFEK8LIR4CTgf+OsjmY9C8VZmxUs93PtyH5qAgC4wxghA+o8lEum5pJ64\nlfCMM9ATTaTyFkO5EggNy7YAqQrd3uIcaVbS3cDd42zvBpaXHz/J6K9y/3EfPZLjKxQKny19GW5c\n1YEmBJrQEEJiCIGhC1xXYo300XfPjQQnLwApEZpO/MyrAcg7YOVsknmHeMhAFzCSLx3nT6Q4nhxz\nV5JCoTj23PbsbjzpYepljSXh1ygIwNA1Us/chVk7idLuDXiFDLXv/CSapleu2KT03U3pgs1Q3uHV\nwTTFYvG4fR7F8UUZBoXiJCeVt3iko4+qoEnQ3CO+J4TwtZa2rAUzjFvM4JVy1F74ZwjDrMQhAFwJ\njldOf/Ukr/QW+P26XWSz2eP2uRTHD6WVpFCc5Kxu7/d7Q2uCeMigP1NCliul7UKe1AsriJ/zYQbu\n+kfwPPp+8w2ka+NmkmjhOHq0hlDbQuJLr8QrS3jbjsP3n+hiZlOMGQ0uiUTiOH9KxRuJWjEoFCc5\n2wf2XNXrmkYsaOCV6xdSz68gPONthBrbqD77g1SdehHNH76R4IQ5VC28lJaP/Rf1V/wtVu828pue\nBPyAYMGR9I4U+O8nO9E0jWQyeTw+muI4oQyDQnGSkyk5Y7q21UYDgKAwsJti92ai884D9nQgBHAz\nSUJtixC6iR6OE2ydgzPShwBMXSCQGJrgsc0DrOxIEYlE6OtTKaxvFZQrSaE4yYkFDby9TvohU6c5\nEaLj5c242SH6f/uPAHh2ETc9QOblB9GDUYZW/Te1F30as34yhW1rEUaA3tu/hiYEwZYZ1J55NSIc\n599WbGTRpLNpq62lq6uLCRMmjKuPlspbrG7vZ/tAlkzJIRb025VepDoennSo1p4KxUnOXes6+e7q\nLSTCY0++O/qGGclkK0Vt2RcfpLhrPTUXXge6wfCqH1Lq2YSRaCbQPIPY/HcSmzQXqWkMP30Xbi5F\n/aWfIajD8rl13HjtmUgp6e7upqmpCcPwryu39GW47dndPNLRh+v5x9bKXeXAj31cMKeRa1SP9OPO\nCVP5rFAoji0Xzm1EL8tt700gGCIYTWBG4ujhOFooSrBlFmbdRFKrf0J03rmEpy6h+tyPogejeEO7\n0YNhND1AbO7bKfXvQEqJaRg8vSvDs+tfwfM8WltbSSaTFItFVrzUw3W3rOOh9l7CpkEi7FdRx0Jm\n5XHY1HlwYy/X3bKOFS/1HKdvSfFaUIZBoTjJqY4EOH92E9nS2O5relmSWxMCAcQXLaP63I8iS3nc\n3DChtkW4mUECDW1UzXobhd0boZzmWuzdhlnT4ruMPBeh6WzJBdmxYwfJZJKmpibuef5V/t+KjQT3\n6QS3L7omSIQDBA2NG1ZuUsbhJEDFGBSKNwHXnjGJhzf1YzkegXJ7z9H7im6S8DOO9HAVWrSGwfu+\nQ3j6EvRQjPQL92LWTgDAHu5mZP0qGi+6DoBQwMBxbHqyHg2nNOM4Dk9v2MEPn+wkveExdrQ/Qz7Z\nTcOcM5i9fI848sCm59j11D1Y2RTBWA1T3nEV8akL+fYDHcxsqlJupRMYtWJQKN4E+L2iZ1OwXSzH\nd/THyzGHfeOIUnoYsTq8fIrCzvUM3P2vaLpB7ZlXYY3007fqf6g962qCTdMAv3c0SAZSGRKJBEII\n7t+cxvU8glUJJr5tOQ3zzhpzjFJmmI77fsq08z/IWZ//PlPPez8d994EpSyu53HHc7uP/ZeieN2o\nFYNC8SZh+QJfrPjGVR0UbIeqoEksZDCctypjpJSMPHU7SJjwse8SCAYrLiAnM0Tfyv8msehSqqYv\nxfUkVUEdpIemGWzrG+Zb97czlLO4/5UeogGDhjln4HkO6Z4d2NlU5TilzDBGKELttFMBqJ2+AN0M\nUkz1U9UyndWb+vncBTNVttIJijIMCsWbiNFe0aPd3gKGtqd+QcLI03dip/poXPYXmMEgWjnt1Mml\n6L3/+8Tnnkt87jvwfPEkwoagP2uRLjrkLZPda3fhoJG3PAq2RTJnEw8bSOl3gSsWi4RCQWLNbUTq\nWkhuXU/ttAUkt72IMEyiDZPGSHtftXji8fuyFAdEGQaF4k3GzKYYf/eueXzugpmsbu/j/17q5tHN\nA7jZIQqb1yAMk947vlEZX3fOB3HSAziZJKkX7if1wv1IiS/b/eFv4UmJpgkaYwE0IehJFdCEQNf2\n9IoeyduEJZimST5fIBQK0TjvLDru/QmuY6PpOnOv+Ax6IFg5rpL2PnFRhkGheJOSiJhctXgiVy2e\nyCdvfpbHNgsmf/K7aJpAjKOEnzj9Ml9KQwjiQYN00UEIwJNEDPBcBzMYRAo/TgG6L/GNhwCyRYes\n5ZGIRBjauYEdj/2WUz/4JaqappDt28XGu7/P/Pd9garGyQgB6aK93xwUJwbKMCgUbwG+unwuHX3P\nkbcccpY7Vh9jFOEHrKNBg55UkWz742S3/BF7uIemOUtpXv5x8oUC9sCr9K+5B2eoE4RGqGUGWjgG\nAnrTRYKGRr5/N4lJs4g0TSFVdChFWhC1k9nV/iITqppBQjyk4gsnKsowKBRvAWY2xfj68rncsHIT\n9VVBCrZLyfHwPN9NFDQ04iETXRN0pwqARI/EiS28BHNwK4a0EUAwEERaOarmnE2kdS5Cg6E1vyW3\n9TnCk0/BcyyGsoJAwxQGnroPd1MHgdqJWMlOMl1bCMw8h/50CU9KXupMsaUvo9JWT0CUYVAo3iLs\nnbWkCWioCu5XlOZ6XsXFE56yiKZ4kNS6AUqZIQA86dE6ayHOcBGQjLywkkzHGuxUH55dJLd1LelF\ny6g+fTnRhctIPvxz3EIWPRSletGlVE2aW06fFWwfyHLdLeu4/tLZlbkpTgyUYVAo3kLsm7U0KqMh\nhO9dypUcpITqsElNNEDI1PGTUAVC05CeR8A0iAZ0spZL9emXIQIhCjvWM+GKL+J4HrYr8ZBUn3Ie\n1aect98cXClJhExqokEsx+OGlZsqc1OcGCjDoFC8xdg3a2n7YI500SYeMmnvGaGjN0tNNLDf+wzd\nwPZsXNelNhogZxWwhrpJr3+Ahgv/DE96OK4k1/4ExW3P4qR6iE5bTMN5HwHAGu5h4LFbcdJJkqbG\nYEsb0y64lnB1s6qGPsE4IsMghHg/8E1gLnCGlHJcyVMhxE4gA7iAM6ruJ4SoBe4A2oCdwAeklMNH\nMieFQnF4jGYt7c037nmFbQMHTiPVDR0kCOERt4dpX/Ujat52NaHm6Tjl1cdobMLu3oR0ncp7tXCc\nuvM/QeuECVSHTbpfeJiOe3/M6R//Rwq2wx3P7ebv3jXv2HxYxWviSCUxXgGuAh4/jLHnSykX7SP5\n+hVgtZRyJrC6/FyhUBwn9u3tsC+a0NA0jWJ6kN0rfsjEM5cTnb4UDyqS2+EpCwlPWYAWigISKSWO\n5yECESa2tlITDQISITQKw/0AVAVNVm/qZySvUlhPBI5oxSClbAfGbdpxmLwHeGf58S+AR4EvH8mc\nFArF62daQ1XlsfRcpOf5NQvSw3NshKZh5dK0//a7NC04l0lvu4hCyaEvY2G7LntsikR6Ek+CV4kp\n+DGLNd/7HK5VAiRTznkPgKqGPsF4o2IMEnhACCGBH0spbypvb5JSjmrw9gJNb9B8FArFOFw4t5Ef\nPLIF15N0Pn0fr675Q+W1/o3PMPnsKwAojgzQ+cf76HzmPgBsT9L8Ib9KWuLXKDhBHc/RmZQwCZgG\nhqEDcPbnv49rlejbsIZQvG7M8VU19InBIQ2DEOIhoHmcl74upbznMI/zdilllxCiEXhQCLFJSjnG\n/SSllGXDcaB5fAr4FMDkyZMP87AKheK1MNrb4aH2XqaccwVTzrli3HGj223bxjQNdg/lyFsSXUDE\n1GiJB3BCAUq2QSQcplQqYRh+miqAHgjSsvA8nvnvv2bxJ/+ZQDSuqqFPIA4ZY5BSXiSlPGWc2+Ea\nBaSUXeX7fuBu4IzyS31CiBaA8n3/QfZxk5RyiZRySUNDw+EeWqFQvEauPWMSmtAq8t0HwzQNbNvB\n0HU86YEQNMTDlErWGLnvYDAI+8lwSDzbwiqrskpVDX3CcMz7MQghokKI2Ohj4BL8oDXAH4CPlR9/\nDDhsY6NQKI4N4/V2ODACTdPQhe9CaowFCOoQDBjYVqkSm5Cey/DODWT7XkV6Hk6pwPZH7sAIRYjU\n7alfmFYfPaafTXF4HGm66pXA94EG4D4hxHop5aVCiAnAT6WUy/HjBneXA9QG8Gsp5cryLm4AfiOE\n+FNgF/CBI5mPQqE4OozX22G81p2uJ8laLroQ1EWDhHV4tRybkNLPSBqNTUTqJ7Bt9W1YmWE0w6Sq\nZSrz3/cFNMPE9SS6JrhwrgozngiIfbs7nQwsWbJErl07bsmEQqE4imzpyxywShr8bKIL5zRy9ekT\nuOXJrTy5I03UFJim7xKyLAsh9jw/ECMFi0vmNas6hmOMEGLdPiUD46IqnxUKxQE5WJX0tPooF85t\nqnRhu3pRM2t2pnEl6J77/9u7/+A46/vA4+/P8+wP7UqrlWRJK8k2EMeqbIcYKMZJCL0WTMD4OAhp\nUmCSNLlwQ3PXzDWZtpQ0uZleer1SmF5uUtqklGSa9jjiKZcUmjhg45AwCTHYJGBsZGPj+Leklazf\n3pX2x/O5P3a9lmzJktmVdiV/XsyOd5/n2d3Pd7Xoo+9vHMclEAiQHEviug6O4075HqmMh+s43H3d\n8vksmrkASwzGmBlNNUv6XOt+bRn3v2+Yv3+5B8/LEK5yACFUFSKRSBAOhzi3AzqV8Uimszy4cZUt\nh1FB5rzz2Rhz6fjt963g929YRhaH/pGxQvNTKBQikUwWrst6ylAyRSrr8eDGVbaAXoWxGoMxpmSq\nqqq4cWWUq97VzP/d8St+8tYpVHJ/f6rnkBhO4PfnOrJvWdPC3dctt5pCBbLEYIwpqebmZrJdXXzl\nrqs5cOQEr/d6HD6VYHgsjTd+mvZYLR++bmWhb8JUHksMxpiSi0QiDA8Ps/KyNmoC3Xx0XUfh3O7d\nu6lyZ548Z8rH+hiMMSVXU1PD6dO5dY+i0SiDg4OFc+9973vZu3dvuUIzs2CJwRgzJ2KxGD09PYTD\nYdLpNOl0bh0kEWHVqlWWHCqYJQZjzJxwHCc3GimRoKmpib6+vsK5cDjMkiVLOHr0aBkjNNOxxGCM\nmTPRaJShoSEAGhoa6O/vL5xraWkhmUxOamYylcESgzFmTjU2NtLb20swGERVGR8fL5zr6Ojg8OHD\neJ51RlcSG5VkjJlTfr8fx3FIpVIsWbKEkydP0tbWVji/du1aXn/9da655prCscFEiu2dcQ71jjIy\nniES9LGiqYabJyzBYeaOLaJnjJkXXV1dtLa2kk6nGRgYoLm5uXBucHCQeDyORFt58pVjvLC/p7CH\ntCMU9qF2HeGmVc3cYxPj3hFbRM8YU1Hq6uoYGBigvr4ev9+fXz8pXDj39C+O8vh3X0Yc54LLfG97\ns5vtnXEeuLXDltKYI9bHYIyZF6FQiFQqhed51NfXFzqlAbbs7uKbu07h4BEJ+qZMCpCrMURDAYI+\nh4ee3ceW3V1TXmeKYzUGY8y8aW5upru7m9bW1sI8h2HCPPzcfob2/oRTb/6ckfgxYmveR8em+wBI\np1PsefrvGe05SnrkFJff8XkarlhFyO/yyNb9tMdqrFmpxKzGYIyZNyJCTU0NIyMjhXkO//Szt/HU\nI1xbz/IP3E7L2hvIZDKMpbOcHEzydu9pMvWXE73h4xCMMDqeIT48zpH+BL0jY3zjJ2+Xu1iLjiUG\nY8y8ikQijI6Ooqp4vip+/FYfNUEfjb92LY3t1xAIRUh7wuFTpxkZS+P6fNS/9ybCrSsRx8F1BNcR\nHIHxdJanXzvJU7uOlbtYi4olBmPMvIvFYsTjcbZ3xhHHxctmC+eS6SyJVBYBHBGEqfsbBMHnuojA\n/9zSaf0NJWR9DMaYeec4DsFgkP1dvbnHrkM2myXtwXAyDQKu4+Qmvgl0/+BrpHqPMN53jK7v/2/8\ndS0s+9h/A8gnDrH+hhIqqsYgIh8Tkb0i4onIlGNjRaRDRF6bcBsWkc/nz/2ZiJyYcG5TMfEYYxaO\nuro6Tg0ncARcx8XzPPpPpwAt1BIcRwqzohs+8FFCS1fRevvnC0mhQCDreWzeaU1KpVBsU9Ie4CPA\ni9NdoKr7VfVqVb0auBZIAN+bcMlXz5xX1S1FxmOMWUCa6qpJZ3LNSI7rMjyWRmRi05HgiMAME3Fd\nB2qCfrbvizOUSM9hxJeGohKDqnaq6v6LeMoG4G1VPVLM+xpjFof2WBQAVY+hxDiaTeemOauHZtOo\nl0XEQT2P/lf+leTJ/fT+5J9JHu9k4qoNQTfXKZ31lO2dPeUqzqIx353P9wBPnnPscyKyW0S+JSL1\n8/yCjFoAABbZSURBVByPMaaMNqxuJuB3GU9lOLFjC8e//UcM7d7G6Ns7OfKPf8jQa88BkB7swhtL\n4I82kzp1nKNP/CljXQcKyaE2FCi85qG+02Upy2IyY+eziDwPtExx6kuq+vRs30hEAsAdwBcnHP46\n8OeA5v/9a+Az0zz/fuB+gMsuu2y2b2uMqWB14QA3dsTYtreL+ms3ErjyFlxHUPUQOft36+W/+3Ch\nNUlE6H7270gPdOFvWUm06uzyGSIwPGZNScWaMTGo6s0leq/bgF+oaqGeN/G+iPwD8P0LxPEY8Bjk\nFtErUUzGmDK7d/1yfrQvjnppFAUERFDVCf0NQu7vR1Byxz3NdVLXV5+tLahCbZWtvlqs+WxKupdz\nmpFEZOIKWHeR68w2xlxC2mMRHri1A9d1C01DZ0YlKUp2PJHrU/ByfQ6jB3aS7DpIcOkqYrVBqvzu\npNdb0Vg972VYbIqaxyAidwF/AzQBPxCR11T1VhFpAx5X1U3566qBDwG/d85LPCwiV5P7U+DwFOeN\nMZeATWtbOZ3K8MXvvkEm6+E6guRrDXhZBl79AenBHhDBF22macN9LF9+GXXhs7WFrKe4jrBhdayM\nJVkcbD8GY0zF+MLm19i6p4t0fi8GRUGZ0KSkRII+aqtcakLBSc8dSqa4ZU0LX759zfwGvYDYfgzG\nmAXnv/zWu/nl0QHQLBlPGM96+RqEQ5XPoTYUwPMyuK5LJpvB5+Z+haUyuWvuvm55mUuwONhaScaY\nipHrb1hFxoNwwKWlNsSy+moawz7qq4O5Jqb8f5rf1i2V8Uims/zxLR22HEaJWGIwxlSUTWtb+dNN\n7yGZyjCUTJH1FJ/fRzqdG4bq8/nIZDKI49I/OkYq6/HgxlW2m1sJWVOSMabibFrbyhUNQZ7YcZiX\nDg+T9RTP85D0OCK5BfcCfuE3V9bxqRva6WiNljvkRcUSgzGmIq1Z1sDnfzPLF26p5sUD/RzqO033\nqSFaltRyeUOIa1uDvGtpbvlusMRQSpYYjDEVq6mpia6uLj5y7TIAVLWwNWg8HkdE8Pv9pFIpAoHA\nDK9mZsv6GIwxFS0ajTI0NATkhq1GIhGGh4cLW4Q2NDQwMDBQ5igXF0sMxpiKFg6HSSQShX0Zampq\nSCaTBINBEokEAKFQqHDfFM8SgzGm4rW0tNDTc3Y57VgsRk9PD4FAgFQqRW1tLSMjI2WMcHGxxGCM\nqXgiQnV1NadPn11Su66uDoDBwUGAQhOTKZ4lBmPMglBbWzvpF384HCaTyZBKpVBVwuEwyWSyjBEu\nHpYYjDELRlNTU3546tnHIkJvby8A9fX19Pf3lyu8RcMSgzFmwfD5fPh8PsbHxwvHGhsbC6OSAoEA\n6XSahbg4aCWxxGCMWVAaGhom1QqCwSCRSKRQk2hqairUIMw7Y4nBGLPgnNtk1NbWRnd3NwCO4yAi\nZLPZcoW34FliMMYsOFVVVWQyGTKZTOFYW1sbx44dA3K1hr6+vnKFt+BZYjDGLEjNzc2TmowaGxsZ\nGxsrTHQLBoOT+iLM7FliMMYsWOcOYY1Go/T396Oq1NXVFeY4mItjicEYs2CdmfR2ZhRSU1MTPp+v\nMEs6HA5PmhRnZscSgzFmQTuzPAbkZkiLCOFwmNHRUSKRCKOjo2WOcOEpOjGIyCMisk9EdovI90Sk\nbprrNorIfhE5KCIPTjj+LhF5OX98s4jY2rnGmFlzHGfSInr19fVks1mGh4dRVWprawurs5rZKUWN\nYRtwpaquBd4CvnjuBSLiAn8L3AasAe4VkTX5038FfFVVVwIDwH0liMkYcwmZuDT3mUlura2tdHd3\nEwqFGBsbK3OEC0vRiUFVt6rqmTFjO4BlU1y2HjioqodUNQV8B7hTRAS4CXgqf923gQ8XG5Mx5tLT\n2NhYGKUUCoVIJpOFzuklS5Zw6tSpMke4cJS6j+EzwA+nOL4UODbh8fH8sSXA4ITEcub4eUTkfhHZ\nJSK7bFajMeZcfr8fx3FIpVJEIhFGRkaorq5mbGwMESGTydhSGbM0q8QgIs+LyJ4pbndOuOZLQAZ4\nYi4CVdXHVHWdqq5ramqai7cwxixwE2sGruuSyWRobm4mHo8X/jUzm9Wez6p684XOi8ingduBDTp1\nSj4BLJ/weFn+2CmgTkR8+VrDmePGGPOO1NXVMTAwQGNjYyEhnJnT4PP5SKfT+P3+codZ0UoxKmkj\n8ABwh6pOt7feTqA9PwIpANwDPJNPIi8AH81f9yng6WJjMsZcukKhEKlUCs/zCk1HoVCIbDZLJBKx\nZblnYVY1hhk8CgSBbbm+ZHao6mdFpA14XFU3qWpGRD4HPAe4wLdUdW/++X8CfEdE/gfwS+CbJYjJ\nGHMJi8VidHV1FdZM8oVr+cmRMXb/6jDjnlAb7qWjtY6bV8eIhq32cC5ZiJ0x69at0127dpU7DGNM\nBRsdHeVgfJTNu46z4+gIWQ9UPVAl6yk+nw/XEW5a1cw91y2nPRYpd8hzTkReVdV1M11XihqDMcZU\nnBcPjfCXW/aiCNUBl0Aw9+vuzIqsIgLi8OyeLv71lydYd0U9sdoqIkEfK5pqLunahCUGY8yis2V3\nFw89u49Q0I+jHnC2ZSTXAZ1iLK0Mj3uMjGVQlO2dcerDAUIBF4BHXzh4SdUmJrLEYIxZVA70jPDw\nc/sJ+V0CPodsVslmPVQ9+vbt4shLz5AY7CMbqKHhNz5OuHUlIg6eKkNjaerCfqr8LllP2fZmN9s7\n4zxwaweb1raWu2jzxhKDMWZRefKVY3jqEfDlfr25rg/PS9N3aA+/evEpln7oMwyHWtDEMEi+SQlw\nRMh6HgOJFK3REK4jREMBUhmPh57dB3DJJAdLDMaYRWMwkeKF/T3UBCf3Dfh8Lkd/9gwt6zcxGl6K\nK+BEGvDU48i3/2jStV4mzei6m2j/0McBCPhyo/of2bqf9ljNJdGsZInBGLNobO+Mk/XAdWTyCYVE\n/CgD/QP0/+wrkM0QvnwtdevvZPknH0YcQRC89BhHn/gyVVdcNenpAZ9DMp1h885jfPn2NSx2th+D\nMWbRONQ79d4LqdNDqHoMHvwlLf/+D2i7609InTrG8GtbEZHCRLjE4ddxQzX4mt993mvUBP1s3xdn\nKJGe0zJUAksMxphFY2Q8w7mVBQDHFyDrKTVr/h1uqBYnWE3kyhtJHtuT62NQUJTRA69QvXI9U03v\nch0h6ynbO3vmviBlZonBGLNoRII+vCl+qftD1bjhaG6HtwmZQwFVRURIDfcx1n2Q6pXrcabKLnmH\n+hb/VqGWGIwxi8aKppppz0VXfYCRN1/ES46STSUY2fNjwpddWdgONPH2qwSbV+CLLCHom/pXowgM\nj1lTkjHGLBgbVjfjOpCdotrQfO1tBBov4/i//Dknn/oLAo3LiF71ocL50wd3UtO+HlBqq6ae8azK\ntOcWExuVZIxZNOrCAW7siPF8ZzfR0OTt44NBPw3X/w5NN9xdOKYonnqk4ofJnh6k6oqrqAn6QD1y\n632eb0Vj9VwWoSJYjcEYs6jcu345jjikMt6k47Wh3F/6ExcOFXLNSCMHXiZ0xVU4gRBLaoKoKp6X\nnfT8rKe4jrBhdWzuC1FmlhiMMYtKeyzCA7d2kExnJyUHn+MQqfKRPWfIkSAs+eA9NPzGJ4jVBqny\nu/h8PjxP8byzzx8dT7NhVfMlsbCeJQZjzKKzaW0rD25cxXjGYyiZKvQ5NFQHchPZ8slBUbKehwKt\ndSGqfWdrFD6fj2w2i6qSyni4jsPd1y2f7i0XFetjMMYsSpvWttIeq2HzzmNs3xcvJIfakI/BRBoP\nRRyhNuSnPhygyp/rU0in0/h8LiIOfr+fxNgYaXV4cOPqS2I5DLCNeowxl4ChRJrtnT0c6jvN8Fia\nnuExXj0yQNDnEg35z1tCI51Ogzgk0lkcEe5b18Qnfus9hQX3FirbqMcYY/KiYT8fuXbZpGMHekbO\nq02IcHbWs2a4saORT3xgBe9uqqarq4u2trZ5jrw8rMZgjLmknVubqK3ys6Kxmg2rY2SSwwQCASKR\nCOl0mv7+fmKxhTsqyWoMxhgzC1PVJgrCSxgYGGB4eJja2lqi0Si9vb00NTXNb5DzrKhRSSLyiIjs\nE5HdIvI9Eamb4prlIvKCiLwpIntF5A8mnPszETkhIq/lb5uKiccYY0qtvr4eVWVwcJCqqirC4TAD\nAwPlDmtOFTtcdRtwpaquBd4CvjjFNRngD1V1DfB+4PdFZOKC5l9V1avzty1FxmOMMSUXjUZxXZf+\n/n6qq6txXZfh4eFyhzVnikoMqrpVVTP5hzuA8+pjqtqlqr/I3x8BOoGlxbyvMcbMt0gkQjAYpK+v\nj9raWjKZDKdPL86VVks5we0zwA8vdIGIXAFcA7w84fDn8k1R3xKR+gs8934R2SUiu3p7e0sRrzHG\nXJTq6mqqq6uJx+M0NDSQTCYZGxsrd1glN2NiEJHnRWTPFLc7J1zzJXJNRk9c4HVqgP8HfF5Vz9TB\nvg68G7ga6AL+errnq+pjqrpOVdct9o4fY0zlCoVCRKNRenp6aGxsZGhoKDfvYRGZcVSSqt58ofMi\n8mngdmCDTjP2VUT85JLCE6r63Qmv3TPhmn8Avj+7sI0xpnyCwSD19fWcPHmStrY2Tp48SUtLC46z\nOFYZKnZU0kbgAeAOVU1Mc40A3wQ6VfV/nXOudcLDu4A9xcRjjDHzJRAIEIvFOH78OC0tLZw8eZKF\nOC9sKsWmt0eBCLAtP9z0GwAi0iYiZ0YYfRD4JHDTFMNSHxaRN0RkN3Aj8IUi4zHGmHnjuu6kGkNX\nV1e5QyqJoia4qerKaY6fBDbl7/8UmHKBEVX9ZDHvb4wx5eY4DkuXLuXkyZMsWbKEnp6eBT07GmzZ\nbWOMKZqIsHTpUvr7+wmHwyz0kZO2JIYxxpRIW1sb3d3dBAIB+vv7aWhomHR+MJFie2ecQ72jjIxn\niAR9rGiq4ebVsYraAMgSgzHGlFBLSwvxeBxVLayxdKBnhCdfOcYL+3vI5jeFcwTyi7ry6AsHuWlV\nM/dct7wi9nywxGCMMSXW3NxMX18fIyMjPL//FF/78RE89agJnr/3A+T2k972ZjfbO+M8cGsHm9a2\nTvGq88f6GIwxZg40Njby0yMJHtl6gIAL0VBgyqQA4DpCNBQg6HN46Nl9bNld3tFNVmMwxpg5cKBn\nhP/+d/+Hgc6XSPadoHnN++jYdB8A8Td3cHDrPxeuVfXwMmmu/uSXCTVexiNb99Meqylbs5IlBmOM\nmQNPvnIMX7iWKz54B/2H3iA9nkRRBKF5zftpXvP+wrU9b/yMoz//PjWxyxERkukMm3ce48u3r7nA\nO8wda0oyxpgSG0ykeGF/D8ves57G9msIhCO4rstYcgw4f3Z0z96XaH7PBwp7StcE/WzfF2coUZ41\nmCwxGGNMiW3vjJP1mNSnIOIQCAZIJievxjo21MfQ8QPErry+cMx1hKynbO/soRwsMRhjTIkd6h2d\n8rjruAQCAcbGkoVj8b0/J7psJVXRxvNfp688+z1YYjDGmBIbGc8wzQAkXNelqipUeNzz5s9pfs/1\n510nAsNj1pRkjDGLQiToK0xeu5DhEwdJjQ7S1LHuvHOqUFtVntnQNirJGGNKbEVTDQDqZVHPQ9WD\n/JBUcRzEcQHo2fMSje2/jhuomvp1GqvnLeaJLDEYY0yJbVjdzKMvHODwS9/n+M//rXA8/uYOLrv+\nDi7/4B14mTS9+3ey+s7/fN7zs57iOsKG1eVZpdUSgzHGlFhdOMCNHTGe927jXTfcOeU1js/P9f/1\nb6Y8Nzqe5pY1LWVbWM/6GIwxZg7cu345jjikMt5FPS+V8XAdh7uvWz5Hkc3MEoMxxsyB9liEB27t\nIJnOzjo5pDIeyXSWP76lo6yrrFpTkjHGzJEzq6Q+/Nx+kunMBVdXHR1P4zoOD25cVfbVVS0xGGPM\nHNq0tpX2WA2bdx5j+7442fw4VpHckFTIzXS+ZU0Ld1fIfgyiOovBthVm3bp1umvXrnKHYYwxF2Uo\nkWZ7Zw+H+k4zPJamtsrPisZqNszTDm4i8qqqnj9p4hxF1RhE5BHgPwAp4G3gP6rq4BTXHQZGgCyQ\nOROYiDQAm4ErgMPA76jqQDExGWNMpYqG/Xzk2mXlDmNGxXY+bwOuVNW1wFvAFy9w7Y2qevU52epB\nYLuqtgPb84+NMcaUUVGJQVW3qmom/3AHcLGp8E7g2/n73wY+XEw8xhhjilfK4aqfAX44zTkFtorI\nqyJy/4TjMVU9s4ddNzDtND8RuV9EdonIrt7e3tJEbIwx5jwz9jGIyPNAyxSnvqSqT+ev+RKQAZ6Y\n5mVuUNUTItIMbBORfar64sQLVFVFZNqecFV9DHgMcp3PM8VtjDHmnZkxMajqzRc6LyKfBm4HNug0\nQ5xU9UT+37iIfA9YD7wI9IhIq6p2iUgrEL/I+I0xxpRYUU1JIrIReAC4Q1UT01xTLSKRM/eBW4A9\n+dPPAJ/K3/8U8HQx8RhjjClesX0MjwIRcs1Dr4nINwBEpE1EtuSviQE/FZHXgVeAH6jqs/lzDwEf\nEpEDwM35x8YYY8qoqHkMqrpymuMngU35+4eAq6a57hSwoZgYjDHGlNaCnPksIr3AkXLHcREagb5y\nB1EkK0NlsDJUhoVahstVtWmmixZkYlhoRGTXbKahVzIrQ2WwMlSGxVCGC7Flt40xxkxiicEYY8wk\nlhjmx2PlDqAErAyVwcpQGRZDGaZlfQzGGGMmsRqDMcaYSSwxzAER+ZiI7BURT0SmHbkgIodF5I38\n5MCK2nnoIsqwUUT2i8hBEamoZdNFpEFEtonIgfy/9dNcl83/DF4TkWfmO86pzPS5ikhQRDbnz78s\nIlfMf5QXNosyfFpEeid89v+pHHFOR0S+JSJxEdkzzXkRka/ly7dbRH59vmOcK5YY5sYe4CPk1oOa\nyVT7VFSCGcsgIi7wt8BtwBrgXhFZMz/hzcps9/tI5n8GV6vqHfMX3tRm+bneBwzkJ5l+Ffir+Y3y\nwi7iu7F5wmf/+LwGObN/BDZe4PxtQHv+dj/w9XmIaV5YYpgDqtqpqvvLHUcxZlmG9cBBVT2kqing\nO+T22KgUC3W/j9l8rhPL9hSwQUTO32W+fCr9uzGj/ArQ/Re45E7gnzRnB1CXXwx0wbPEUF7T7VOx\nUCwFjk14fDx/rFLMdr+PqvxeHztEpBKSx2w+18I1+c2yhoAl8xLd7Mz2u/Hb+WaYp0Rk+fyEVjKV\n/v1/x4paK+lSNpt9KmZhxn0q5lKJylBWFyrDxAcz7Pdxef7nsAL4kYi8oapvlzpWc55/A55U1XER\n+T1yNaCbyhyTwRLDOzbTPhWzfI3p9qmYFyUowwlg4l95y/LH5s2FyiAis9rvY8LP4ZCI/Bi4Bihn\nYpjN53rmmuMi4gOiwKn5CW9WZixDfhHNMx4HHp6HuEqp7N//uWJNSWUywz4VC8VOoF1E3iUiAeAe\ncntsVIoZ9/sQkXoRCebvNwIfBN6ctwinNpvPdWLZPgr8aLqNsspkxjKc0x5/B9A5j/GVwjPA7+ZH\nJ70fGJrQdLmwqardSnwD7iLX3jgO9ADP5Y+3AVvy91cAr+dve8k135Q99ospQ/7xJuAtcn9hV1oZ\nlpAbjXQAeB5oyB9fBzyev3898Eb+5/AGcF+5457ucwW+Qm5TLIAq4F+Ag+T2OVlR7pjfQRn+Mv/d\nfx14AVhV7pjPif9JoAtI5/9fuA/4LPDZ/HkhN/Lq7fx3Z125Yy7VzWY+G2OMmcSakowxxkxiicEY\nY8wklhiMMcZMYonBGGPMJJYYjDHGTGKJwRhjzCSWGIwxxkxiicEYY8wk/x8KnDcCagA4HAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/README.md b/README.md index a6c4e85..5b88bc2 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,7 @@ # node2vec +modified + This repository provides a reference implementation of *node2vec* as described in the paper:
> node2vec: Scalable Feature Learning for Networks.
> Aditya Grover and Jure Leskovec.
diff --git a/emb/karate.emb b/emb/karate.emb index 8f7edb4..bdbc84b 100644 --- a/emb/karate.emb +++ b/emb/karate.emb @@ -1,35 +1,35 @@ -34 128 -1 -0.014876 -0.229356 0.023806 0.067841 0.090910 -0.144880 0.150130 0.075787 0.046873 -0.025290 -0.095061 0.084067 0.022556 -0.197516 0.051331 -0.241755 0.004764 -0.232580 -0.031161 -0.013199 0.233664 -0.011230 0.140365 0.096059 0.068695 -0.165448 -0.100326 -0.012106 0.011358 0.170880 -0.012065 0.044922 -0.139547 -0.037438 -0.095815 -0.138876 0.183298 0.116599 -0.055275 -0.080746 -0.100899 0.053135 0.141539 0.179031 -0.131575 0.127407 0.099880 -0.064466 -0.029267 0.157667 -0.028006 0.174557 -0.022628 0.148424 -0.174256 -0.179070 -0.059111 0.088243 0.086486 -0.033525 0.117324 -0.099924 -0.026303 0.151631 -0.063171 -0.079035 -0.073884 0.059158 0.136396 -0.156904 -0.089332 0.054849 -0.108355 -0.044886 0.131026 -0.063695 0.086190 0.014780 -0.002258 -0.120929 -0.115947 -0.029460 0.023848 -0.102442 -0.111003 0.058831 0.121057 0.008298 -0.056379 0.072060 0.048521 -0.006848 0.087435 -0.054377 -0.153402 0.207793 -0.070880 -0.107374 0.120661 -0.008031 -0.145239 0.157040 -0.122576 -0.109220 -0.100591 0.017339 0.173152 0.001466 0.015540 -0.049476 0.057062 0.019142 -0.027390 0.016272 -0.091249 -0.008336 -0.042350 0.178391 -0.066354 -0.029698 -0.038339 -0.048144 0.134590 -0.234350 -0.217189 0.074112 0.057659 0.201265 -34 -0.043236 -0.184561 0.086898 0.155603 0.126673 -0.103197 0.194487 -0.020264 -0.096339 0.018373 -0.113667 0.012346 0.015797 -0.198612 -0.094771 -0.205460 0.049062 -0.081919 0.027739 0.088356 0.151644 -0.009231 0.201849 0.050836 -0.023565 -0.149574 -0.049034 -0.044401 -0.037658 0.224190 -0.010381 0.071883 -0.170195 0.034827 -0.167335 -0.075119 0.218483 0.090103 -0.035649 -0.134331 -0.168675 0.210952 0.128298 0.087990 -0.063460 0.092851 0.023417 -0.128993 -0.074394 0.129745 0.093197 0.249170 -0.001558 0.100948 -0.161581 -0.110734 -0.069279 0.041938 0.008046 0.054898 0.023925 -0.086794 -0.147930 0.155933 0.051813 -0.310828 -0.066930 -0.007734 0.062363 -0.038964 0.059932 0.004334 -0.072056 0.082316 -0.050440 -0.114736 0.039152 0.079540 0.074609 0.144051 -0.082203 -0.145513 0.004876 -0.252469 0.005756 0.245110 -0.101092 0.065562 -0.171087 0.005519 -0.005527 0.094499 0.054681 -0.044853 -0.037731 0.285537 -0.169364 0.082962 0.097452 -0.184904 -0.246170 0.201754 -0.079283 -0.180332 -0.009282 0.074115 0.221057 0.033268 0.021976 0.014238 0.086000 -0.090141 -0.070816 -0.046511 -0.025651 -0.059833 -0.086892 0.139139 -0.074664 0.109995 -0.096493 -0.132756 0.014005 -0.184265 0.008678 0.209333 0.024216 0.046068 -33 -0.037151 -0.193182 0.077220 0.145653 0.123061 -0.110840 0.185281 -0.003266 -0.074293 0.013228 -0.108248 0.023448 0.017491 -0.203065 -0.068931 -0.211348 0.036744 -0.099373 0.013532 0.072291 0.169995 -0.009909 0.193386 0.056882 -0.015445 -0.150086 -0.060747 -0.037020 -0.029384 0.216726 -0.015124 0.072654 -0.162907 0.029320 -0.163866 -0.086833 0.208782 0.090374 -0.040612 -0.127639 -0.159738 0.193453 0.128516 0.092407 -0.070034 0.102198 0.026696 -0.120459 -0.073511 0.130051 0.074555 0.242593 0.000266 0.103154 -0.166959 -0.113425 -0.069956 0.046228 0.019883 0.047479 0.043045 -0.096340 -0.130470 0.151841 0.041735 -0.279075 -0.063606 0.000315 0.068115 -0.050509 0.045616 0.007611 -0.069524 0.064300 -0.031539 -0.102848 0.052158 0.066086 0.064956 0.109075 -0.078587 -0.132586 0.004139 -0.232968 -0.010310 0.221729 -0.075292 0.054786 -0.151444 0.012827 0.007983 0.083758 0.057488 -0.049456 -0.048113 0.276285 -0.158635 0.053341 0.102118 -0.161438 -0.231241 0.187751 -0.082484 -0.163907 -0.014804 0.060307 0.209479 0.030831 0.023088 0.002885 0.075017 -0.076178 -0.068085 -0.047820 -0.030464 -0.050482 -0.082474 0.133255 -0.076936 0.086339 -0.085110 -0.118404 0.027944 -0.186448 -0.009368 0.183909 0.023062 0.057413 -3 -0.028561 -0.205411 0.056815 0.105204 0.107464 -0.127154 0.173082 0.029493 -0.026830 -0.005606 -0.101965 0.047164 0.018824 -0.210376 -0.017246 -0.231535 0.027110 -0.170617 -0.010041 0.031033 0.197806 -0.006828 0.168036 0.082497 0.027082 -0.157874 -0.080517 -0.019565 -0.000477 0.203291 -0.015622 0.058068 -0.156901 0.000501 -0.131919 -0.116712 0.199355 0.106443 -0.044448 -0.103124 -0.131104 0.115538 0.131251 0.140924 -0.098906 0.113108 0.063865 -0.097658 -0.058951 0.142671 0.027667 0.202568 -0.018042 0.131458 -0.174052 -0.145032 -0.066079 0.062356 0.048391 0.014275 0.072580 -0.089248 -0.084891 0.152485 -0.006358 -0.189735 -0.068464 0.033716 0.102633 -0.109285 -0.020809 0.035645 -0.092487 0.013135 0.052743 -0.089519 0.070987 0.045890 0.035846 -0.001593 -0.098935 -0.083680 0.012137 -0.175651 -0.054943 0.149670 0.019547 0.031285 -0.114596 0.042073 0.024935 0.042274 0.071669 -0.057264 -0.105576 0.250713 -0.121465 -0.015699 0.109578 -0.090905 -0.194813 0.173052 -0.108581 -0.135182 -0.051883 0.047640 0.190100 0.018619 0.022392 -0.026230 0.077392 -0.031160 -0.044318 -0.011937 -0.059609 -0.030396 -0.066347 0.157975 -0.064017 0.032325 -0.066449 -0.089884 0.073737 -0.207898 -0.113919 0.137631 0.044525 0.131904 -2 -0.014195 -0.206891 0.039293 0.085593 0.095233 -0.124536 0.156750 0.051983 0.001926 -0.015428 -0.094487 0.068283 0.022594 -0.197800 0.013198 -0.227624 0.008343 -0.180030 -0.019804 0.011482 0.205034 -0.006173 0.155285 0.082322 0.037030 -0.151400 -0.087726 -0.019770 0.005120 0.180771 -0.010223 0.048888 -0.152389 -0.009914 -0.112808 -0.117258 0.191241 0.099122 -0.047605 -0.088254 -0.111873 0.091852 0.139276 0.156382 -0.111017 0.116605 0.073830 -0.084164 -0.043307 0.137957 0.005370 0.179475 -0.012714 0.137657 -0.170627 -0.155057 -0.059229 0.074431 0.059581 -0.005058 0.088855 -0.090385 -0.056987 0.144462 -0.028853 -0.128125 -0.068681 0.038364 0.110911 -0.127508 -0.048368 0.043526 -0.091543 -0.015820 0.086858 -0.069705 0.077332 0.030236 0.014120 -0.050888 -0.104370 -0.061443 0.009650 -0.136330 -0.077768 0.111878 0.061145 0.022060 -0.081506 0.053774 0.040389 0.023848 0.076200 -0.059771 -0.129641 0.226712 -0.095737 -0.059849 0.105248 -0.044966 -0.162578 0.155537 -0.106955 -0.124103 -0.077882 0.022313 0.180785 0.018175 0.012676 -0.037498 0.061517 -0.005846 -0.034860 -0.004758 -0.074445 -0.020110 -0.054517 0.165222 -0.071541 0.005364 -0.052736 -0.073605 0.103373 -0.216421 -0.150806 0.105295 0.055725 0.159106 -4 -0.014641 -0.203711 0.034961 0.085020 0.095704 -0.131868 0.150660 0.056755 0.011886 -0.016651 -0.089766 0.067894 0.024813 -0.194787 0.020632 -0.224535 0.010860 -0.193962 -0.023700 0.008739 0.211455 -0.009271 0.145376 0.082361 0.047274 -0.151999 -0.089413 -0.014303 0.007932 0.174257 -0.014606 0.045983 -0.143194 -0.019511 -0.106699 -0.121798 0.188384 0.107257 -0.049663 -0.084457 -0.107101 0.077382 0.134446 0.157648 -0.108230 0.113253 0.079461 -0.079183 -0.043650 0.138382 0.001375 0.174463 -0.015088 0.134528 -0.166295 -0.153995 -0.057372 0.071027 0.069189 -0.016081 0.099031 -0.091601 -0.048610 0.142226 -0.029463 -0.114172 -0.072477 0.043485 0.114788 -0.127927 -0.054399 0.046114 -0.091841 -0.023762 0.094924 -0.068927 0.077757 0.029653 0.009168 -0.056918 -0.098812 -0.055162 0.015343 -0.122034 -0.078487 0.094937 0.074184 0.015670 -0.075195 0.058859 0.034632 0.014311 0.071581 -0.055793 -0.125368 0.216919 -0.088715 -0.066234 0.104393 -0.041869 -0.155419 0.150385 -0.102527 -0.107840 -0.081059 0.026027 0.165621 0.010435 0.014196 -0.037497 0.064977 -0.004085 -0.032967 0.003786 -0.069743 -0.013293 -0.051573 0.158915 -0.062837 -0.001615 -0.044520 -0.061123 0.099564 -0.209667 -0.159169 0.095354 0.052871 0.161271 -32 -0.028685 -0.213070 0.047301 0.108818 0.109415 -0.128147 0.176653 0.027303 -0.025159 -0.004165 -0.105345 0.053321 0.018802 -0.204727 -0.014004 -0.228356 0.026948 -0.172561 -0.012788 0.035630 0.203829 -0.004683 0.168709 0.078730 0.022190 -0.164596 -0.086578 -0.023510 -0.008559 0.203468 -0.010573 0.059740 -0.148701 -0.003012 -0.134304 -0.112708 0.203686 0.109460 -0.050573 -0.109072 -0.136512 0.126445 0.128359 0.133714 -0.103106 0.115873 0.066037 -0.090537 -0.055603 0.139785 0.027898 0.210594 -0.017086 0.130375 -0.174136 -0.149086 -0.063542 0.062951 0.050607 0.008530 0.075894 -0.092578 -0.084852 0.157976 -0.014030 -0.184613 -0.072039 0.032966 0.101139 -0.104970 -0.026077 0.038771 -0.092542 0.011978 0.047402 -0.082716 0.062619 0.046412 0.032246 0.000488 -0.098291 -0.080592 0.019979 -0.166354 -0.054311 0.148484 0.019857 0.032152 -0.108305 0.035798 0.024141 0.041786 0.075691 -0.055285 -0.095965 0.244279 -0.114245 -0.016270 0.102579 -0.095522 -0.187384 0.167964 -0.106744 -0.134279 -0.050422 0.048754 0.190782 0.013687 0.018321 -0.018169 0.071399 -0.032380 -0.043966 -0.010604 -0.056195 -0.028461 -0.064954 0.154093 -0.059146 0.030605 -0.064815 -0.091060 0.073829 -0.205478 -0.104267 0.131276 0.034881 0.128345 -24 -0.029315 -0.189772 0.068621 0.134244 0.113263 -0.111526 0.179366 0.006049 -0.055758 0.008379 -0.101671 0.030253 0.020045 -0.200031 -0.051633 -0.212913 0.031469 -0.122085 0.007588 0.056852 0.173856 -0.008787 0.179263 0.067520 0.002459 -0.148246 -0.065914 -0.037638 -0.025133 0.208168 -0.016622 0.063915 -0.162850 0.012209 -0.148385 -0.094801 0.212578 0.094363 -0.044566 -0.125276 -0.148900 0.172375 0.128087 0.110670 -0.080469 0.106983 0.040901 -0.105512 -0.063393 0.132020 0.064159 0.230891 -0.009803 0.113915 -0.160158 -0.123251 -0.063602 0.050361 0.029889 0.029696 0.051962 -0.091280 -0.110055 0.153433 0.019818 -0.245125 -0.068114 0.014500 0.076046 -0.066689 0.022533 0.020194 -0.083352 0.046498 -0.001833 -0.098371 0.049496 0.056079 0.051472 0.077022 -0.081356 -0.108193 0.010358 -0.201614 -0.025917 0.187518 -0.045225 0.052643 -0.135496 0.023657 0.010510 0.068199 0.063236 -0.049041 -0.063124 0.265099 -0.134215 0.031199 0.096965 -0.135953 -0.212055 0.182376 -0.084096 -0.150302 -0.031544 0.058467 0.196833 0.024433 0.022537 0.000038 0.078107 -0.060734 -0.059215 -0.031952 -0.043136 -0.043312 -0.075321 0.136955 -0.064975 0.072500 -0.075805 -0.107042 0.043740 -0.190984 -0.039007 0.166575 0.030490 0.083785 -14 -0.027129 -0.198493 0.061423 0.105227 0.107909 -0.116048 0.165620 0.021164 -0.039371 0.000798 -0.105297 0.046454 0.020127 -0.201215 -0.025640 -0.218301 0.026254 -0.145145 -0.003993 0.036285 0.189837 -0.001548 0.169266 0.074046 0.012566 -0.145471 -0.070417 -0.019415 -0.011722 0.199796 -0.013031 0.061321 -0.155937 0.010501 -0.129864 -0.105259 0.194787 0.093700 -0.043040 -0.106005 -0.136448 0.129663 0.130622 0.132160 -0.088718 0.109683 0.051199 -0.096384 -0.058666 0.135832 0.033188 0.202058 -0.010150 0.124697 -0.166948 -0.134049 -0.066910 0.061093 0.035829 0.016422 0.067523 -0.093323 -0.088033 0.141622 0.001714 -0.188714 -0.062100 0.020227 0.088135 -0.091097 -0.010059 0.031509 -0.082984 0.023107 0.036634 -0.082443 0.064717 0.047751 0.036376 0.020414 -0.091274 -0.092302 0.010257 -0.170598 -0.046212 0.162372 -0.004781 0.033150 -0.109946 0.033680 0.021587 0.046615 0.063440 -0.057116 -0.089360 0.243070 -0.123019 0.000268 0.100286 -0.097457 -0.190594 0.162703 -0.092669 -0.130177 -0.047080 0.045170 0.186444 0.027099 0.014230 -0.019465 0.063650 -0.042349 -0.049969 -0.016807 -0.047529 -0.034889 -0.069347 0.142300 -0.068355 0.042539 -0.065908 -0.092345 0.059285 -0.191807 -0.077834 0.134570 0.036721 0.108272 -30 -0.029805 -0.195961 0.067188 0.138667 0.112269 -0.110647 0.186154 -0.000130 -0.064409 0.011206 -0.110666 0.029180 0.017283 -0.202088 -0.059766 -0.216968 0.035102 -0.117452 0.007007 0.065951 0.173340 -0.011271 0.187594 0.059655 -0.000878 -0.153483 -0.060203 -0.036643 -0.028904 0.212611 -0.014515 0.062677 -0.160968 0.015566 -0.153099 -0.088347 0.209994 0.097673 -0.040055 -0.127585 -0.150775 0.176175 0.128623 0.109289 -0.077416 0.104198 0.038445 -0.114737 -0.066683 0.134714 0.065543 0.233909 -0.003867 0.105055 -0.159656 -0.122573 -0.070121 0.050437 0.028871 0.034093 0.049062 -0.093662 -0.113433 0.153901 0.031128 -0.253415 -0.068951 0.007318 0.077145 -0.065763 0.028671 0.015899 -0.078109 0.049580 -0.008314 -0.102949 0.051671 0.064192 0.055459 0.087741 -0.088441 -0.117364 0.004683 -0.212010 -0.019745 0.199981 -0.053953 0.052947 -0.143431 0.021250 0.012143 0.067632 0.060727 -0.045437 -0.058646 0.265112 -0.144213 0.040904 0.099171 -0.143674 -0.210708 0.183055 -0.085558 -0.160468 -0.027837 0.057454 0.201077 0.025756 0.017544 -0.000789 0.073068 -0.067587 -0.063775 -0.036334 -0.034737 -0.045930 -0.079362 0.137832 -0.069735 0.079231 -0.082655 -0.107603 0.038808 -0.186957 -0.032019 0.173386 0.033657 0.076414 -6 0.002078 -0.268463 -0.003595 0.061690 0.088494 -0.169720 0.158606 0.118915 0.104116 -0.043795 -0.095630 0.123569 0.022248 -0.218749 0.115644 -0.277518 -0.014723 -0.313166 -0.060689 -0.047875 0.288100 -0.020190 0.132303 0.118331 0.117887 -0.200003 -0.132013 -0.017603 0.019659 0.177378 -0.006264 0.034392 -0.144590 -0.073253 -0.077074 -0.172127 0.207134 0.149657 -0.083728 -0.071973 -0.090280 0.020017 0.167903 0.226158 -0.175951 0.159062 0.152982 -0.053364 -0.014949 0.189750 -0.065455 0.174992 -0.030634 0.172406 -0.186966 -0.233308 -0.063218 0.106419 0.135712 -0.083162 0.167874 -0.111255 0.019922 0.172214 -0.106326 -0.006885 -0.089321 0.084059 0.181457 -0.217192 -0.148822 0.081893 -0.144617 -0.089499 0.217508 -0.047376 0.106679 -0.000777 -0.035308 -0.219362 -0.139127 0.023513 0.039169 -0.045416 -0.159940 -0.008134 0.218900 -0.008446 -0.026698 0.104784 0.072880 -0.043530 0.111360 -0.052411 -0.210585 0.205173 -0.034588 -0.189699 0.137564 0.055408 -0.113309 0.151570 -0.151678 -0.094919 -0.158202 -0.006576 0.163549 -0.015275 0.019636 -0.075174 0.055843 0.066792 -0.019707 0.035878 -0.116778 0.019480 -0.031952 0.205222 -0.063552 -0.076776 -0.017083 -0.022952 0.203400 -0.281455 -0.323782 0.030069 0.078347 0.272427 -28 -0.031933 -0.197667 0.064274 0.115887 0.109673 -0.112831 0.172487 0.015226 -0.045440 0.000922 -0.100285 0.041999 0.019360 -0.195612 -0.036887 -0.218494 0.025783 -0.140635 0.001926 0.047809 0.179597 -0.007532 0.172192 0.069171 0.007049 -0.146625 -0.074777 -0.025957 -0.010022 0.198732 -0.015366 0.065234 -0.151395 0.012260 -0.137601 -0.103174 0.199766 0.096171 -0.039490 -0.110485 -0.138451 0.140136 0.128419 0.120470 -0.087535 0.103411 0.041446 -0.101929 -0.063897 0.129588 0.039896 0.211609 -0.006230 0.115810 -0.161193 -0.129435 -0.065928 0.050153 0.031238 0.023657 0.060655 -0.092088 -0.094960 0.147079 0.012121 -0.212376 -0.067530 0.022987 0.080594 -0.086674 0.001573 0.025931 -0.081351 0.024362 0.018821 -0.089987 0.060000 0.054546 0.038437 0.043187 -0.088256 -0.103463 0.010522 -0.187656 -0.037527 0.173049 -0.014719 0.041709 -0.121271 0.031382 0.019447 0.054744 0.061988 -0.056360 -0.078127 0.246409 -0.128369 0.010664 0.099073 -0.115142 -0.199420 0.175094 -0.094355 -0.143670 -0.035543 0.051635 0.192875 0.027025 0.020782 -0.017472 0.072300 -0.045097 -0.055823 -0.026098 -0.047309 -0.039429 -0.071946 0.141525 -0.068355 0.048830 -0.069811 -0.097455 0.053574 -0.189748 -0.071610 0.145047 0.036588 0.100697 -9 -0.028741 -0.211076 0.054543 0.113454 0.112192 -0.125957 0.179462 0.027106 -0.028922 -0.004419 -0.107562 0.053037 0.021575 -0.217922 -0.024299 -0.237413 0.024300 -0.160490 -0.008231 0.041769 0.199263 -0.003726 0.183270 0.076422 0.018500 -0.159869 -0.083470 -0.031711 -0.011421 0.213216 -0.012059 0.066545 -0.164235 0.000059 -0.135374 -0.114367 0.211365 0.103426 -0.050803 -0.107760 -0.144874 0.131460 0.138487 0.143084 -0.099800 0.116327 0.059543 -0.104551 -0.061709 0.139687 0.031561 0.216445 -0.014551 0.132551 -0.174128 -0.147784 -0.069049 0.061083 0.044929 0.013560 0.073751 -0.095200 -0.094416 0.159048 0.001244 -0.203643 -0.068519 0.027594 0.098585 -0.101190 -0.011652 0.036458 -0.086973 0.017561 0.045833 -0.092934 0.063652 0.055411 0.034048 0.017822 -0.095928 -0.093888 0.008178 -0.187700 -0.052890 0.162931 0.005551 0.035677 -0.122494 0.039770 0.026802 0.046470 0.076745 -0.054114 -0.100411 0.253836 -0.121971 -0.008027 0.105489 -0.097454 -0.201514 0.171386 -0.106460 -0.139697 -0.050451 0.044910 0.193437 0.025752 0.016820 -0.024537 0.076425 -0.037152 -0.045500 -0.020131 -0.057735 -0.035467 -0.071962 0.158357 -0.070841 0.044458 -0.070259 -0.096717 0.068233 -0.206222 -0.099504 0.146867 0.042443 0.123567 -8 -0.017865 -0.211108 0.047087 0.089959 0.095930 -0.129200 0.162559 0.046570 -0.004375 -0.008637 -0.098684 0.061683 0.021941 -0.204175 0.012324 -0.233112 0.015407 -0.184187 -0.015316 0.016029 0.207185 -0.006227 0.154479 0.078815 0.037447 -0.147990 -0.084808 -0.012550 0.005331 0.188156 -0.016680 0.052601 -0.150952 -0.007804 -0.117620 -0.122416 0.198871 0.103815 -0.043373 -0.089026 -0.118659 0.092678 0.133247 0.160776 -0.106863 0.122023 0.070368 -0.087064 -0.050659 0.143238 0.005149 0.183299 -0.011017 0.141231 -0.177581 -0.152867 -0.065982 0.068455 0.058193 -0.006387 0.090205 -0.095814 -0.063365 0.149157 -0.020920 -0.143041 -0.067499 0.037596 0.111694 -0.126333 -0.047938 0.041035 -0.095825 -0.012171 0.082612 -0.074008 0.073319 0.033771 0.017426 -0.041337 -0.098758 -0.070711 0.009757 -0.141484 -0.076250 0.121256 0.057527 0.022052 -0.087179 0.051636 0.038312 0.022068 0.071565 -0.062129 -0.121745 0.227285 -0.099703 -0.054338 0.100271 -0.059531 -0.161960 0.151497 -0.109298 -0.116800 -0.066790 0.026844 0.177323 0.011312 0.014639 -0.038243 0.063205 -0.009735 -0.033455 0.000628 -0.073667 -0.017436 -0.058714 0.157400 -0.066595 0.007332 -0.054345 -0.075661 0.096529 -0.204896 -0.138533 0.104377 0.054124 0.149600 -7 0.004536 -0.254080 -0.005178 0.057268 0.083031 -0.160793 0.152251 0.109620 0.097156 -0.041831 -0.095120 0.116381 0.023259 -0.211618 0.107966 -0.263637 -0.010155 -0.292228 -0.062469 -0.041445 0.275748 -0.017947 0.131967 0.117549 0.107937 -0.190531 -0.131160 -0.015198 0.016388 0.167363 -0.002318 0.040055 -0.140953 -0.069910 -0.079856 -0.160896 0.193364 0.132179 -0.076877 -0.067679 -0.087655 0.021391 0.153731 0.214042 -0.160299 0.151596 0.140628 -0.047208 -0.016141 0.176074 -0.061066 0.166253 -0.026844 0.168321 -0.184576 -0.212191 -0.057258 0.100167 0.125962 -0.066334 0.153393 -0.106310 0.015351 0.163925 -0.100897 -0.008578 -0.081105 0.081465 0.172725 -0.203431 -0.141983 0.080377 -0.138018 -0.082646 0.200963 -0.042303 0.096555 -0.001276 -0.029828 -0.206510 -0.126383 0.019984 0.033506 -0.044342 -0.150970 0.000560 0.194671 -0.005433 -0.028069 0.098008 0.067910 -0.039512 0.106683 -0.054327 -0.194675 0.199312 -0.033676 -0.172281 0.121926 0.047836 -0.112250 0.145785 -0.146147 -0.089646 -0.142902 -0.010297 0.153126 -0.016220 0.020992 -0.066057 0.052915 0.063302 -0.019462 0.027044 -0.111650 0.011834 -0.033692 0.189723 -0.062758 -0.066532 -0.020178 -0.020366 0.188008 -0.256947 -0.294357 0.027996 0.071474 0.257231 -11 -0.011104 -0.238662 0.017651 0.075369 0.092326 -0.150237 0.153379 0.086072 0.059588 -0.030736 -0.095822 0.094182 0.019264 -0.201241 0.068715 -0.252125 -0.001463 -0.247265 -0.041062 -0.019052 0.248472 -0.015812 0.142417 0.101158 0.078408 -0.176218 -0.110534 -0.015693 0.006325 0.172081 -0.007481 0.042705 -0.139252 -0.048455 -0.091122 -0.140135 0.198064 0.126991 -0.064129 -0.073303 -0.096557 0.056212 0.147887 0.185500 -0.139213 0.137412 0.115886 -0.059514 -0.031032 0.163974 -0.028957 0.175716 -0.019992 0.148652 -0.174109 -0.192077 -0.060479 0.089457 0.094409 -0.044620 0.125362 -0.103718 -0.012229 0.158348 -0.069101 -0.065849 -0.080717 0.060038 0.149384 -0.170787 -0.098626 0.059951 -0.119967 -0.054091 0.151870 -0.056308 0.087860 0.008745 -0.011980 -0.135536 -0.113264 -0.013711 0.025772 -0.088830 -0.123062 0.048005 0.141393 0.006782 -0.051220 0.078137 0.050331 -0.016018 0.092582 -0.048781 -0.161419 0.206455 -0.058673 -0.120110 0.115591 0.007645 -0.128734 0.152522 -0.128197 -0.101811 -0.113094 0.007255 0.165345 -0.009922 0.018239 -0.054996 0.055853 0.032588 -0.030402 0.013102 -0.091771 -0.001437 -0.045370 0.179492 -0.062742 -0.036980 -0.031203 -0.044651 0.151537 -0.240748 -0.230398 0.058123 0.057474 0.209633 -26 -0.023020 -0.198035 0.052784 0.110189 0.107711 -0.121333 0.171473 0.021895 -0.032644 -0.004038 -0.101837 0.043534 0.021820 -0.197700 -0.022046 -0.215946 0.026357 -0.152653 -0.007251 0.039833 0.193019 -0.007593 0.170483 0.074832 0.018060 -0.156527 -0.080434 -0.030780 -0.016583 0.199059 -0.008473 0.058927 -0.147682 -0.004470 -0.132989 -0.106190 0.197362 0.098274 -0.048066 -0.107485 -0.132600 0.128865 0.123421 0.123282 -0.093707 0.113453 0.053405 -0.093328 -0.056185 0.139182 0.038118 0.209039 -0.012684 0.115021 -0.161031 -0.138554 -0.060245 0.059080 0.041824 0.012730 0.069979 -0.091850 -0.083236 0.151016 -0.000600 -0.187181 -0.064777 0.020779 0.092040 -0.088948 -0.010133 0.029883 -0.087822 0.018203 0.037744 -0.086909 0.054650 0.046275 0.033388 0.017380 -0.092644 -0.080701 0.014382 -0.165403 -0.043736 0.150511 -0.000230 0.035232 -0.110608 0.033784 0.020769 0.043880 0.070284 -0.044217 -0.083884 0.235181 -0.114249 -0.003872 0.101984 -0.097426 -0.181580 0.163574 -0.092290 -0.129696 -0.045518 0.044875 0.183125 0.017928 0.022999 -0.011724 0.063166 -0.037035 -0.048019 -0.016431 -0.049066 -0.030906 -0.062725 0.139018 -0.059069 0.036730 -0.063343 -0.088477 0.062320 -0.195873 -0.085636 0.136442 0.033857 0.105298 -5 -0.004594 -0.243196 0.005785 0.065577 0.090126 -0.153967 0.154449 0.088095 0.073435 -0.034911 -0.090112 0.105713 0.019047 -0.202371 0.080980 -0.256649 -0.007039 -0.264985 -0.047738 -0.023556 0.256849 -0.011095 0.131734 0.108428 0.090315 -0.180211 -0.114032 -0.017658 0.012227 0.170835 -0.010182 0.037963 -0.142614 -0.050532 -0.080946 -0.151261 0.194782 0.130602 -0.067567 -0.069304 -0.087982 0.037704 0.145634 0.197020 -0.148580 0.139400 0.123792 -0.058108 -0.025629 0.162819 -0.041917 0.169209 -0.018981 0.148528 -0.171418 -0.200696 -0.057636 0.091955 0.108952 -0.060386 0.133370 -0.104544 -0.001118 0.159968 -0.081236 -0.038192 -0.073945 0.064121 0.156134 -0.179419 -0.115688 0.067210 -0.123707 -0.069146 0.169208 -0.053796 0.087754 0.002529 -0.021773 -0.162555 -0.120582 -0.002197 0.026520 -0.068466 -0.132423 0.023636 0.163203 0.004269 -0.038202 0.083627 0.058034 -0.025884 0.094432 -0.049474 -0.176491 0.197759 -0.052375 -0.139631 0.121160 0.028213 -0.123731 0.142645 -0.131270 -0.097683 -0.127133 0.000257 0.157086 -0.010924 0.011315 -0.059939 0.049982 0.040890 -0.020221 0.020389 -0.098609 0.009737 -0.034123 0.182243 -0.056289 -0.046906 -0.025897 -0.031945 0.160402 -0.243433 -0.254963 0.048785 0.060837 0.227462 -20 -0.018263 -0.203119 0.044032 0.096708 0.093959 -0.128945 0.162148 0.043488 -0.007986 -0.009540 -0.096424 0.056310 0.026605 -0.195246 0.002651 -0.219970 0.010107 -0.169680 -0.017086 0.016119 0.202129 -0.011583 0.155043 0.076787 0.035868 -0.145195 -0.074411 -0.020829 0.000230 0.177906 -0.018463 0.050058 -0.145409 -0.009500 -0.112073 -0.111484 0.195414 0.098849 -0.049618 -0.097075 -0.119716 0.099080 0.128173 0.144992 -0.099394 0.113066 0.072445 -0.084550 -0.045729 0.134319 0.009104 0.186786 -0.007951 0.121093 -0.163520 -0.145787 -0.061469 0.061240 0.054717 -0.003879 0.090869 -0.089566 -0.062849 0.143736 -0.016331 -0.146340 -0.067350 0.033961 0.102259 -0.106254 -0.036726 0.037258 -0.089962 -0.005363 0.069195 -0.070990 0.071186 0.033198 0.022662 -0.022449 -0.093300 -0.071684 0.012518 -0.146311 -0.064636 0.120725 0.039939 0.025594 -0.091103 0.050819 0.034654 0.027948 0.068914 -0.054067 -0.108076 0.222217 -0.094144 -0.042908 0.096560 -0.056561 -0.162761 0.147145 -0.100650 -0.112914 -0.066399 0.030850 0.167822 0.012409 0.018386 -0.025553 0.059479 -0.014568 -0.037243 -0.002874 -0.064027 -0.021660 -0.052850 0.151709 -0.062739 0.015709 -0.051125 -0.065736 0.086524 -0.197463 -0.121859 0.108248 0.041986 0.136731 -29 -0.029217 -0.192326 0.054517 0.112169 0.109076 -0.116282 0.168307 0.012174 -0.039994 0.001809 -0.098568 0.043412 0.016036 -0.194299 -0.030963 -0.214521 0.024745 -0.142613 0.001282 0.044642 0.182777 -0.008179 0.165616 0.068198 0.007098 -0.151797 -0.073324 -0.030752 -0.013393 0.199615 -0.007267 0.059101 -0.145442 0.004420 -0.136301 -0.096027 0.197822 0.096257 -0.041719 -0.111380 -0.130995 0.141976 0.118482 0.111795 -0.082441 0.109905 0.046891 -0.095926 -0.059965 0.130532 0.041412 0.206435 -0.013023 0.116034 -0.163667 -0.124636 -0.056119 0.056049 0.037650 0.022077 0.060789 -0.090658 -0.095441 0.145759 0.002065 -0.204009 -0.069661 0.018610 0.086614 -0.079012 -0.004151 0.026184 -0.085070 0.029903 0.024578 -0.082741 0.056755 0.050838 0.039933 0.035330 -0.089804 -0.088362 0.014101 -0.179165 -0.036571 0.161763 -0.008797 0.033754 -0.115875 0.024550 0.017247 0.047270 0.064382 -0.047846 -0.073251 0.242764 -0.122172 0.010656 0.094378 -0.111195 -0.190514 0.167477 -0.090849 -0.132405 -0.037286 0.048096 0.180554 0.017383 0.021162 -0.010220 0.072079 -0.041447 -0.053255 -0.023962 -0.050160 -0.038334 -0.069232 0.134364 -0.059308 0.047420 -0.068231 -0.094575 0.052337 -0.190503 -0.066888 0.144212 0.031240 0.094808 -25 -0.035282 -0.206988 0.058312 0.120805 0.111692 -0.122058 0.177212 0.011913 -0.038791 0.000927 -0.108893 0.039183 0.017992 -0.200517 -0.036279 -0.230321 0.033777 -0.150954 0.003472 0.053558 0.195164 -0.010270 0.183469 0.076504 0.012123 -0.165208 -0.076565 -0.032481 -0.022911 0.213152 -0.007764 0.065099 -0.152898 0.001475 -0.147454 -0.099935 0.198991 0.104754 -0.047584 -0.118899 -0.147034 0.153900 0.125362 0.112688 -0.085567 0.114880 0.050960 -0.097374 -0.057590 0.140256 0.042312 0.225302 -0.010500 0.123003 -0.172205 -0.137021 -0.060565 0.052122 0.037197 0.026949 0.059353 -0.090034 -0.097365 0.150803 0.002949 -0.221907 -0.071696 0.022900 0.083551 -0.083490 0.000902 0.022435 -0.083410 0.035583 0.017835 -0.096991 0.054303 0.057029 0.046537 0.039250 -0.092136 -0.098973 0.014844 -0.194283 -0.038230 0.170998 -0.015587 0.034901 -0.129690 0.023305 0.011655 0.053895 0.073493 -0.053029 -0.081261 0.257914 -0.129617 0.012464 0.105111 -0.118070 -0.207143 0.181815 -0.098697 -0.145136 -0.036175 0.052328 0.198538 0.023094 0.025383 -0.012243 0.072062 -0.047573 -0.054932 -0.028930 -0.052588 -0.039808 -0.068874 0.144699 -0.067824 0.051959 -0.071644 -0.097496 0.054996 -0.205749 -0.075276 0.158864 0.029401 0.100663 -31 -0.024721 -0.196744 0.058380 0.113582 0.105830 -0.121297 0.167197 0.019532 -0.034359 0.000843 -0.097467 0.050559 0.023386 -0.199146 -0.025068 -0.221343 0.019521 -0.144300 -0.002430 0.040385 0.189624 -0.010693 0.165790 0.073749 0.016852 -0.147830 -0.069561 -0.021950 -0.011725 0.194129 -0.016407 0.062914 -0.153591 0.008004 -0.129214 -0.098710 0.194018 0.095890 -0.038745 -0.108933 -0.131078 0.135748 0.126969 0.121269 -0.088126 0.106741 0.049527 -0.099419 -0.056658 0.134461 0.031972 0.206586 -0.006793 0.116740 -0.162558 -0.134426 -0.061724 0.054186 0.037368 0.011571 0.070313 -0.091875 -0.092170 0.139323 0.001843 -0.195481 -0.071051 0.018516 0.087994 -0.088950 -0.006768 0.022944 -0.078728 0.019804 0.034330 -0.084489 0.066822 0.045952 0.039824 0.025499 -0.089017 -0.093305 0.008225 -0.178437 -0.045249 0.156472 -0.003366 0.031600 -0.112111 0.031002 0.017235 0.050212 0.068844 -0.052336 -0.091898 0.240929 -0.123371 -0.004094 0.099499 -0.095697 -0.192394 0.166625 -0.092753 -0.139534 -0.047868 0.042766 0.186704 0.021796 0.018163 -0.016969 0.065114 -0.043754 -0.051935 -0.024208 -0.049579 -0.030092 -0.069234 0.149659 -0.071942 0.045299 -0.067596 -0.091622 0.060503 -0.197020 -0.083051 0.139514 0.033104 0.107531 -22 -0.013324 -0.230635 0.030984 0.088591 0.098398 -0.146396 0.163462 0.062319 0.023642 -0.020648 -0.099384 0.080721 0.024131 -0.211143 0.037357 -0.247551 0.004881 -0.220844 -0.026082 0.005365 0.235157 -0.011633 0.157542 0.093512 0.056209 -0.167003 -0.100317 -0.023583 0.006637 0.191703 -0.011954 0.047766 -0.152447 -0.027922 -0.108449 -0.136209 0.200194 0.117877 -0.060827 -0.089997 -0.109545 0.076386 0.139793 0.174219 -0.123702 0.133703 0.092394 -0.075265 -0.038618 0.153266 -0.011535 0.186323 -0.021598 0.141207 -0.172176 -0.175036 -0.060644 0.081859 0.082517 -0.028496 0.111178 -0.097627 -0.040972 0.160566 -0.045475 -0.110720 -0.077981 0.050738 0.134783 -0.140888 -0.071112 0.053822 -0.108662 -0.030518 0.117828 -0.066935 0.077736 0.026950 0.008733 -0.083885 -0.111567 -0.043562 0.023202 -0.124658 -0.096351 0.084337 0.097076 0.012733 -0.073115 0.064600 0.044382 0.006441 0.085194 -0.057568 -0.141985 0.225707 -0.083323 -0.081665 0.116622 -0.032448 -0.156502 0.157640 -0.117900 -0.110662 -0.090711 0.023899 0.173482 0.005736 0.018212 -0.042824 0.065584 0.007001 -0.030511 0.008229 -0.081783 -0.010709 -0.054062 0.172114 -0.066413 -0.011092 -0.042839 -0.063262 0.123231 -0.230025 -0.185480 0.091342 0.055049 0.181622 -18 -0.015417 -0.214277 0.033568 0.083404 0.097872 -0.136150 0.154404 0.056222 0.014330 -0.011620 -0.096729 0.072457 0.026223 -0.203257 0.023977 -0.237472 0.008288 -0.197167 -0.026483 0.010702 0.221724 -0.008589 0.155733 0.087548 0.049251 -0.153534 -0.090079 -0.016234 0.008239 0.184684 -0.013617 0.052859 -0.144751 -0.016284 -0.107096 -0.126905 0.189289 0.107405 -0.049989 -0.084131 -0.112761 0.084732 0.130879 0.158727 -0.113563 0.124991 0.077743 -0.078021 -0.041654 0.141569 -0.004045 0.177146 -0.013704 0.141408 -0.172169 -0.155901 -0.059869 0.069247 0.066292 -0.015319 0.100727 -0.096667 -0.051426 0.146661 -0.030962 -0.120108 -0.069545 0.041643 0.121472 -0.126646 -0.059835 0.045643 -0.093986 -0.024604 0.099842 -0.067088 0.080691 0.030676 0.013505 -0.064096 -0.106151 -0.051701 0.018067 -0.132257 -0.087097 0.100177 0.077086 0.015532 -0.081299 0.060097 0.039849 0.012022 0.080452 -0.060635 -0.132832 0.221661 -0.089939 -0.063792 0.107578 -0.042526 -0.156943 0.152924 -0.109913 -0.109055 -0.076827 0.024759 0.166726 0.006231 0.015524 -0.042275 0.060000 -0.004546 -0.034933 0.000960 -0.073690 -0.017648 -0.052686 0.157787 -0.060782 -0.004237 -0.047121 -0.067493 0.103352 -0.211196 -0.156758 0.091279 0.046849 0.158989 -15 -0.038742 -0.181860 0.076422 0.131426 0.114511 -0.098082 0.178220 -0.010870 -0.073351 0.011362 -0.102118 0.022538 0.017705 -0.190122 -0.066676 -0.203583 0.031577 -0.098463 0.013143 0.065663 0.161812 -0.006469 0.180472 0.057628 -0.016408 -0.140837 -0.057834 -0.035330 -0.027581 0.201601 -0.016786 0.068714 -0.151775 0.025442 -0.151069 -0.079852 0.197741 0.085267 -0.030836 -0.120840 -0.152323 0.180546 0.119559 0.091588 -0.062273 0.098330 0.021480 -0.112452 -0.068518 0.119750 0.070742 0.224954 -0.001131 0.101519 -0.157838 -0.112446 -0.068340 0.037492 0.016034 0.044963 0.041362 -0.083752 -0.120886 0.138655 0.039096 -0.254089 -0.061011 0.000680 0.064335 -0.045800 0.042723 0.005416 -0.063940 0.055067 -0.029680 -0.099408 0.048734 0.063396 0.055471 0.101279 -0.075155 -0.121488 0.004649 -0.219147 -0.012046 0.203272 -0.072077 0.048097 -0.141964 0.013599 0.007170 0.079798 0.055884 -0.049460 -0.051760 0.258512 -0.143937 0.057159 0.090866 -0.145522 -0.209132 0.174501 -0.077477 -0.152952 -0.012560 0.055284 0.195636 0.030398 0.019197 -0.000547 0.072016 -0.072628 -0.064853 -0.043871 -0.032922 -0.043684 -0.075295 0.130494 -0.071538 0.086941 -0.077534 -0.114188 0.026202 -0.169823 -0.011775 0.173016 0.026535 0.057350 -21 -0.037420 -0.185872 0.075212 0.132879 0.113678 -0.109162 0.182616 -0.006157 -0.069429 0.015099 -0.106679 0.026768 0.019289 -0.203249 -0.063559 -0.210844 0.034637 -0.106484 0.014566 0.065066 0.167636 -0.008758 0.178195 0.061537 -0.008662 -0.145704 -0.056369 -0.033000 -0.026404 0.205464 -0.012827 0.065584 -0.158924 0.023812 -0.155812 -0.089556 0.206468 0.094386 -0.034654 -0.124362 -0.155135 0.181627 0.122971 0.098689 -0.074483 0.101350 0.031976 -0.111959 -0.065660 0.129340 0.071359 0.233446 0.000091 0.104223 -0.162610 -0.115789 -0.067045 0.041616 0.017170 0.040659 0.043462 -0.090928 -0.119716 0.149512 0.037119 -0.255346 -0.065734 0.000813 0.065450 -0.061481 0.036765 0.007069 -0.071992 0.055703 -0.015099 -0.099670 0.046978 0.058795 0.057399 0.096904 -0.081081 -0.120390 0.004858 -0.215712 -0.017138 0.200160 -0.064753 0.048738 -0.137154 0.013772 0.011125 0.075829 0.053434 -0.044530 -0.054077 0.259626 -0.147324 0.047909 0.094240 -0.146305 -0.214405 0.176736 -0.080233 -0.151088 -0.017518 0.060732 0.197316 0.025517 0.018441 -0.000798 0.078102 -0.066112 -0.064402 -0.035222 -0.035596 -0.042058 -0.081538 0.131786 -0.067695 0.083589 -0.080054 -0.110993 0.029966 -0.183058 -0.017387 0.173030 0.031126 0.062610 -17 -0.003820 -0.258748 0.007511 0.073799 0.087261 -0.166561 0.164332 0.103193 0.086301 -0.032979 -0.095967 0.114296 0.023835 -0.209231 0.087164 -0.264820 -0.005851 -0.289037 -0.053388 -0.027257 0.271622 -0.022929 0.143493 0.109600 0.104106 -0.188538 -0.123153 -0.017891 0.014887 0.181230 -0.006468 0.039014 -0.144970 -0.062753 -0.089660 -0.163364 0.210163 0.142884 -0.075443 -0.073802 -0.096341 0.035099 0.155266 0.212611 -0.160332 0.146925 0.138555 -0.055615 -0.024053 0.181979 -0.048630 0.178089 -0.024028 0.157596 -0.180789 -0.216782 -0.066465 0.103743 0.122200 -0.068508 0.147465 -0.110282 0.003898 0.167303 -0.087383 -0.037417 -0.086446 0.072099 0.169359 -0.193109 -0.129178 0.071290 -0.134761 -0.075162 0.187776 -0.051138 0.093057 0.001767 -0.021234 -0.181341 -0.128279 0.001945 0.036843 -0.066448 -0.146718 0.022767 0.183774 -0.000486 -0.038667 0.091760 0.056919 -0.029739 0.102607 -0.047634 -0.190349 0.213284 -0.046043 -0.152270 0.132497 0.031042 -0.125947 0.157345 -0.144651 -0.101663 -0.137798 0.000075 0.170512 -0.016977 0.015676 -0.058873 0.058126 0.048742 -0.019961 0.026767 -0.105519 0.007691 -0.039213 0.200967 -0.064217 -0.058417 -0.023250 -0.029369 0.180964 -0.262813 -0.285498 0.048213 0.068696 0.249874 -27 -0.032797 -0.195288 0.069216 0.133867 0.116239 -0.108610 0.185740 0.001955 -0.069550 0.011745 -0.109189 0.025742 0.016789 -0.195331 -0.063692 -0.214459 0.037900 -0.112968 0.012206 0.062131 0.171920 -0.008059 0.188124 0.063971 -0.005678 -0.152287 -0.063619 -0.034477 -0.029278 0.212291 -0.014158 0.063290 -0.162670 0.017202 -0.150986 -0.090824 0.207567 0.092173 -0.041477 -0.128388 -0.156671 0.178513 0.125848 0.103988 -0.072492 0.104946 0.038800 -0.114130 -0.067412 0.133543 0.070577 0.235690 -0.006427 0.108785 -0.161936 -0.123446 -0.068509 0.048673 0.026509 0.039035 0.043219 -0.087330 -0.122572 0.151673 0.033088 -0.258004 -0.068483 0.008963 0.071063 -0.058590 0.029735 0.015208 -0.073341 0.049656 -0.017644 -0.104967 0.052495 0.060227 0.055990 0.094341 -0.085367 -0.121196 0.006500 -0.214212 -0.020933 0.204051 -0.055618 0.050813 -0.148297 0.018130 0.005314 0.070086 0.059821 -0.045203 -0.059863 0.264393 -0.141945 0.042087 0.099247 -0.147625 -0.218392 0.180336 -0.078466 -0.159995 -0.019518 0.060393 0.201583 0.023242 0.017542 0.004161 0.076312 -0.067760 -0.062782 -0.038626 -0.033126 -0.048242 -0.077472 0.137043 -0.071898 0.078713 -0.083230 -0.106774 0.034610 -0.186021 -0.027404 0.176257 0.028692 0.068829 -13 -0.016251 -0.202210 0.044203 0.088466 0.096507 -0.126337 0.159309 0.039759 -0.004149 -0.007473 -0.097593 0.056936 0.024332 -0.200536 0.006949 -0.221349 0.011997 -0.176938 -0.019105 0.014213 0.206004 -0.006592 0.149878 0.080568 0.030047 -0.150166 -0.079204 -0.015752 0.001669 0.182771 -0.015711 0.054895 -0.149152 -0.011902 -0.116221 -0.118940 0.195229 0.105479 -0.047902 -0.094361 -0.116620 0.097874 0.131618 0.149932 -0.103497 0.118331 0.071413 -0.082989 -0.049628 0.140691 0.008150 0.189791 -0.012064 0.134192 -0.171061 -0.151393 -0.064362 0.064645 0.060668 -0.005979 0.090131 -0.090428 -0.066909 0.141823 -0.018341 -0.146798 -0.070384 0.033815 0.111008 -0.118907 -0.042392 0.039118 -0.091291 -0.008561 0.075513 -0.077024 0.069740 0.033468 0.017223 -0.035632 -0.096566 -0.069470 0.013172 -0.144055 -0.072647 0.118751 0.048097 0.022301 -0.091841 0.053665 0.037036 0.025523 0.069075 -0.060058 -0.112545 0.225052 -0.098872 -0.048194 0.099967 -0.061093 -0.164970 0.155288 -0.104344 -0.117836 -0.068449 0.027251 0.178255 0.012349 0.016290 -0.034276 0.068646 -0.016171 -0.038488 -0.000464 -0.068722 -0.024287 -0.060751 0.158546 -0.063426 0.011159 -0.052163 -0.070405 0.093148 -0.201658 -0.132882 0.112448 0.048381 0.147612 -16 -0.035511 -0.202433 0.074765 0.137003 0.120944 -0.118830 0.192556 0.003611 -0.063796 0.008194 -0.113915 0.035100 0.017987 -0.209628 -0.054792 -0.230371 0.031344 -0.130028 0.005399 0.060351 0.183567 -0.007812 0.195586 0.067352 -0.000746 -0.156934 -0.066758 -0.034735 -0.023160 0.217018 -0.017857 0.071274 -0.169265 0.016625 -0.155325 -0.095593 0.218590 0.094721 -0.042875 -0.128845 -0.157651 0.177348 0.135764 0.114344 -0.078313 0.107115 0.041332 -0.114620 -0.072006 0.140880 0.065547 0.235994 -0.004975 0.119182 -0.171357 -0.127930 -0.069664 0.051912 0.027303 0.033553 0.053918 -0.097968 -0.121946 0.152773 0.029148 -0.257393 -0.069424 0.013343 0.078061 -0.073751 0.027466 0.012917 -0.077428 0.046133 -0.000511 -0.104481 0.061024 0.061056 0.054253 0.080574 -0.086068 -0.123117 0.007125 -0.222340 -0.023653 0.207997 -0.047278 0.051753 -0.143597 0.023012 0.008929 0.073471 0.060931 -0.052019 -0.070416 0.277388 -0.146257 0.033883 0.101535 -0.145533 -0.219929 0.189848 -0.087398 -0.162705 -0.030509 0.055889 0.206549 0.028086 0.023714 -0.004239 0.078097 -0.061218 -0.065298 -0.034074 -0.040147 -0.044006 -0.080637 0.149864 -0.073541 0.072015 -0.083348 -0.112196 0.039528 -0.199341 -0.039605 0.177897 0.033195 0.086814 -10 -0.027585 -0.194088 0.059197 0.119915 0.110972 -0.109276 0.174774 0.014288 -0.042095 -0.000858 -0.100241 0.042340 0.015622 -0.194950 -0.039811 -0.211997 0.029892 -0.130081 -0.000935 0.049677 0.180622 -0.008247 0.175306 0.071121 0.006256 -0.149930 -0.067700 -0.032686 -0.017300 0.199301 -0.015064 0.058100 -0.155358 0.013960 -0.142041 -0.098388 0.204942 0.091471 -0.045583 -0.114575 -0.142506 0.146433 0.133451 0.124666 -0.082104 0.110766 0.052044 -0.105706 -0.057250 0.130125 0.046488 0.215138 -0.005023 0.115444 -0.165828 -0.127673 -0.063402 0.051871 0.031160 0.026004 0.060362 -0.090928 -0.104118 0.150557 0.012237 -0.215296 -0.068170 0.014316 0.081505 -0.084544 0.007917 0.021841 -0.077922 0.032457 0.022610 -0.088440 0.057599 0.052640 0.040163 0.045724 -0.092811 -0.102962 0.008316 -0.186414 -0.038811 0.175640 -0.023215 0.038689 -0.124989 0.026973 0.020717 0.056677 0.068148 -0.047932 -0.078206 0.253664 -0.129277 0.009820 0.098881 -0.111326 -0.200409 0.169981 -0.092098 -0.142026 -0.041227 0.047309 0.194378 0.028011 0.015665 -0.009721 0.075129 -0.051944 -0.050750 -0.027879 -0.043975 -0.038653 -0.069770 0.145200 -0.069432 0.052571 -0.072166 -0.100100 0.053520 -0.189645 -0.060939 0.148898 0.033137 0.097645 -19 -0.027732 -0.191410 0.071374 0.126421 0.111070 -0.107876 0.176676 0.002585 -0.056623 0.007753 -0.107521 0.034261 0.017425 -0.196124 -0.054218 -0.209829 0.028584 -0.119391 0.010084 0.061913 0.173410 -0.011680 0.179995 0.065147 -0.001625 -0.142977 -0.063433 -0.032499 -0.024087 0.202601 -0.014654 0.065021 -0.157166 0.014068 -0.147521 -0.090713 0.201155 0.093299 -0.036933 -0.116991 -0.146786 0.164469 0.126893 0.108293 -0.072268 0.104702 0.041552 -0.111925 -0.064965 0.130148 0.057931 0.221071 -0.006557 0.107943 -0.158583 -0.118838 -0.068929 0.049770 0.029246 0.031526 0.049580 -0.091647 -0.108593 0.149711 0.025498 -0.241462 -0.062069 0.007796 0.072132 -0.069099 0.023806 0.015895 -0.073660 0.045420 -0.004704 -0.098964 0.055777 0.060156 0.047455 0.072451 -0.083713 -0.113153 0.005848 -0.206370 -0.026630 0.191575 -0.042831 0.048624 -0.137622 0.019955 0.012079 0.069761 0.063439 -0.046717 -0.067139 0.259465 -0.137931 0.031655 0.095115 -0.133943 -0.204654 0.176064 -0.087317 -0.151846 -0.029655 0.053095 0.194311 0.026293 0.017557 -0.005392 0.070930 -0.060431 -0.056958 -0.035492 -0.035889 -0.039722 -0.070587 0.140291 -0.072385 0.073148 -0.077481 -0.105852 0.037980 -0.184668 -0.039701 0.162597 0.027359 0.074613 -23 -0.033210 -0.184668 0.068293 0.134566 0.114270 -0.104607 0.178711 0.001390 -0.065522 0.009054 -0.106138 0.027556 0.018583 -0.199027 -0.063989 -0.206200 0.033015 -0.105313 0.014056 0.067949 0.166519 -0.009827 0.178455 0.063617 -0.006858 -0.146158 -0.062987 -0.037576 -0.029466 0.209047 -0.015356 0.066887 -0.160449 0.021807 -0.155659 -0.090378 0.207961 0.088324 -0.040872 -0.123138 -0.151890 0.176836 0.126912 0.103274 -0.069964 0.100173 0.030907 -0.109336 -0.069626 0.127748 0.067974 0.227998 -0.000047 0.103285 -0.161713 -0.120993 -0.068281 0.045139 0.020741 0.034411 0.045739 -0.092077 -0.115655 0.148847 0.035084 -0.252089 -0.062115 0.008133 0.069460 -0.054618 0.033052 0.012278 -0.067598 0.053203 -0.019130 -0.097868 0.052464 0.061815 0.059491 0.093377 -0.076428 -0.121617 0.008539 -0.212696 -0.018011 0.203398 -0.061353 0.051035 -0.142295 0.014292 0.010089 0.074233 0.053472 -0.047926 -0.059945 0.256730 -0.142284 0.041962 0.092629 -0.139135 -0.213449 0.175437 -0.076828 -0.156503 -0.021848 0.053856 0.192573 0.025691 0.021557 0.001070 0.069397 -0.069436 -0.063409 -0.040655 -0.036039 -0.045850 -0.079422 0.133649 -0.068391 0.078443 -0.077553 -0.106411 0.028381 -0.181549 -0.019292 0.166210 0.027056 0.064981 -12 -0.021273 -0.227668 0.038558 0.090407 0.099022 -0.140312 0.164310 0.052033 0.009098 -0.013410 -0.097127 0.077289 0.022158 -0.207640 0.021235 -0.240299 0.006905 -0.202974 -0.020711 0.006990 0.226572 -0.006636 0.162136 0.086941 0.045041 -0.167648 -0.092316 -0.020622 0.001998 0.192480 -0.011041 0.053884 -0.157959 -0.018872 -0.112976 -0.125813 0.202160 0.115976 -0.054787 -0.090532 -0.118860 0.091723 0.145099 0.166208 -0.120442 0.130763 0.087454 -0.084446 -0.048270 0.149799 -0.000930 0.194755 -0.016566 0.135677 -0.178469 -0.171928 -0.064194 0.077802 0.071331 -0.014707 0.104369 -0.097693 -0.055641 0.159833 -0.037280 -0.129457 -0.070626 0.042838 0.127276 -0.129173 -0.052652 0.049975 -0.101368 -0.018337 0.098129 -0.073238 0.081095 0.033745 0.013358 -0.056144 -0.107931 -0.054709 0.014202 -0.137441 -0.089349 0.108359 0.072167 0.020375 -0.085731 0.056013 0.039300 0.019503 0.078827 -0.056725 -0.129791 0.227478 -0.089512 -0.069089 0.113283 -0.044508 -0.168694 0.157203 -0.113424 -0.119602 -0.082808 0.021959 0.180182 0.008560 0.020195 -0.041412 0.060062 -0.004268 -0.036427 0.002955 -0.074725 -0.013607 -0.056984 0.172375 -0.070957 -0.001239 -0.051512 -0.070750 0.111761 -0.219853 -0.165831 0.102570 0.048231 0.167540 +34 2 +1 -0.474402 -1.317542 +34 0.773400 -1.178908 +33 0.873165 -1.114369 +3 0.184263 -1.145790 +2 -0.381450 -1.222519 +4 -0.321562 -1.146379 +32 0.543200 -1.127230 +14 -0.196973 -1.170027 +8 -0.682487 -1.274655 +24 1.144743 -1.171578 +9 0.345081 -1.109149 +30 1.112950 -1.214596 +6 -1.161746 -1.589899 +7 -0.963973 -1.422200 +28 0.665638 -1.131254 +29 0.691988 -1.116215 +20 0.239344 -1.168110 +11 -1.128834 -1.444253 +25 0.882138 -1.242469 +5 -0.908879 -1.347188 +26 0.763547 -1.184353 +31 0.660075 -1.133486 +23 0.791782 -1.140050 +18 -0.392956 -1.207162 +21 0.919421 -1.143817 +15 0.979967 -1.148648 +13 -0.321412 -1.190195 +19 0.992814 -1.135033 +22 -0.495918 -1.238928 +16 0.799646 -1.092844 +17 -1.145469 -1.545901 +27 1.062808 -1.195909 +10 0.805733 -1.170845 +12 -0.265403 -1.242306 diff --git a/emb/lesmis-homo.emb b/emb/lesmis-homo.emb new file mode 100644 index 0000000..434a8b0 --- /dev/null +++ b/emb/lesmis-homo.emb @@ -0,0 +1,78 @@ +77 16 +Valjean 0.219436 -0.174082 0.318169 -0.335068 0.224676 -0.120809 0.074942 0.070093 -0.503781 -0.323430 0.095133 -0.125094 0.668631 -0.147654 -0.348200 -0.147498 +Gavroche 0.194762 -0.012658 0.280248 0.008832 0.179054 0.336882 -0.001652 -0.173504 -0.456974 -0.187404 -0.074777 -0.206912 0.839835 -0.173468 0.004389 -0.617249 +Marius 0.375095 -0.110479 0.315590 0.054880 0.051548 0.377133 -0.208108 -0.132508 -0.454229 -0.261350 -0.075662 -0.187831 0.669887 -0.411013 0.015261 -0.350650 +Javert 0.178163 -0.120896 0.349237 -0.244644 0.110469 0.008374 0.124002 0.018152 -0.461758 -0.327403 0.026528 -0.183318 0.649543 -0.151823 -0.354764 -0.352492 +Thenardier 0.182861 -0.047470 0.314612 0.009899 -0.057516 0.256956 -0.059738 -0.068543 -0.417975 -0.356569 -0.126867 -0.249134 0.652691 -0.402671 -0.146294 -0.567908 +Fantine -0.000016 -0.169319 0.599917 -0.157018 -0.006540 -0.295163 -0.057645 -0.276678 -0.168517 -0.585318 -0.068076 -0.334535 0.402728 -0.628059 -0.712431 -0.322179 +Myriel 0.630313 -0.988767 0.529306 -0.195095 0.694166 -0.312362 -0.321096 -0.546777 -0.730501 0.114484 0.128541 0.503151 0.927774 -0.104908 -0.641410 0.430772 +Enjolras 0.387950 0.082424 0.314365 0.011223 0.222623 0.433734 0.070216 -0.398986 -0.412641 -0.309753 0.053150 -0.192003 0.793907 -0.102293 0.135902 -0.556348 +Eponine 0.307577 -0.144807 0.238437 -0.087337 0.066168 0.356836 0.112570 -0.087988 -0.519380 -0.302043 -0.032994 -0.115701 0.774465 -0.083363 -0.088257 -0.529308 +Cosette 0.262350 0.039131 0.433309 -0.094943 -0.055529 0.129735 -0.179857 -0.004172 -0.292150 -0.481123 -0.038323 -0.377704 0.547323 -0.710388 -0.228837 -0.272338 +MmeThenardier 0.228699 -0.228446 0.269262 -0.177235 0.051317 0.065389 0.081573 0.045672 -0.462098 -0.323669 0.034061 -0.092096 0.641520 -0.205881 -0.349021 -0.311551 +Courfeyrac 0.405564 -0.003567 0.295271 -0.020663 0.205141 0.561303 0.006953 -0.400457 -0.433999 -0.186721 0.003183 -0.221448 0.794812 -0.035815 0.100940 -0.621030 +Bossuet 0.450491 0.053117 0.244431 -0.086515 0.209062 0.418325 0.054949 -0.365250 -0.449585 -0.339358 0.084472 -0.223715 0.779503 -0.083418 0.128644 -0.469121 +Mabeuf 0.410222 0.110730 0.303555 0.012559 0.219774 0.524446 0.070669 -0.398270 -0.466564 -0.381543 0.044355 -0.318112 0.791055 -0.014914 0.158530 -0.609941 +Bahorel 0.362632 0.108951 0.333304 0.035910 0.217768 0.528303 0.033751 -0.511453 -0.400318 -0.405104 0.053979 -0.317233 0.808888 -0.152946 0.160022 -0.632362 +Joly 0.363479 0.106766 0.300252 -0.033471 0.165834 0.539682 0.078836 -0.303618 -0.441690 -0.333933 -0.021224 -0.293281 0.831849 -0.097867 0.132592 -0.675173 +Claquesous 0.206003 -0.215262 0.219036 -0.135430 0.128840 0.207619 0.081602 0.032362 -0.557368 -0.201360 0.009383 -0.086942 0.753695 -0.074452 -0.189804 -0.427169 +Babet 0.156804 -0.187150 0.252881 -0.107132 0.065878 0.198860 0.090274 0.107644 -0.538492 -0.294736 -0.045775 -0.147570 0.753656 -0.124755 -0.163532 -0.460113 +Feuilly 0.380252 0.057666 0.316496 -0.011200 0.256885 0.496768 0.053806 -0.360526 -0.479033 -0.254704 0.046092 -0.215328 0.857595 -0.011653 0.151214 -0.585846 +Gueulemer 0.190732 -0.201486 0.256894 -0.123600 -0.000770 0.207053 0.020093 0.011518 -0.506768 -0.255758 -0.061391 -0.079978 0.675173 -0.191670 -0.202881 -0.476972 +Grantaire 0.420884 0.011300 0.260888 -0.001617 0.186405 0.536976 0.004227 -0.360400 -0.487322 -0.246967 0.037156 -0.234963 0.800435 -0.090142 0.179713 -0.558601 +MlleGillenormand 0.502770 -0.140708 0.303800 0.036369 -0.060812 0.425986 -0.412322 0.287457 -0.566488 -0.250999 -0.108763 -0.181271 0.750459 -0.728745 0.126899 -0.104978 +Combeferre 0.391816 0.092228 0.292286 0.030344 0.238773 0.452704 0.029007 -0.349276 -0.415679 -0.261965 -0.011563 -0.217034 0.807224 -0.150296 0.132580 -0.571610 +Montparnasse 0.121421 -0.103749 0.326451 -0.151282 0.022668 0.202162 0.049477 -0.003585 -0.485423 -0.304089 -0.089716 -0.213258 0.695203 -0.147017 -0.210135 -0.532624 +Tholomyes 0.084087 0.036955 0.711035 0.077115 -0.064077 -0.023278 -0.193150 -0.575672 -0.013626 -0.626157 -0.149671 -0.560326 0.407788 -0.852246 -0.541815 -0.581175 +Prouvaire 0.504712 0.054301 0.240010 0.035862 0.234556 0.621877 0.065608 -0.349040 -0.557293 -0.206037 0.089440 -0.164330 0.910429 0.005144 0.267006 -0.593102 +Gillenormand 0.420310 -0.219448 0.252160 -0.012778 0.043005 0.228384 -0.226995 0.192439 -0.504670 -0.260737 -0.042774 -0.110411 0.683355 -0.561629 -0.110115 -0.147006 +Bamatabois 0.055928 0.132594 0.416606 -0.463842 0.287327 -0.504526 0.350500 0.151009 -0.411172 -0.743305 0.217653 -0.300612 0.627798 -0.197950 -0.479798 -0.106518 +Brujon 0.145144 -0.164158 0.299380 -0.112582 -0.043546 0.206740 0.042938 0.106952 -0.485672 -0.224851 -0.125548 -0.150802 0.724703 -0.177538 -0.242387 -0.616516 +MmeHucheloup 0.386608 0.115765 0.262504 -0.027977 0.216428 0.592602 0.037435 -0.270271 -0.504035 -0.280143 0.034227 -0.256177 0.840341 -0.016526 0.206641 -0.658682 +Chenildieu 0.150767 -0.020923 0.379451 -0.535523 0.461007 -0.602353 0.391304 0.173755 -0.522363 -0.682431 0.239812 -0.181752 0.722428 -0.046343 -0.390662 0.097243 +Brevet 0.149971 0.144707 0.375805 -0.477400 0.418868 -0.567613 0.444083 0.127698 -0.461789 -0.809134 0.235927 -0.250244 0.701748 -0.100379 -0.309739 0.032600 +Cochepaille 0.085859 0.117545 0.408375 -0.515683 0.363369 -0.572005 0.414834 0.150847 -0.484392 -0.801915 0.225624 -0.315238 0.669131 -0.076370 -0.400720 -0.024891 +Dahlia -0.013107 -0.040576 0.758643 0.008871 -0.009564 -0.209675 -0.174459 -0.663950 0.049330 -0.741363 -0.123658 -0.543154 0.354429 -0.856612 -0.687472 -0.539258 +Judge 0.090613 0.082823 0.397317 -0.616562 0.376344 -0.700049 0.463417 0.256663 -0.548561 -0.908616 0.272791 -0.312907 0.730014 -0.131862 -0.489954 0.140231 +Champmathieu 0.083793 0.112700 0.383879 -0.561116 0.355007 -0.608236 0.456610 0.280677 -0.460612 -0.834985 0.230661 -0.285342 0.732323 -0.084565 -0.431296 -0.007415 +Blacheville -0.041488 -0.067355 0.762686 0.014191 -0.059840 -0.270720 -0.177321 -0.557464 0.035512 -0.764945 -0.094803 -0.464577 0.341838 -0.883355 -0.734473 -0.467056 +Fameuil -0.064849 -0.109581 0.753792 -0.077101 0.052994 -0.439144 -0.118409 -0.495183 -0.024051 -0.743702 -0.060869 -0.469387 0.343404 -0.825811 -0.822076 -0.414542 +Favourite 0.055235 -0.227431 0.745120 0.015467 0.061548 -0.269963 -0.198341 -0.721010 0.047549 -0.621212 -0.053608 -0.355067 0.342091 -0.723873 -0.736157 -0.332035 +Zephine -0.002938 -0.121195 0.772571 -0.010595 0.000845 -0.306403 -0.190628 -0.632608 0.098003 -0.770756 -0.065919 -0.511047 0.323549 -0.867401 -0.790636 -0.469102 +Listolier -0.019819 -0.003185 0.797996 0.022520 -0.001989 -0.199477 -0.131132 -0.629747 0.028689 -0.803663 -0.108926 -0.604189 0.348015 -0.904238 -0.713578 -0.520474 +LtGillenormand 0.390677 -0.087526 0.323554 -0.056895 0.021718 0.180520 -0.274598 0.210453 -0.479518 -0.305310 -0.047409 -0.212875 0.627059 -0.645011 -0.137681 -0.149904 +Fauchelevent 0.340247 -0.147004 0.310104 -0.593039 0.139814 -0.121840 -0.063385 0.349743 -0.550318 -0.223400 0.042363 -0.340656 0.559746 -0.145446 -0.574180 -0.163596 +Pontmercy 0.328737 -0.039391 0.268742 -0.011827 0.022926 0.233835 -0.243297 0.065542 -0.484525 -0.352668 -0.113289 -0.290914 0.695838 -0.530763 -0.022870 -0.288554 +Simplice 0.066541 -0.148542 0.450826 -0.272151 0.020419 -0.240409 0.040670 -0.082578 -0.240351 -0.515004 -0.040899 -0.270287 0.509458 -0.444667 -0.606890 -0.337128 +MlleBaptistine 0.501353 -0.782214 0.430519 -0.308943 0.594127 -0.334814 -0.135122 -0.251536 -0.727408 0.037199 0.157139 0.351955 0.786878 0.019574 -0.605415 0.293253 +MmeMagloire 0.529939 -0.806154 0.498374 -0.340816 0.585269 -0.361368 -0.130681 -0.258825 -0.713596 0.002637 0.189153 0.395322 0.868144 -0.073687 -0.604813 0.362112 +Anzelma 0.282959 -0.181539 0.340576 -0.037456 0.000698 0.332613 -0.012683 -0.006998 -0.503230 -0.190415 -0.049408 -0.176223 0.717967 -0.212518 -0.161961 -0.512058 +Woman2 0.228611 -0.100188 0.392298 -0.134444 0.081657 0.054773 -0.010830 0.002600 -0.428463 -0.346971 -0.003045 -0.184569 0.598517 -0.366936 -0.229733 -0.261153 +MmePontmercy 0.408159 -0.030752 0.271825 -0.019965 -0.001697 0.264221 -0.289399 0.093256 -0.480905 -0.364512 -0.117652 -0.212459 0.702274 -0.626552 0.054127 -0.139995 +Toussaint 0.150408 -0.062710 0.436697 -0.125731 0.055462 0.008222 -0.069555 -0.005031 -0.336816 -0.421603 -0.081313 -0.285588 0.549754 -0.506094 -0.344169 -0.330715 +Magnon 0.308900 -0.131914 0.286738 -0.062314 0.015838 0.295499 -0.060636 0.099024 -0.502433 -0.297829 0.001292 -0.214408 0.682489 -0.403521 -0.106785 -0.397925 +MmeBurgon 0.112317 0.250873 0.392354 0.063295 0.229317 0.788154 -0.055603 -0.091542 -0.644666 -0.070292 -0.200234 -0.321562 1.081770 -0.274601 0.280514 -1.002435 +BaronessT 0.439924 -0.120735 0.279373 -0.060717 0.073852 0.301001 -0.234203 0.068735 -0.550860 -0.176664 -0.027171 -0.158985 0.701078 -0.395705 -0.047682 -0.233885 +Woman1 0.170341 -0.072458 0.304151 -0.262720 0.126424 0.024076 0.042150 0.022341 -0.441155 -0.360046 0.005810 -0.218294 0.681648 -0.222426 -0.230843 -0.304376 +MotherInnocent 0.245316 -0.086622 0.345174 -0.543205 0.195434 -0.222074 0.049641 0.416948 -0.562388 -0.330310 -0.010935 -0.340069 0.584489 -0.167510 -0.569178 -0.150302 +Child2 0.189351 0.156231 0.366951 0.141434 0.187808 0.585066 -0.030973 -0.354893 -0.428590 -0.273213 -0.114192 -0.391208 0.930505 -0.228262 0.281023 -0.964980 +Marguerite 0.055419 -0.030012 0.507538 -0.203095 0.089611 -0.264513 -0.028762 -0.109245 -0.231126 -0.587127 -0.033135 -0.397809 0.503307 -0.484659 -0.496449 -0.334805 +Child1 0.167384 0.145576 0.335081 0.117550 0.113662 0.520202 -0.073810 -0.281777 -0.373860 -0.308681 -0.085866 -0.357229 0.880359 -0.266966 0.177758 -0.943939 +Perpetue -0.044422 -0.193358 0.551006 -0.223410 -0.020235 -0.294413 -0.059855 -0.197547 -0.221146 -0.538389 -0.071679 -0.284114 0.394227 -0.615669 -0.707280 -0.376789 +Champtercier 0.654411 -1.035699 0.557185 -0.248315 0.708796 -0.299756 -0.336097 -0.469263 -0.777955 0.177366 0.124306 0.496121 0.945765 -0.171641 -0.708445 0.482557 +Count 0.627269 -1.094204 0.534154 -0.280740 0.709694 -0.400527 -0.288545 -0.446393 -0.767751 0.163122 0.148423 0.576569 0.951780 -0.050345 -0.662971 0.545107 +MotherPlutarch 0.425864 -0.037281 0.285602 0.011549 0.293055 0.487263 -0.016974 -0.420675 -0.461670 -0.177966 0.037882 -0.174901 0.778110 -0.056039 0.106770 -0.529395 +OldMan 0.640040 -1.029875 0.493889 -0.250671 0.687813 -0.262233 -0.300003 -0.375804 -0.772535 0.154066 0.153781 0.520549 0.953317 -0.097258 -0.631965 0.445142 +MlleVaubois 0.519071 -0.131736 0.211610 -0.014370 0.064218 0.291232 -0.361265 0.277900 -0.635518 -0.191175 -0.123928 -0.043675 0.765953 -0.616961 0.101537 0.016900 +CountessDeLo 0.620514 -0.989894 0.509128 -0.239031 0.726881 -0.330422 -0.294082 -0.434725 -0.713096 0.171130 0.179516 0.544049 0.861638 -0.001290 -0.694564 0.496924 +Jondrette 0.207481 0.270738 0.351321 0.015657 0.248666 0.753330 -0.062735 0.042297 -0.638110 -0.104437 -0.245679 -0.246664 1.120565 -0.261680 0.289034 -1.004364 +Napoleon 0.665361 -1.078762 0.543386 -0.260198 0.741002 -0.321761 -0.283290 -0.489154 -0.849774 0.182082 0.138385 0.565102 1.019765 -0.036154 -0.703502 0.465658 +Gribier 0.237265 -0.203679 0.277404 -0.598729 0.251402 -0.224489 -0.018617 0.398842 -0.544612 -0.265990 0.053003 -0.265365 0.644842 -0.086259 -0.595536 -0.100346 +Geborand 0.682676 -1.032944 0.544840 -0.264461 0.717819 -0.306392 -0.289494 -0.360190 -0.806040 0.163661 0.157818 0.520406 0.954278 -0.096786 -0.705295 0.493406 +Gervais 0.183733 -0.188658 0.342214 -0.249608 0.149560 -0.050671 0.052906 0.014411 -0.467021 -0.310465 0.015583 -0.102415 0.633548 -0.197591 -0.317616 -0.189839 +Cravatte 0.629831 -1.091024 0.550768 -0.316862 0.759212 -0.371159 -0.292582 -0.403709 -0.808684 0.114420 0.148491 0.531351 1.030503 -0.085396 -0.738654 0.516080 +Labarre 0.190389 -0.143353 0.316960 -0.367529 0.146816 -0.149561 0.070639 0.185157 -0.445147 -0.419760 -0.001993 -0.169803 0.626144 -0.242036 -0.389773 -0.119632 +Scaufflaire 0.135085 -0.044430 0.370358 -0.314423 0.228424 -0.175693 0.145767 -0.000387 -0.419411 -0.485144 0.046466 -0.221018 0.590339 -0.188285 -0.335936 -0.184110 +MmeDeR 0.209987 -0.198905 0.420094 -0.327285 0.217736 -0.333390 0.018474 -0.001578 -0.394103 -0.437604 0.038050 -0.121240 0.569869 -0.311240 -0.472865 -0.032508 +Boulatruelle 0.225093 -0.154233 0.334628 -0.068818 0.043646 0.197266 -0.053638 -0.112425 -0.412498 -0.267071 -0.067410 -0.171301 0.704619 -0.277634 -0.148100 -0.408667 +Isabeau 0.218333 -0.168764 0.310477 -0.298390 0.194692 -0.120550 0.099062 0.075651 -0.485400 -0.352852 0.056089 -0.165506 0.685987 -0.188837 -0.342211 -0.125205 diff --git a/emb/lesmis-role.emb b/emb/lesmis-role.emb new file mode 100644 index 0000000..bc2aca8 --- /dev/null +++ b/emb/lesmis-role.emb @@ -0,0 +1,78 @@ +77 16 +Valjean -0.129925 -0.215171 0.510442 -0.272727 -0.193650 -0.131394 0.356559 -0.049976 -0.563673 -0.610130 -0.084538 -0.190018 -0.087720 0.029813 -0.334479 -0.432589 +Gavroche -0.174787 0.010107 0.385191 0.421803 -0.121071 0.037697 0.268877 -0.657542 -0.105291 -0.791496 0.072466 -0.075712 0.059057 0.019053 0.042064 -0.782521 +Marius 0.246650 0.048983 0.404002 0.195892 -0.363448 0.325677 0.094054 -0.766824 0.022076 -0.941512 0.036916 -0.301298 0.158987 -0.342975 0.267717 -0.495259 +Javert -0.371190 -0.033745 0.277237 -0.180906 -0.409497 -0.054038 0.219860 -0.188334 -0.318100 -0.639644 -0.100939 -0.478430 -0.085044 -0.089076 -0.178185 -0.754840 +Enjolras 0.149847 0.015466 0.505411 0.333809 -0.220728 0.016008 0.152593 -0.989931 0.086197 -0.720132 0.126361 -0.000711 0.181672 -0.091381 0.005162 -0.625023 +Thenardier -0.489955 -0.203862 0.094686 0.328869 -0.420700 0.152065 0.024946 -0.417118 -0.206407 -0.798965 -0.260245 -0.523550 -0.048162 -0.119612 -0.090621 -0.795259 +Fantine -0.542523 0.273516 0.409648 -0.429880 -0.384750 -0.601903 -0.059953 -0.404373 -0.140513 -0.579073 -0.528684 -0.542092 0.138208 -0.822923 -0.404968 -0.139947 +Bossuet 0.314942 0.068010 0.514018 0.191266 -0.231852 0.083968 0.220849 -1.038469 0.071984 -0.846954 0.181227 -0.048650 0.212906 -0.039276 0.127239 -0.562932 +Courfeyrac 0.184778 0.017533 0.531614 0.237934 -0.257832 0.114875 0.200616 -0.948633 0.057604 -0.805860 0.195488 -0.094162 0.150401 -0.040746 0.049818 -0.747507 +Bahorel 0.090705 0.039634 0.541208 0.446170 -0.003965 0.139469 0.093862 -1.083703 0.053306 -0.756354 0.120078 0.137365 0.231545 -0.219300 -0.037690 -0.622298 +Joly 0.164521 0.062740 0.433189 0.348107 -0.208259 0.135672 0.086104 -1.094135 0.212176 -0.779606 0.049278 -0.074861 0.248047 -0.203288 -0.004214 -0.594419 +Combeferre 0.292440 0.154173 0.555555 0.348521 -0.186959 0.082514 0.218913 -1.052300 0.091164 -0.927594 0.177994 -0.061754 0.213517 -0.138208 0.217111 -0.621011 +Feuilly 0.218246 -0.115782 0.488836 0.247141 -0.283282 0.067810 0.181281 -0.977788 0.049556 -0.787355 0.199063 -0.117388 0.143848 0.053716 -0.048402 -0.603402 +Myriel 0.352899 -0.782162 1.053375 -0.291152 0.058157 -0.060685 0.237772 -0.350913 -0.870514 -0.319033 -0.286535 0.460125 0.004017 -0.062689 -1.142419 -0.056365 +Mabeuf 0.133854 0.051409 0.465216 0.332017 -0.217457 0.156683 0.160796 -0.923011 0.041583 -0.852048 0.144371 -0.169874 0.131911 -0.054698 0.100788 -0.677076 +Cosette -0.023499 -0.086518 0.323327 -0.150362 -0.387751 0.371755 0.101950 -0.114574 -0.351820 -0.712494 -0.164606 -0.302533 0.018620 -0.504927 -0.029771 -0.474050 +MmeThenardier -0.487307 -0.229385 0.141171 -0.035614 -0.464100 0.075426 0.097486 -0.153115 -0.328753 -0.653675 -0.310973 -0.526773 -0.096543 -0.237625 -0.327487 -0.669970 +Grantaire 0.254931 -0.058271 0.513632 0.294638 -0.177106 0.200744 0.126630 -1.071535 0.067417 -0.766632 0.147646 -0.001364 0.190783 -0.118245 -0.005483 -0.627212 +Claquesous -0.555655 -0.355935 0.149448 0.170192 -0.356517 0.055446 0.120241 -0.256516 -0.384886 -0.670667 -0.204642 -0.441994 -0.144938 0.041151 -0.323746 -0.845194 +Gueulemer -0.378836 -0.335909 0.172333 0.193847 -0.372193 0.214296 0.111468 -0.365666 -0.305985 -0.646334 -0.150867 -0.295416 -0.090082 0.032104 -0.238026 -0.918749 +Eponine -0.339924 -0.356147 0.139434 0.311152 -0.371273 0.210833 0.204454 -0.393412 -0.285592 -0.760378 -0.111116 -0.318455 -0.101038 0.110464 -0.218623 -0.875876 +Babet -0.442381 -0.315768 0.179336 0.172366 -0.331157 0.119850 0.082571 -0.273101 -0.291272 -0.576323 -0.195811 -0.374974 -0.049304 -0.040504 -0.325612 -0.762174 +Prouvaire 0.144925 0.077246 0.503540 0.451046 -0.208779 0.126210 0.150036 -1.111944 0.122711 -0.841853 0.198077 -0.025360 0.182818 -0.142734 0.064193 -0.794534 +Tholomyes -0.495772 0.407143 0.395519 -0.187898 -0.434275 -0.569660 -0.192607 -0.767430 0.084878 -0.651243 -0.647854 -0.622755 0.310192 -1.072429 -0.357389 -0.018582 +Montparnasse -0.456964 -0.290661 0.225499 0.222146 -0.321227 0.132954 0.092060 -0.269012 -0.338580 -0.665689 -0.180023 -0.376066 -0.129152 0.019295 -0.214807 -0.790166 +Bamatabois -0.228617 0.075000 0.716978 -0.322847 -0.123466 -0.483125 0.491754 0.034120 -0.627649 -0.712463 -0.063534 -0.174047 -0.179510 0.053182 -0.131603 -0.254291 +Dahlia -0.611308 0.432237 0.469521 -0.285349 -0.398037 -0.649376 -0.201578 -0.779706 0.026839 -0.746188 -0.765991 -0.672469 0.288734 -1.220406 -0.484507 0.007109 +Blacheville -0.613578 0.394695 0.496790 -0.299874 -0.405059 -0.644715 -0.247484 -0.685706 0.018003 -0.672033 -0.753292 -0.577958 0.299620 -1.177371 -0.589728 0.046095 +Listolier -0.615203 0.389135 0.509110 -0.302507 -0.332396 -0.701289 -0.215091 -0.746368 -0.004872 -0.624036 -0.792224 -0.615274 0.263089 -1.170361 -0.631824 0.102218 +Zephine -0.606614 0.249279 0.438181 -0.286901 -0.350521 -0.517839 -0.287636 -0.552277 -0.040210 -0.671894 -0.767049 -0.611427 0.230630 -1.196762 -0.603351 -0.081609 +Favourite -0.582809 0.387159 0.473431 -0.294515 -0.398514 -0.569755 -0.203097 -0.578860 -0.020023 -0.702451 -0.673514 -0.608653 0.234734 -1.074837 -0.438201 -0.023030 +Fameuil -0.518546 0.387303 0.435233 -0.315025 -0.362707 -0.621959 -0.127569 -0.585738 -0.047847 -0.663284 -0.581481 -0.612166 0.222172 -1.022039 -0.385825 -0.058191 +Brujon -0.610006 -0.333356 0.120581 0.502271 -0.337829 0.234920 0.094147 -0.389056 -0.259785 -0.736650 -0.202879 -0.349471 -0.081087 0.002155 -0.215799 -1.081527 +MmeHucheloup 0.004005 0.095351 0.404157 0.338441 -0.254499 0.169371 0.053296 -0.950988 0.111278 -0.838795 0.096218 -0.206954 0.130868 -0.202705 0.122365 -0.775840 +Cochepaille -0.214299 0.114431 0.832271 -0.356587 -0.088740 -0.634992 0.609369 -0.019214 -0.682755 -0.811510 0.036798 -0.174917 -0.243498 0.291296 -0.059764 -0.340748 +MlleGillenormand 0.429257 -0.187992 0.473544 -0.239425 -0.374585 0.594764 0.022109 -0.117192 -0.319377 -0.918906 -0.136339 -0.224527 0.091580 -0.636522 0.173786 -0.158268 +Chenildieu -0.199067 0.126918 0.882789 -0.444507 -0.073614 -0.620070 0.607297 0.130394 -0.750944 -0.872104 -0.054263 -0.133701 -0.222617 0.008021 0.007117 -0.278201 +Champmathieu -0.118483 0.025567 0.851256 -0.433422 -0.090320 -0.452450 0.565244 0.133641 -0.769406 -0.807042 -0.061220 -0.102585 -0.214722 0.088226 -0.086612 -0.300400 +Brevet -0.213736 0.186103 0.993713 -0.407695 -0.011577 -0.755159 0.730045 0.075189 -0.808654 -0.939249 -0.022850 -0.069787 -0.279937 0.111626 -0.032132 -0.305275 +Judge -0.247542 0.163980 0.798037 -0.308416 -0.102600 -0.626868 0.684136 0.031700 -0.722012 -0.954613 0.025970 -0.197488 -0.236881 0.232348 0.115457 -0.298857 +Gillenormand 0.157674 -0.091841 0.329446 -0.336615 -0.325369 0.472920 0.128635 -0.048598 -0.327737 -0.772861 -0.100948 -0.303915 0.150008 -0.702926 -0.073874 -0.464607 +Fauchelevent -0.116067 -0.182406 0.566032 -0.709211 -0.312033 -0.198472 0.175639 0.069991 -0.614576 -0.628020 -0.220222 -0.583703 -0.301354 0.231837 -0.306512 -0.535745 +LtGillenormand 0.302191 -0.162549 0.313488 -0.270372 -0.456255 0.691636 0.007722 -0.036953 -0.345403 -0.894789 -0.200583 -0.435729 0.123665 -0.772115 0.004470 -0.342186 +Simplice -0.378701 0.147999 0.444617 -0.638876 -0.413484 -0.531707 0.152304 -0.079948 -0.360967 -0.577197 -0.356433 -0.477277 0.006806 -0.444950 -0.229552 -0.309578 +MlleBaptistine 0.099359 -0.610441 0.844536 -0.222336 0.026567 -0.055812 0.203490 -0.230326 -0.788858 -0.328029 -0.288046 0.217258 -0.068692 -0.056578 -0.980277 -0.202749 +MmeMagloire 0.181406 -0.645879 0.864151 -0.225080 -0.025212 0.024223 0.227343 -0.270425 -0.713304 -0.327661 -0.278010 0.251070 -0.056758 -0.092394 -0.921928 -0.174281 +Woman2 -0.103467 -0.142765 0.414315 -0.228745 -0.293957 0.100625 0.177943 -0.115962 -0.392013 -0.568169 -0.136840 -0.267726 -0.024628 -0.255566 -0.219344 -0.473703 +Toussaint -0.243851 -0.102728 0.431137 -0.287532 -0.302487 -0.047558 0.244548 -0.087105 -0.432109 -0.553336 -0.158080 -0.256090 -0.047934 -0.219362 -0.276095 -0.595179 +Pontmercy 0.239390 -0.405762 0.303583 0.027737 -0.495470 0.508315 -0.009373 -0.137872 -0.481324 -1.092692 -0.228456 -0.586858 -0.053010 -0.294855 0.281182 -0.183644 +Anzelma -0.457653 -0.292069 0.176086 0.245435 -0.400119 0.109571 0.126430 -0.361040 -0.241185 -0.696343 -0.139829 -0.474394 -0.100200 0.017039 -0.256120 -0.830916 +MotherInnocent -0.157798 -0.149275 0.429188 -0.470676 -0.287391 -0.068667 0.118859 -0.014497 -0.482078 -0.596091 -0.276682 -0.541793 -0.194253 0.012940 -0.299101 -0.496778 +Woman1 -0.385351 -0.118148 0.410497 -0.414237 -0.315156 -0.276001 0.145469 -0.059019 -0.504404 -0.575254 -0.303252 -0.366098 -0.080929 -0.197441 -0.332611 -0.441794 +MmeBurgon -0.501113 0.336340 0.685064 0.944209 0.593426 0.540230 0.038338 -0.545280 -0.415502 -0.981272 0.092690 0.550945 0.034698 -0.893310 0.223277 -1.109576 +Perpetue -0.580357 0.198920 0.427267 -0.665197 -0.440386 -0.653142 0.044648 -0.210912 -0.341010 -0.524991 -0.458112 -0.524484 0.025299 -0.648082 -0.374461 -0.331263 +Marguerite -0.205280 -0.051224 0.531266 -0.367198 -0.226668 -0.359407 0.112800 -0.182801 -0.424047 -0.490804 -0.333093 -0.277853 0.015055 -0.324723 -0.433138 -0.182381 +Child2 -0.230254 0.018172 0.576231 0.616542 0.031309 0.040857 0.315639 -0.670054 -0.170486 -0.893997 0.168628 0.060358 0.053993 -0.007670 0.216826 -1.065923 +Child1 -0.214432 -0.061901 0.536501 0.574151 -0.019596 0.105876 0.279741 -0.576045 -0.233108 -0.862613 0.156414 0.133027 -0.042376 0.066584 0.102198 -1.094561 +BaronessT 0.140515 0.039135 0.363074 -0.074272 -0.330229 0.407959 0.032805 -0.327154 -0.201993 -0.805412 -0.074725 -0.289029 0.145635 -0.608271 0.028261 -0.497620 +MmePontmercy 0.531256 -0.388923 0.404661 -0.167075 -0.547897 0.761587 0.061288 0.009116 -0.640711 -1.296472 -0.201408 -0.542035 -0.026666 -0.390813 0.502390 -0.111086 +Magnon -0.165956 -0.243802 0.181337 -0.190585 -0.378044 0.322372 0.121724 -0.133380 -0.312873 -0.660703 -0.151861 -0.420277 0.053064 -0.485795 -0.339272 -0.641101 +CountessDeLo 0.446093 -0.800811 1.180025 -0.289185 0.102130 -0.039002 0.163817 -0.558980 -0.800171 -0.350723 -0.333419 0.436979 0.099624 -0.116268 -1.370710 -0.010257 +Napoleon 0.437214 -0.821518 1.167139 -0.356247 0.043016 -0.005225 0.127822 -0.509737 -0.863110 -0.326408 -0.460652 0.426726 0.103526 -0.275756 -1.369353 0.027258 +Labarre -0.080393 -0.219485 0.576315 -0.319672 -0.179815 -0.104536 0.275462 -0.101944 -0.529537 -0.614834 -0.225092 -0.136256 -0.064892 -0.085516 -0.369477 -0.294143 +Champtercier 0.266213 -0.840920 1.048270 -0.340334 0.044517 0.006789 0.159510 -0.360194 -0.870343 -0.287764 -0.445982 0.314507 0.029963 -0.195029 -1.381412 -0.068862 +Cravatte 0.369188 -0.888838 1.193980 -0.326128 0.125248 0.030991 0.215950 -0.378020 -0.907069 -0.414180 -0.361891 0.456643 0.047713 -0.133073 -1.342715 -0.127161 +Count 0.544290 -0.996686 1.317261 -0.216252 0.170871 0.032256 0.189854 -0.641770 -0.896584 -0.362522 -0.340974 0.623070 0.111347 -0.107328 -1.446015 -0.068287 +Geborand 0.381058 -0.809070 1.101842 -0.327159 0.085080 -0.036664 0.186910 -0.366111 -0.834514 -0.299315 -0.380339 0.368575 0.042121 -0.120412 -1.280308 -0.017520 +MmeDeR -0.046658 -0.202552 0.590654 -0.261334 -0.181839 -0.083197 0.283855 -0.038836 -0.538107 -0.609735 -0.159352 -0.056035 -0.132873 -0.074931 -0.267266 -0.408874 +Jondrette -0.446587 0.381897 0.733539 0.908758 0.601486 0.515934 0.076659 -0.486956 -0.381059 -1.130012 0.057167 0.589828 -0.007751 -0.944332 0.227050 -1.163550 +Gervais -0.175477 -0.173272 0.564849 -0.329991 -0.176612 -0.193467 0.221933 -0.112354 -0.541095 -0.551112 -0.271240 -0.160318 -0.075743 -0.135619 -0.377925 -0.224731 +Scaufflaire -0.117923 -0.090742 0.686462 -0.334465 -0.079848 -0.328621 0.329959 -0.091196 -0.574450 -0.587969 -0.161176 -0.112524 -0.128731 -0.002298 -0.314433 -0.229647 +Gribier -0.059708 -0.283173 0.651859 -0.638462 -0.159206 -0.160107 0.197661 0.082833 -0.690958 -0.689847 -0.205492 -0.406729 -0.245135 0.228642 -0.364171 -0.444875 +OldMan 0.443976 -1.028072 1.187310 -0.378621 0.048089 0.107552 0.205405 -0.366254 -0.978966 -0.405339 -0.401134 0.429956 0.007365 -0.145597 -1.453623 -0.082838 +Isabeau -0.079993 -0.025298 0.527396 -0.273393 -0.258706 -0.150892 0.234229 -0.318770 -0.352117 -0.655831 -0.165598 -0.274100 0.009558 -0.223261 -0.209940 -0.325213 +MlleVaubois 0.412335 -0.253419 0.612845 -0.170104 -0.143386 0.370308 0.133021 -0.114919 -0.563019 -0.790350 -0.134151 0.049721 -0.003919 -0.369079 0.026755 -0.179294 +Boulatruelle -0.449795 -0.176500 0.218987 0.217177 -0.347451 0.132708 0.025480 -0.376552 -0.234217 -0.710516 -0.230649 -0.409329 -0.020506 -0.252868 -0.178782 -0.741044 +MotherPlutarch 0.125005 -0.078138 0.421320 0.374888 -0.201180 0.356100 0.118636 -0.874878 -0.031980 -0.849892 0.097992 -0.123060 0.125037 -0.134964 0.057364 -0.802485 diff --git a/graph/lesmis.gml b/graph/lesmis.gml new file mode 100644 index 0000000..3c07511 --- /dev/null +++ b/graph/lesmis.gml @@ -0,0 +1,1913 @@ +Creator "Mark Newman on Fri Jul 21 12:44:53 2006" +graph +[ + node + [ + id 0 + label "Myriel" + ] + node + [ + id 1 + label "Napoleon" + ] + node + [ + id 2 + label "MlleBaptistine" + ] + node + [ + id 3 + label "MmeMagloire" + ] + node + [ + id 4 + label "CountessDeLo" + ] + node + [ + id 5 + label "Geborand" + ] + node + [ + id 6 + label "Champtercier" + ] + node + [ + id 7 + label "Cravatte" + ] + node + [ + id 8 + label "Count" + ] + node + [ + id 9 + label "OldMan" + ] + node + [ + id 10 + label "Labarre" + ] + node + [ + id 11 + label "Valjean" + ] + node + [ + id 12 + label "Marguerite" + ] + node + [ + id 13 + label "MmeDeR" + ] + node + [ + id 14 + label "Isabeau" + ] + node + [ + id 15 + label "Gervais" + ] + node + [ + id 16 + label "Tholomyes" + ] + node + [ + id 17 + label "Listolier" + ] + node + [ + id 18 + label "Fameuil" + ] + node + [ + id 19 + label "Blacheville" + ] + node + [ + id 20 + label "Favourite" + ] + node + [ + id 21 + label "Dahlia" + ] + node + [ + id 22 + label "Zephine" + ] + node + [ + id 23 + label "Fantine" + ] + node + [ + id 24 + label "MmeThenardier" + ] + node + [ + id 25 + label "Thenardier" + ] + node + [ + id 26 + label "Cosette" + ] + node + [ + id 27 + label "Javert" + ] + node + [ + id 28 + label "Fauchelevent" + ] + node + [ + id 29 + label "Bamatabois" + ] + node + [ + id 30 + label "Perpetue" + ] + node + [ + id 31 + label "Simplice" + ] + node + [ + id 32 + label "Scaufflaire" + ] + node + [ + id 33 + label "Woman1" + ] + node + [ + id 34 + label "Judge" + ] + node + [ + id 35 + label "Champmathieu" + ] + node + [ + id 36 + label "Brevet" + ] + node + [ + id 37 + label "Chenildieu" + ] + node + [ + id 38 + label "Cochepaille" + ] + node + [ + id 39 + label "Pontmercy" + ] + node + [ + id 40 + label "Boulatruelle" + ] + node + [ + id 41 + label "Eponine" + ] + node + [ + id 42 + label "Anzelma" + ] + node + [ + id 43 + label "Woman2" + ] + node + [ + id 44 + label "MotherInnocent" + ] + node + [ + id 45 + label "Gribier" + ] + node + [ + id 46 + label "Jondrette" + ] + node + [ + id 47 + label "MmeBurgon" + ] + node + [ + id 48 + label "Gavroche" + ] + node + [ + id 49 + label "Gillenormand" + ] + node + [ + id 50 + label "Magnon" + ] + node + [ + id 51 + label "MlleGillenormand" + ] + node + [ + id 52 + label "MmePontmercy" + ] + node + [ + id 53 + label "MlleVaubois" + ] + node + [ + id 54 + label "LtGillenormand" + ] + node + [ + id 55 + label "Marius" + ] + node + [ + id 56 + label "BaronessT" + ] + node + [ + id 57 + label "Mabeuf" + ] + node + [ + id 58 + label "Enjolras" + ] + node + [ + id 59 + label "Combeferre" + ] + node + [ + id 60 + label "Prouvaire" + ] + node + [ + id 61 + label "Feuilly" + ] + node + [ + id 62 + label "Courfeyrac" + ] + node + [ + id 63 + label "Bahorel" + ] + node + [ + id 64 + label "Bossuet" + ] + node + [ + id 65 + label "Joly" + ] + node + [ + id 66 + label "Grantaire" + ] + node + [ + id 67 + label "MotherPlutarch" + ] + node + [ + id 68 + label "Gueulemer" + ] + node + [ + id 69 + label "Babet" + ] + node + [ + id 70 + label "Claquesous" + ] + node + [ + id 71 + label "Montparnasse" + ] + node + [ + id 72 + label "Toussaint" + ] + node + [ + id 73 + label "Child1" + ] + node + [ + id 74 + label "Child2" + ] + node + [ + id 75 + label "Brujon" + ] + node + [ + id 76 + label "MmeHucheloup" + ] + edge + [ + source 1 + target 0 + value 1 + ] + edge + [ + source 2 + target 0 + value 8 + ] + edge + [ + source 3 + target 0 + value 10 + ] + edge + [ + source 3 + target 2 + value 6 + ] + edge + [ + source 4 + target 0 + value 1 + ] + edge + [ + source 5 + target 0 + value 1 + ] + edge + [ + source 6 + target 0 + value 1 + ] + edge + [ + source 7 + target 0 + value 1 + ] + edge + [ + source 8 + target 0 + value 2 + ] + edge + [ + source 9 + target 0 + value 1 + ] + edge + [ + source 11 + target 10 + value 1 + ] + edge + [ + source 11 + target 3 + value 3 + ] + edge + [ + source 11 + target 2 + value 3 + ] + edge + [ + source 11 + target 0 + value 5 + ] + edge + [ + source 12 + target 11 + value 1 + ] + edge + [ + source 13 + target 11 + value 1 + ] + edge + [ + source 14 + target 11 + value 1 + ] + edge + [ + source 15 + target 11 + value 1 + ] + edge + [ + source 17 + target 16 + value 4 + ] + edge + [ + source 18 + target 16 + value 4 + ] + edge + [ + source 18 + target 17 + value 4 + ] + edge + [ + source 19 + target 16 + value 4 + ] + edge + [ + source 19 + target 17 + value 4 + ] + edge + [ + source 19 + target 18 + value 4 + ] + edge + [ + source 20 + target 16 + value 3 + ] + edge + [ + source 20 + target 17 + value 3 + ] + edge + [ + source 20 + target 18 + value 3 + ] + edge + [ + source 20 + target 19 + value 4 + ] + edge + [ + source 21 + target 16 + value 3 + ] + edge + [ + source 21 + target 17 + value 3 + ] + edge + [ + source 21 + target 18 + value 3 + ] + edge + [ + source 21 + target 19 + value 3 + ] + edge + [ + source 21 + target 20 + value 5 + ] + edge + [ + source 22 + target 16 + value 3 + ] + edge + [ + source 22 + target 17 + value 3 + ] + edge + [ + source 22 + target 18 + value 3 + ] + edge + [ + source 22 + target 19 + value 3 + ] + edge + [ + source 22 + target 20 + value 4 + ] + edge + [ + source 22 + target 21 + value 4 + ] + edge + [ + source 23 + target 16 + value 3 + ] + edge + [ + source 23 + target 17 + value 3 + ] + edge + [ + source 23 + target 18 + value 3 + ] + edge + [ + source 23 + target 19 + value 3 + ] + edge + [ + source 23 + target 20 + value 4 + ] + edge + [ + source 23 + target 21 + value 4 + ] + edge + [ + source 23 + target 22 + value 4 + ] + edge + [ + source 23 + target 12 + value 2 + ] + edge + [ + source 23 + target 11 + value 9 + ] + edge + [ + source 24 + target 23 + value 2 + ] + edge + [ + source 24 + target 11 + value 7 + ] + edge + [ + source 25 + target 24 + value 13 + ] + edge + [ + source 25 + target 23 + value 1 + ] + edge + [ + source 25 + target 11 + value 12 + ] + edge + [ + source 26 + target 24 + value 4 + ] + edge + [ + source 26 + target 11 + value 31 + ] + edge + [ + source 26 + target 16 + value 1 + ] + edge + [ + source 26 + target 25 + value 1 + ] + edge + [ + source 27 + target 11 + value 17 + ] + edge + [ + source 27 + target 23 + value 5 + ] + edge + [ + source 27 + target 25 + value 5 + ] + edge + [ + source 27 + target 24 + value 1 + ] + edge + [ + source 27 + target 26 + value 1 + ] + edge + [ + source 28 + target 11 + value 8 + ] + edge + [ + source 28 + target 27 + value 1 + ] + edge + [ + source 29 + target 23 + value 1 + ] + edge + [ + source 29 + target 27 + value 1 + ] + edge + [ + source 29 + target 11 + value 2 + ] + edge + [ + source 30 + target 23 + value 1 + ] + edge + [ + source 31 + target 30 + value 2 + ] + edge + [ + source 31 + target 11 + value 3 + ] + edge + [ + source 31 + target 23 + value 2 + ] + edge + [ + source 31 + target 27 + value 1 + ] + edge + [ + source 32 + target 11 + value 1 + ] + edge + [ + source 33 + target 11 + value 2 + ] + edge + [ + source 33 + target 27 + value 1 + ] + edge + [ + source 34 + target 11 + value 3 + ] + edge + [ + source 34 + target 29 + value 2 + ] + edge + [ + source 35 + target 11 + value 3 + ] + edge + [ + source 35 + target 34 + value 3 + ] + edge + [ + source 35 + target 29 + value 2 + ] + edge + [ + source 36 + target 34 + value 2 + ] + edge + [ + source 36 + target 35 + value 2 + ] + edge + [ + source 36 + target 11 + value 2 + ] + edge + [ + source 36 + target 29 + value 1 + ] + edge + [ + source 37 + target 34 + value 2 + ] + edge + [ + source 37 + target 35 + value 2 + ] + edge + [ + source 37 + target 36 + value 2 + ] + edge + [ + source 37 + target 11 + value 2 + ] + edge + [ + source 37 + target 29 + value 1 + ] + edge + [ + source 38 + target 34 + value 2 + ] + edge + [ + source 38 + target 35 + value 2 + ] + edge + [ + source 38 + target 36 + value 2 + ] + edge + [ + source 38 + target 37 + value 2 + ] + edge + [ + source 38 + target 11 + value 2 + ] + edge + [ + source 38 + target 29 + value 1 + ] + edge + [ + source 39 + target 25 + value 1 + ] + edge + [ + source 40 + target 25 + value 1 + ] + edge + [ + source 41 + target 24 + value 2 + ] + edge + [ + source 41 + target 25 + value 3 + ] + edge + [ + source 42 + target 41 + value 2 + ] + edge + [ + source 42 + target 25 + value 2 + ] + edge + [ + source 42 + target 24 + value 1 + ] + edge + [ + source 43 + target 11 + value 3 + ] + edge + [ + source 43 + target 26 + value 1 + ] + edge + [ + source 43 + target 27 + value 1 + ] + edge + [ + source 44 + target 28 + value 3 + ] + edge + [ + source 44 + target 11 + value 1 + ] + edge + [ + source 45 + target 28 + value 2 + ] + edge + [ + source 47 + target 46 + value 1 + ] + edge + [ + source 48 + target 47 + value 2 + ] + edge + [ + source 48 + target 25 + value 1 + ] + edge + [ + source 48 + target 27 + value 1 + ] + edge + [ + source 48 + target 11 + value 1 + ] + edge + [ + source 49 + target 26 + value 3 + ] + edge + [ + source 49 + target 11 + value 2 + ] + edge + [ + source 50 + target 49 + value 1 + ] + edge + [ + source 50 + target 24 + value 1 + ] + edge + [ + source 51 + target 49 + value 9 + ] + edge + [ + source 51 + target 26 + value 2 + ] + edge + [ + source 51 + target 11 + value 2 + ] + edge + [ + source 52 + target 51 + value 1 + ] + edge + [ + source 52 + target 39 + value 1 + ] + edge + [ + source 53 + target 51 + value 1 + ] + edge + [ + source 54 + target 51 + value 2 + ] + edge + [ + source 54 + target 49 + value 1 + ] + edge + [ + source 54 + target 26 + value 1 + ] + edge + [ + source 55 + target 51 + value 6 + ] + edge + [ + source 55 + target 49 + value 12 + ] + edge + [ + source 55 + target 39 + value 1 + ] + edge + [ + source 55 + target 54 + value 1 + ] + edge + [ + source 55 + target 26 + value 21 + ] + edge + [ + source 55 + target 11 + value 19 + ] + edge + [ + source 55 + target 16 + value 1 + ] + edge + [ + source 55 + target 25 + value 2 + ] + edge + [ + source 55 + target 41 + value 5 + ] + edge + [ + source 55 + target 48 + value 4 + ] + edge + [ + source 56 + target 49 + value 1 + ] + edge + [ + source 56 + target 55 + value 1 + ] + edge + [ + source 57 + target 55 + value 1 + ] + edge + [ + source 57 + target 41 + value 1 + ] + edge + [ + source 57 + target 48 + value 1 + ] + edge + [ + source 58 + target 55 + value 7 + ] + edge + [ + source 58 + target 48 + value 7 + ] + edge + [ + source 58 + target 27 + value 6 + ] + edge + [ + source 58 + target 57 + value 1 + ] + edge + [ + source 58 + target 11 + value 4 + ] + edge + [ + source 59 + target 58 + value 15 + ] + edge + [ + source 59 + target 55 + value 5 + ] + edge + [ + source 59 + target 48 + value 6 + ] + edge + [ + source 59 + target 57 + value 2 + ] + edge + [ + source 60 + target 48 + value 1 + ] + edge + [ + source 60 + target 58 + value 4 + ] + edge + [ + source 60 + target 59 + value 2 + ] + edge + [ + source 61 + target 48 + value 2 + ] + edge + [ + source 61 + target 58 + value 6 + ] + edge + [ + source 61 + target 60 + value 2 + ] + edge + [ + source 61 + target 59 + value 5 + ] + edge + [ + source 61 + target 57 + value 1 + ] + edge + [ + source 61 + target 55 + value 1 + ] + edge + [ + source 62 + target 55 + value 9 + ] + edge + [ + source 62 + target 58 + value 17 + ] + edge + [ + source 62 + target 59 + value 13 + ] + edge + [ + source 62 + target 48 + value 7 + ] + edge + [ + source 62 + target 57 + value 2 + ] + edge + [ + source 62 + target 41 + value 1 + ] + edge + [ + source 62 + target 61 + value 6 + ] + edge + [ + source 62 + target 60 + value 3 + ] + edge + [ + source 63 + target 59 + value 5 + ] + edge + [ + source 63 + target 48 + value 5 + ] + edge + [ + source 63 + target 62 + value 6 + ] + edge + [ + source 63 + target 57 + value 2 + ] + edge + [ + source 63 + target 58 + value 4 + ] + edge + [ + source 63 + target 61 + value 3 + ] + edge + [ + source 63 + target 60 + value 2 + ] + edge + [ + source 63 + target 55 + value 1 + ] + edge + [ + source 64 + target 55 + value 5 + ] + edge + [ + source 64 + target 62 + value 12 + ] + edge + [ + source 64 + target 48 + value 5 + ] + edge + [ + source 64 + target 63 + value 4 + ] + edge + [ + source 64 + target 58 + value 10 + ] + edge + [ + source 64 + target 61 + value 6 + ] + edge + [ + source 64 + target 60 + value 2 + ] + edge + [ + source 64 + target 59 + value 9 + ] + edge + [ + source 64 + target 57 + value 1 + ] + edge + [ + source 64 + target 11 + value 1 + ] + edge + [ + source 65 + target 63 + value 5 + ] + edge + [ + source 65 + target 64 + value 7 + ] + edge + [ + source 65 + target 48 + value 3 + ] + edge + [ + source 65 + target 62 + value 5 + ] + edge + [ + source 65 + target 58 + value 5 + ] + edge + [ + source 65 + target 61 + value 5 + ] + edge + [ + source 65 + target 60 + value 2 + ] + edge + [ + source 65 + target 59 + value 5 + ] + edge + [ + source 65 + target 57 + value 1 + ] + edge + [ + source 65 + target 55 + value 2 + ] + edge + [ + source 66 + target 64 + value 3 + ] + edge + [ + source 66 + target 58 + value 3 + ] + edge + [ + source 66 + target 59 + value 1 + ] + edge + [ + source 66 + target 62 + value 2 + ] + edge + [ + source 66 + target 65 + value 2 + ] + edge + [ + source 66 + target 48 + value 1 + ] + edge + [ + source 66 + target 63 + value 1 + ] + edge + [ + source 66 + target 61 + value 1 + ] + edge + [ + source 66 + target 60 + value 1 + ] + edge + [ + source 67 + target 57 + value 3 + ] + edge + [ + source 68 + target 25 + value 5 + ] + edge + [ + source 68 + target 11 + value 1 + ] + edge + [ + source 68 + target 24 + value 1 + ] + edge + [ + source 68 + target 27 + value 1 + ] + edge + [ + source 68 + target 48 + value 1 + ] + edge + [ + source 68 + target 41 + value 1 + ] + edge + [ + source 69 + target 25 + value 6 + ] + edge + [ + source 69 + target 68 + value 6 + ] + edge + [ + source 69 + target 11 + value 1 + ] + edge + [ + source 69 + target 24 + value 1 + ] + edge + [ + source 69 + target 27 + value 2 + ] + edge + [ + source 69 + target 48 + value 1 + ] + edge + [ + source 69 + target 41 + value 1 + ] + edge + [ + source 70 + target 25 + value 4 + ] + edge + [ + source 70 + target 69 + value 4 + ] + edge + [ + source 70 + target 68 + value 4 + ] + edge + [ + source 70 + target 11 + value 1 + ] + edge + [ + source 70 + target 24 + value 1 + ] + edge + [ + source 70 + target 27 + value 1 + ] + edge + [ + source 70 + target 41 + value 1 + ] + edge + [ + source 70 + target 58 + value 1 + ] + edge + [ + source 71 + target 27 + value 1 + ] + edge + [ + source 71 + target 69 + value 2 + ] + edge + [ + source 71 + target 68 + value 2 + ] + edge + [ + source 71 + target 70 + value 2 + ] + edge + [ + source 71 + target 11 + value 1 + ] + edge + [ + source 71 + target 48 + value 1 + ] + edge + [ + source 71 + target 41 + value 1 + ] + edge + [ + source 71 + target 25 + value 1 + ] + edge + [ + source 72 + target 26 + value 2 + ] + edge + [ + source 72 + target 27 + value 1 + ] + edge + [ + source 72 + target 11 + value 1 + ] + edge + [ + source 73 + target 48 + value 2 + ] + edge + [ + source 74 + target 48 + value 2 + ] + edge + [ + source 74 + target 73 + value 3 + ] + edge + [ + source 75 + target 69 + value 3 + ] + edge + [ + source 75 + target 68 + value 3 + ] + edge + [ + source 75 + target 25 + value 3 + ] + edge + [ + source 75 + target 48 + value 1 + ] + edge + [ + source 75 + target 41 + value 1 + ] + edge + [ + source 75 + target 70 + value 1 + ] + edge + [ + source 75 + target 71 + value 1 + ] + edge + [ + source 76 + target 64 + value 1 + ] + edge + [ + source 76 + target 65 + value 1 + ] + edge + [ + source 76 + target 66 + value 1 + ] + edge + [ + source 76 + target 63 + value 1 + ] + edge + [ + source 76 + target 62 + value 1 + ] + edge + [ + source 76 + target 48 + value 1 + ] + edge + [ + source 76 + target 58 + value 1 + ] +] diff --git a/src/emb_cluster.py b/src/emb_cluster.py new file mode 100644 index 0000000..e69de29 diff --git a/src/main.py b/src/main.py index 82ac735..f6467ec 100644 --- a/src/main.py +++ b/src/main.py @@ -67,6 +67,12 @@ def read_graph(): ''' Reads the input network in networkx. ''' + if args.input.split('.')[-1] == 'gml': + G = nx.read_gml(args.input) + for edge in G.edges(): + G[edge[0]][edge[1]]['weight'] = 1 + return G + if args.weighted: G = nx.read_edgelist(args.input, nodetype=int, data=(('weight',float),), create_using=nx.DiGraph()) else: @@ -85,7 +91,7 @@ def learn_embeddings(walks): ''' walks = [map(str, walk) for walk in walks] model = Word2Vec(walks, size=args.dimensions, window=args.window_size, min_count=0, sg=1, workers=args.workers, iter=args.iter) - model.save_word2vec_format(args.output) + model.wv.save_word2vec_format(args.output) return diff --git a/src/utils.py b/src/utils.py new file mode 100644 index 0000000..5a0a10b --- /dev/null +++ b/src/utils.py @@ -0,0 +1,60 @@ +import matplotlib.pyplot as plt +import networkx as nx +import numpy as np +from sklearn.manifold import TSNE + +## Copy from https://github.com/palash1992/GEM/blob/master/gem/evaluation/visualize_embedding.py + +def plot_embedding(node_pos, node_colors=None, di_graph=None): + node_num, embedding_dimension = node_pos.shape + if(embedding_dimension > 2): + print "Embedding dimensiion greater than 2, use tSNE to reduce it to 2" + model = TSNE(n_components=2) + node_pos = model.fit_transform(node_pos) + + if di_graph is None: + # plot using plt scatter + plt.scatter(node_pos[:,0], node_pos[:,1], c=node_colors) + else: + # plot using networkx with edge structure + pos = {} + for i in xrange(node_num): + pos[i] = node_pos[i, :] + if node_colors: + nx.draw_networkx_nodes(di_graph, pos, node_color=node_colors, width=0.1, node_size=100, arrows=False, alpha=0.8, font_size=5) + else: + nx.draw_networkx(di_graph, pos, node_color=node_colors, width=0.1, node_size=300, arrows=False, alpha=0.8, font_size=12) + plt.show() + +def read_graph(graph_path,weighted,directed): + ''' + Reads the input network in networkx. + ''' + if graph_path.split('.')[-1] == 'gml': + G = nx.read_gml(graph_path) + for edge in G.edges(): + G[edge[0]][edge[1]]['weight'] = 1 + return G + + if weighted: + G = nx.read_edgelist(graph_path, nodetype=int, data=(('weight',float),), create_using=nx.DiGraph()) + else: + G = nx.read_edgelist(graph_path, nodetype=int, create_using=nx.DiGraph()) + for edge in G.edges(): + G[edge[0]][edge[1]]['weight'] = 1 + + if not directed: + G = G.to_undirected() + + return G + +def load_embedding(file_name): + with open(file_name, 'r') as f: + n, d = f.readline().strip().split() + X = np.zeros((int(n)+1, int(d))) + for line in f: + emb = line.strip().split() + emb_fl = [float(emb_i) for emb_i in emb[1:]] + X[int(emb[0]),:] = emb_fl + return X + diff --git a/src/vis_emb.py b/src/vis_emb.py new file mode 100644 index 0000000..a53c52a --- /dev/null +++ b/src/vis_emb.py @@ -0,0 +1,33 @@ +from utils import read_graph, load_embedding, plot_embedding +import argparse + +def parse_args(): + ''' + Parses the node2vec arguments. + ''' + parser = argparse.ArgumentParser(description="Run node2vec.") + + parser.add_argument('--graph', nargs='?', default='graph/karate.edgelist', + help='Input graph path') + + parser.add_argument('--emb', nargs='?', default='emb/karate.emb', help='Input emb path') + parser.add_argument('--weighted', dest='weighted', action='store_true', + help='Boolean specifying (un)weighted. Default is unweighted.') + parser.add_argument('--unweighted', dest='unweighted', action='store_false') + parser.set_defaults(weighted=False) + + parser.add_argument('--directed', dest='directed', action='store_true', + help='Graph is (un)directed. Default is undirected.') + parser.add_argument('--undirected', dest='undirected', action='store_false') + parser.set_defaults(directed=False) + return parser.parse_args() + + +def main(args): + G = read_graph(args.graph, args.weighted, args.directed) + emb = load_embedding(args.emb) + plot_embedding(emb,node_colors=None,di_graph=G) + +if __name__ == "__main__": + args = parse_args() + main(args)