forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathstress_aes.py
287 lines (238 loc) · 9.02 KB
/
stress_aes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Stress test for threads using AES encryption routines.
#
# AES was chosen because it is integer based and inplace so doesn't use the
# heap. It is therefore a good test of raw performance and correctness of the
# VM/runtime. It can be used to measure threading performance (concurrency is
# in principle possible) and correctness (it's non trivial for the encryption/
# decryption to give the correct answer).
#
# The AES code comes first (code originates from a C version authored by D.P.George)
# and then the test harness at the bottom. It can be tuned to be more/less
# aggressive by changing the amount of data to encrypt, the number of loops and
# the number of threads.
#
# MIT license; Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
##################################################################
# discrete arithmetic routines, mostly from a precomputed table
# non-linear, invertible, substitution box
# fmt: off
aes_s_box_table = bytes((
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16,
))
# fmt: on
# multiplication of polynomials modulo x^8 + x^4 + x^3 + x + 1 = 0x11b
def aes_gf8_mul_2(x):
if x & 0x80:
return (x << 1) ^ 0x11B
else:
return x << 1
def aes_gf8_mul_3(x):
return x ^ aes_gf8_mul_2(x)
# non-linear, invertible, substitution box
def aes_s_box(a):
return aes_s_box_table[a & 0xFF]
# return 0x02^(a-1) in GF(2^8)
def aes_r_con(a):
ans = 1
while a > 1:
ans <<= 1
if ans & 0x100:
ans ^= 0x11B
a -= 1
return ans
##################################################################
# basic AES algorithm; see FIPS-197
#
# Think of it as a pseudo random number generator, with each
# symbol in the sequence being a 16 byte block (the state). The
# key is a parameter of the algorithm and tells which particular
# sequence of random symbols you want. The initial vector, IV,
# sets the start of the sequence. The idea of a strong cipher
# is that it's very difficult to guess the key even if you know
# a large part of the sequence. The basic AES algorithm simply
# provides such a sequence. En/de-cryption is implemented here
# using OCB, where the sequence is xored against the plaintext.
# Care must be taken to (almost) always choose a different IV.
# all inputs must be size 16
def aes_add_round_key(state, w):
for i in range(16):
state[i] ^= w[i]
# combined sub_bytes, shift_rows, mix_columns, add_round_key
# all inputs must be size 16
def aes_sb_sr_mc_ark(state, w, w_idx, temp):
temp_idx = 0
for i in range(4):
x0 = aes_s_box_table[state[i * 4]]
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
temp[temp_idx] = aes_gf8_mul_2(x0) ^ aes_gf8_mul_3(x1) ^ x2 ^ x3 ^ w[w_idx]
temp[temp_idx + 1] = x0 ^ aes_gf8_mul_2(x1) ^ aes_gf8_mul_3(x2) ^ x3 ^ w[w_idx + 1]
temp[temp_idx + 2] = x0 ^ x1 ^ aes_gf8_mul_2(x2) ^ aes_gf8_mul_3(x3) ^ w[w_idx + 2]
temp[temp_idx + 3] = aes_gf8_mul_3(x0) ^ x1 ^ x2 ^ aes_gf8_mul_2(x3) ^ w[w_idx + 3]
w_idx += 4
temp_idx += 4
for i in range(16):
state[i] = temp[i]
# combined sub_bytes, shift_rows, add_round_key
# all inputs must be size 16
def aes_sb_sr_ark(state, w, w_idx, temp):
temp_idx = 0
for i in range(4):
x0 = aes_s_box_table[state[i * 4]]
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
temp[temp_idx] = x0 ^ w[w_idx]
temp[temp_idx + 1] = x1 ^ w[w_idx + 1]
temp[temp_idx + 2] = x2 ^ w[w_idx + 2]
temp[temp_idx + 3] = x3 ^ w[w_idx + 3]
w_idx += 4
temp_idx += 4
for i in range(16):
state[i] = temp[i]
# take state as input and change it to the next state in the sequence
# state and temp have size 16, w has size 16 * (Nr + 1), Nr >= 1
def aes_state(state, w, temp, nr):
aes_add_round_key(state, w)
w_idx = 16
for i in range(nr - 1):
aes_sb_sr_mc_ark(state, w, w_idx, temp)
w_idx += 16
aes_sb_sr_ark(state, w, w_idx, temp)
# expand 'key' to 'w' for use with aes_state
# key has size 4 * Nk, w has size 16 * (Nr + 1), temp has size 16
def aes_key_expansion(key, w, temp, nk, nr):
for i in range(4 * nk):
w[i] = key[i]
w_idx = 4 * nk - 4
for i in range(nk, 4 * (nr + 1)):
t = temp
t_idx = 0
if i % nk == 0:
t[0] = aes_s_box(w[w_idx + 1]) ^ aes_r_con(i // nk)
for j in range(1, 4):
t[j] = aes_s_box(w[w_idx + (j + 1) % 4])
elif nk > 6 and i % nk == 4:
for j in range(0, 4):
t[j] = aes_s_box(w[w_idx + j])
else:
t = w
t_idx = w_idx
w_idx += 4
for j in range(4):
w[w_idx + j] = w[w_idx + j - 4 * nk] ^ t[t_idx + j]
##################################################################
# simple use of AES algorithm, using output feedback (OFB) mode
class AES:
def __init__(self, keysize):
if keysize == 128:
self.nk = 4
self.nr = 10
elif keysize == 192:
self.nk = 6
self.nr = 12
else:
assert keysize == 256
self.nk = 8
self.nr = 14
self.state = bytearray(16)
self.w = bytearray(16 * (self.nr + 1))
self.temp = bytearray(16)
self.state_pos = 16
def set_key(self, key):
aes_key_expansion(key, self.w, self.temp, self.nk, self.nr)
self.state_pos = 16
def set_iv(self, iv):
for i in range(16):
self.state[i] = iv[i]
self.state_pos = 16
def get_some_state(self, n_needed):
if self.state_pos >= 16:
aes_state(self.state, self.w, self.temp, self.nr)
self.state_pos = 0
n = 16 - self.state_pos
if n > n_needed:
n = n_needed
return n
def apply_to(self, data):
idx = 0
n = len(data)
while n > 0:
ln = self.get_some_state(n)
n -= ln
for i in range(ln):
data[idx + i] ^= self.state[self.state_pos + i]
idx += ln
self.state_pos += n
##################################################################
# test code
import time
import _thread
class LockedCounter:
def __init__(self):
self.lock = _thread.allocate_lock()
self.value = 0
def add(self, val):
self.lock.acquire()
self.value += val
self.lock.release()
count = LockedCounter()
def thread_entry(n_loop):
global count
aes = AES(256)
key = bytearray(256 // 8)
iv = bytearray(16)
data = bytearray(128)
# from now on we don't use the heap
for loop in range(n_loop):
# encrypt
aes.set_key(key)
aes.set_iv(iv)
for i in range(8):
aes.apply_to(data)
# decrypt
aes.set_key(key)
aes.set_iv(iv)
for i in range(8):
aes.apply_to(data)
# verify
for i in range(len(data)):
assert data[i] == 0
count.add(1)
if __name__ == "__main__":
import sys
if hasattr(sys, "settrace"):
# Builds with sys.settrace enabled are slow, so make the test short.
n_thread = 2
n_loop = 2
elif sys.platform == "rp2":
n_thread = 1
n_loop = 2
elif sys.platform in ("esp32", "pyboard"):
n_thread = 2
n_loop = 2
else:
n_thread = 20
n_loop = 5
for i in range(n_thread):
_thread.start_new_thread(thread_entry, (n_loop,))
thread_entry(n_loop)
while count.value < n_thread:
time.sleep(1)
print("done")