@@ -119,19 +119,12 @@ Let’s apply this knowledge to solve some of the frequently asked <b>DP</b> pro
119119# Pattern 1: 0/1 Knapsack
120120## Problem Set
121121
122- [ 🔎 0/1 Knapsack] ( #🔎-01-knapsack-medium )
123-
124- [ Equal Subset Sum Partition] ( #equal-subset-sum-partition-medium )
125-
126- [ Subset Sum] ( #🔎-subset-sum-medium )
127-
128- [ Minimum Subset Sum Difference ] ( #minimum-subset-sum-difference-hard )
129-
130- [ 🌟Count of Subset Sum] ( #🌟count-of-subset-sum-hard )
131-
132- [ 🌟 Target Sum] ( #🌟-target-sum-hard )
133-
134-
122+ 1 . [ 🔎 0/1 Knapsack] ( #🔎-01-knapsack-medium )
123+ 2 . [ Equal Subset Sum Partition] ( #equal-subset-sum-partition-medium )
124+ 3 . [ Subset Sum] ( #🔎-subset-sum-medium )
125+ 4 . [ Minimum Subset Sum Difference ] ( #minimum-subset-sum-difference-hard )
126+ 5 . [ 🌟Count of Subset Sum] ( #🌟count-of-subset-sum-hard )
127+ 6 . [ 🌟 Target Sum] ( #🌟-target-sum-hard )
135128
136129<b >0/1 Knapsack pattern</b > is based on the famous problem with the same name which is efficiently solved using <b >Dynamic Programming (DP)</b >.
137130
@@ -1552,21 +1545,12 @@ console.log(
15521545# Pattern 2: Unbounded Knapsack
15531546## Problem Set
15541547
1555- [ Unbounded Knapsack] ( #unbounded-knapsack )
1556-
1557- [ Rod Cutting] ( #rod-cutting )
1558-
1559- [ 🔎👩🏽🦯 Coin Change] ( #🔎👩🏽🦯-coin-change )
1560-
1561- [ Minimum Coin Change] ( #minimum-coin-change )
1548+ 1 . [ Unbounded Knapsack] ( #unbounded-knapsack )
1549+ 2 . [ Rod Cutting] ( #rod-cutting )
1550+ 3 . [ 🔎👩🏽🦯 Coin Change] ( #🔎👩🏽🦯-coin-change )
1551+ 4 . [ Minimum Coin Change] ( #minimum-coin-change )
1552+ 5 . [ Maximum Ribbon Cut] ( #maximum-ribbon-cut )
15621553
1563- [ Maximum Ribbon Cut] ( #maximum-ribbon-cut )
1564-
1565- [ ] ( )
1566-
1567- [ ] ( )
1568-
1569- [ ] ( )
15701554
15711555##
15721556
@@ -2522,21 +2506,13 @@ console.log(
25222506# Pattern 3: Fibonacci Numbers
25232507## Problem Set
25242508
2525- [Fibonacci numbers](#fibonacci-numbers)
2526-
2527- [🔎👩🏽🦯 Staircase](#🔎👩🏽🦯-staircase)
2528-
2529- [Number factors](#number-factors)
2530-
2531- [🌴 Minimum jumps to reach the end](#🌴-minimum-jumps-to-reach-the-end)
2532-
2533- [Minimum jumps with fee](#minimum-jumps-with-fee)
2534-
2535- [🌴 🔎 👩🏽🦯 House thief](#🌴-🔎-👩🏽🦯-house-thief)
2536-
2537- []()
2509+ 1. [Fibonacci numbers](#fibonacci-numbers)
2510+ 2. [🔎👩🏽🦯 Staircase](#🔎👩🏽🦯-staircase)
2511+ 3. [Number factors](#number-factors)
2512+ 4. [🌴 Minimum jumps to reach the end](#🌴-minimum-jumps-to-reach-the-end)
2513+ 5. [Minimum jumps with fee](#minimum-jumps-with-fee)
2514+ 6. [🌴 🔎 👩🏽🦯 House thief](#🌴-🔎-👩🏽🦯-house-thief)
25382515
2539- []()
25402516
25412517
25422518## Fibonacci numbers
@@ -3309,19 +3285,19 @@ We can clearly see that this problem follows the <b>[Fibonacci number pattern](#
33093285# Pattern 4: Palindromic Subsequence
33103286### Problem Set
33113287
3312- [Longest Palindromic Subsequence](#longest-palindromic-subsequence)
3288+ 1. [Longest Palindromic Subsequence](#longest-palindromic-subsequence)
33133289
3314- [👩🏽🦯 🌴 Longest Palindromic Substring](#👩🏽🦯-🌴-longest-palindromic-substring)
3290+ 2. [👩🏽🦯 🌴 Longest Palindromic Substring](#👩🏽🦯-🌴-longest-palindromic-substring)
33153291
3316- [👩🏽🦯 Count of Palindromic Substrings](#👩🏽🦯-count-of-palindromic-substrings)
3292+ 3. [👩🏽🦯 Count of Palindromic Substrings](#👩🏽🦯-count-of-palindromic-substrings)
33173293
3318- [🔎 Minimum Deletions in a String to make it a Palindrome](#🔎-minimum-deletions-in-a-string-to-make-it-a-palindrome)
3294+ 4. [🔎 Minimum Deletions in a String to make it a Palindrome](#🔎-minimum-deletions-in-a-string-to-make-it-a-palindrome)
33193295
3320- [Minimum insertions in a string to make it a palindrome](#1-minimum-insertions-in-a-string-to-make-it-a-palindrome)
3296+ 5. [Minimum insertions in a string to make it a palindrome](#1-minimum-insertions-in-a-string-to-make-it-a-palindrome)
33213297
3322- [Find if a string is K-Palindromic](#2-find-if-a-string-is-k-palindromic)
3298+ 6. [Find if a string is K-Palindromic](#2-find-if-a-string-is-k-palindromic)
33233299
3324- [Palindromic Partitioning](#palindromic-partitioning)
3300+ 7. [Palindromic Partitioning](#palindromic-partitioning)
33253301
33263302## Longest Palindromic Subsequence
33273303https://leetcode.com/problems/longest-palindromic-subsequence/
0 commit comments