{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "hide_input": false }, "outputs": [], "source": [ "from preamble import *\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model Evaluation and Improvement" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test set score: 0.88\n" ] } ], "source": [ "from sklearn.datasets import make_blobs\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.model_selection import train_test_split\n", "\n", "# create a synthetic dataset\n", "X, y = make_blobs(random_state=0)\n", "# split data and labels into a training and a test set\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n", "# instantiate a model and fit it to the training set\n", "logreg = LogisticRegression().fit(X_train, y_train)\n", "# evaluate the model on the test set\n", "print(\"Test set score: {:.2f}\".format(logreg.score(X_test, y_test)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cross-Validation" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDg3Mi40OTU2MjUgMTY4LjU4ODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nL2YT28bNxDF7/speGwPpTjkkBwe46ZJjk0rtIeiKATbdWXIcmoJydfvLGOFj+t/EGrtwZD3SZz3yN0fuSSZ62HxhszVzjhzrX9fzB/mT/28MGTem8Xby8/r88tf3p+Z893gVL8ZJHvLJSYf9XKDl5TERpEcVXbd1T/DsB3+NbHYWNz405Bt5KDfpVRsMuTEZm/uLs3vZmsWb3wNZKOjklwWDuZK83xRw/fD4ufVfn95t9VEZvGBzO58OwytMjHZ4KkEr1lJotXmnAn1Tad7sRycrzqUQVnjnw0fzbEdoJbaQOph8cE/SE3FSog5pUnqpvepXbKF2VUdyqB8+tRFbOAyiXwQu7z6H8dcurBNO33SnKykwIH7rE3u0qZgS6Zc5VYD1dMnjtGGnH2SPnGTu8SsEEqMVW41UD1VYhK937FITD16gdjGGLLzPXqoI2NY5xXYO2byQGvkEKMih6gjcFhnDhDBr5EI4RqJIDbqoPnpUQQzZBGCIYsgI3VQZA4YwQ5phHBII8jIHRSZA8dA2ZIvTnKPI3PQC19C6HFEHbHDOnMsheiHDGI+ZBB1ZA3rvAKDx0wjYN1whJwNRxAbedD89DiCGeIIwRBHkJE7KDIHjmCHOEI4xBFk5A6KzIEjc7RSRF17HKO+NbviKU1wRB2xwzpz4Ih+iCPmQxxRR+ywzhxLIvg1BiFcYxDEhhs0/98MHjN1gC/iCBkRR5CROygyB45ghzhCOMQRZOQOisyBY8xsU8qRpccxO6fDS6FwjyPq3T4R6syyUQQ/xBHzIY6odztFqDPLVrH5NRwhXMMRRNgrtuYzbBabGTIIwZBBkLvdYivyCgwedQLSnBFHyIk4gtxtHVuRR3E85KphrjWfwIHROLL6zUB+7Hn03Pp4gyJbV8XNWFX7NJwtzeLdeKZhln8PdSAcifMinIz3tkSzvBi+e3e7uTD0vVlem5+WQ7UefPQ2c90Bgxeqz5t5baU/cyGkGGRq5nuzIGQj1Rd8MEP1ebOQkvXsfGL2gaZmoTeL5KyX+voCZqg+b8YlWueKflDxYWrGvVkKxbpYJ2cwQ/V5s6Q3N2fJPpZEcWoWD2aT0VCidUEYDwiL9VnIf23zdrVfmU+36+1+NxmSdsyleSQnJ/VVKunCMpWfuN1aKFdHCmRdLt7poxal+v76abPeTx8wPKHT90kphVLv2eQXPd1YLDgmp9bg6Z/yLGSLu7/z3xy/iS/56cZTJ/nxv2Y1fcraAZmzTDkKd15NfclMn+00jqYOhScw5KcMWWzRLTNJZ9jUlwz1xUHvd2RfhD0YPv60OZ2vfiCdnnSTnss4eppEmR8H56YebI8VfvzNrHViXe3Xt9vdtI6vTy0nS18Pu3WS8Sncj+753e1u99fn1WZ9UVsfGo+rzniwfpgj+6n7fuXJ4+Dl+wNcsopCveVZHpE3vSxNTo/Kdeo+zNdtpr7qhycXfmg19mt5t1pv19sro91atVvZLUtP948e9E909+WKTPvX5K5/mqrJ6VH56P41q9q/y92+69vH4T+F9GJICmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTE1NgplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVJLkltBCNu/U+gCrmr+zXmcmtXk/tsI7KyggRYSkBY4yMRLDFGNcsUfeYLxOoG/6+Vp/D7ehdSCpyL9wLVpG+/HmjVRsDRiKcw+9v0oIcdT498Q6LlIE2ZkMnIgGYj7tT5/1ptMOfwGpGlz+ihJehAt2N0adnxZkEHSkxqW7OSHdS2wughNmBtrIhk5tTI1z8ee4TKeGCNB1SwgSZ+4TxWMSDMeO2cteZDheKoXL369jdcyj6mXVQUytgnmYDuZCacoIhC/oCS5ibto6iiOZsaa24WGkiL33T2cnPS6v5xEBV4J4SzWEo4ZesoyJzsNSqBq5QSYYb32hXGaNkq4U9PtXbGv32cmYdzmsLNSMg3OcXAvm8wRJHvdMWETHoeY9+4RjMS8+V1sEVy5zLkm04/9KNpIHxTX51xNma0o4R+q5IkV1/j//N7Pzz+QN32xCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzAgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVxpAE9UEi8KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTIgPj4Kc3RyZWFtCnicMzUwUDBQ0LVU0DUyNlUwNQSyDc1MFVIMueDsXAgTJJ/DBVMJYYGkcxAqc7jSAFSXDx0KZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OSAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIDY3IC9DIC9EIDcwIC9GIDgzIC9TIC9UIDg2IC9WCjk1IC91bmRlcnNjb3JlIDk3IC9hIDk5IC9jIC9kIC9lIDEwMyAvZyAxMDUgL2kgMTA4IC9sIDExMCAvbiAvbyAvcCAxMTQgL3IKL3MgL3QgMTE4IC92IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0MgMTYgMCBSIC9EIDE3IDAgUiAvRiAxOCAwIFIgL1MgMTkgMCBSIC9UIDIwIDAgUiAvViAyMSAwIFIgL2EgMjIgMCBSCi9jIDIzIDAgUiAvZCAyNCAwIFIgL2UgMjUgMCBSIC9maXZlIDI2IDAgUiAvZm91ciAyNyAwIFIgL2cgMjggMCBSIC9pIDI5IDAgUgovbCAzMCAwIFIgL24gMzEgMCBSIC9vIDMyIDAgUiAvb25lIDMzIDAgUiAvcCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUgovc3BhY2UgMzcgMCBSIC90IDM4IDAgUiAvdGhyZWUgMzkgMCBSIC90d28gNDAgMCBSIC91bmRlcnNjb3JlIDQxIDAgUgovdiA0MiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNDMgMCBvYmoKPDwgL0JCb3ggWyAwIDAgNzIgNzIgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MgovTWF0cml4IFsgMSAwIDAgMSAwIDE2OC41ODg3NSBdIC9QYWludFR5cGUgMSAvUGF0dGVyblR5cGUgMQovUmVzb3VyY2VzIDw8IC9Qcm9jc2V0cyBbIC9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUkgXSA+PgovVGlsaW5nVHlwZSAxIC9UeXBlIC9QYXR0ZXJuIC9YU3RlcCA3MiAvWVN0ZXAgNzIgPj4Kc3RyZWFtCnicdY8xDsMwDAN3vYIfcCE7iuKsXbL3D22XeMnS75d058KEAVPWiXI4z+Mwv61e9/Stx4L/j+s9G7YmXU+8rOJjVpYENYxX9Y6TjoMaFo1Ok9MCFJ2OPWXUDmrYGth9GvzbaKSjh4yEoJnYxNTkYb/ZpyWKiqykaGwss5mdKRrRZeLJXkXj8DIDcHqIx3xlZlTAEJPxy9xDSyzC2t2+R5A3xAplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9CQm94IFsgMCAwIDcyIDcyIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTIKL01hdHJpeCBbIDEgMCAwIDEgMCAxNjguNTg4NzUgXSAvUGFpbnRUeXBlIDEgL1BhdHRlcm5UeXBlIDEKL1Jlc291cmNlcyA8PCAvUHJvY3NldHMgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KL1RpbGluZ1R5cGUgMSAvVHlwZSAvUGF0dGVybiAvWFN0ZXAgNzIgL1lTdGVwIDcyID4+CnN0cmVhbQp4nCWPMQ7DMAwDd72CHxDgOIrirF265w9tl3jJ0u+XVCHCgCnrRDc01vm0Bar7U/e9S/cLb/pfM18T1DQeSxu46DRQ06LT6XJ6gKIzcKSMZYCatgWOVgbfdhrZMEJGQtBM7GJq87T/7ssSriY7KRoHvYY5maIR7YUnexONy70CcHuIx3xeGRUwxGR8r3/oE6uw9rAfJbMxHAplbmRzdHJlYW0KZW5kb2JqCjUgMCBvYmoKPDwgL0gxIDQzIDAgUiAvSDIgNDQgMCBSID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0NSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzMyLTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDQ2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDExNDcxIDAwMDAwIG4gCjAwMDAwMTA0MDUgMDAwMDAgbiAKMDAwMDAxMDQzNyAwMDAwMCBuIAowMDAwMDExMzg2IDAwMDAwIG4gCjAwMDAwMTE0MjkgMDAwMDAgbiAKMDAwMDAxMTQ1MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxNjI5IDAwMDAwIG4gCjAwMDAwMDkwMzMgMDAwMDAgbiAKMDAwMDAwODgzMyAwMDAwMCBuIAowMDAwMDA4MzgxIDAwMDAwIG4gCjAwMDAwMTAwODYgMDAwMDAgbiAKMDAwMDAwMTY1MCAwMDAwMCBuIAowMDAwMDAxOTU1IDAwMDAwIG4gCjAwMDAwMDIxODggMDAwMDAgbiAKMDAwMDAwMjMzNCAwMDAwMCBuIAowMDAwMDAyNzQ1IDAwMDAwIG4gCjAwMDAwMDI4ODEgMDAwMDAgbiAKMDAwMDAwMzAyMyAwMDAwMCBuIAowMDAwMDAzNDAwIDAwMDAwIG4gCjAwMDAwMDM3MDMgMDAwMDAgbiAKMDAwMDAwNDAwMyAwMDAwMCBuIAowMDAwMDA0MzIxIDAwMDAwIG4gCjAwMDAwMDQ2NDEgMDAwMDAgbiAKMDAwMDAwNDgwMyAwMDAwMCBuIAowMDAwMDA1MjE0IDAwMDAwIG4gCjAwMDAwMDUzNTQgMDAwMDAgbiAKMDAwMDAwNTQ3MSAwMDAwMCBuIAowMDAwMDA1NzA1IDAwMDAwIG4gCjAwMDAwMDU5OTIgMDAwMDAgbiAKMDAwMDAwNjE0NCAwMDAwMCBuIAowMDAwMDA2NDUzIDAwMDAwIG4gCjAwMDAwMDY2ODMgMDAwMDAgbiAKMDAwMDAwNzA4OCAwMDAwMCBuIAowMDAwMDA3MTc3IDAwMDAwIG4gCjAwMDAwMDczODEgMDAwMDAgbiAKMDAwMDAwNzc5MiAwMDAwMCBuIAowMDAwMDA4MTEzIDAwMDAwIG4gCjAwMDAwMDgyMzcgMDAwMDAgbiAKMDAwMDAxMDUzNiAwMDAwMCBuIAowMDAwMDEwOTY2IDAwMDAwIG4gCjAwMDAwMTE1MzEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0NSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDYgPj4Kc3RhcnR4cmVmCjExNjg1CiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACqCAYAAADY3mwfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df5xcdX3v8debbMguBkkh8iMKEgHxImAKEYq1kq2oVwvUtkYEaoMt5Wq1GlrUtrawUq3441ouIMVY+WFBwKC9l0JRat1IQcQGCOGHQFMCIuQHgSIJ2U2y4XP/OGfoYdnZObt7ZuY7zPv5eMxjz8x5z5nPZr6Pc/LZ80sRgZmZmZmZmbXfDu0uwMzMzMzMzDJu0MzMzMzMzBLhBs3MzMzMzCwRbtDMzMzMzMwS4QbNzMzMzMwsEW7QzMzMzMzMEuEGzczMzMzMLBFu0MzMbMIkLZN0aj59sqQby2Qn8Tn7SNokadpkazUzM+skbtDMzGxKIuKKiHh7FcuS9LCkYwrL/llEzIyI7VUs38zMLHVu0MzMEiKpp901mJmZWfu4QTMzaxFJe0v6jqQnJD0p6QJJp0i6RdLfSnoKGJC0g6S/lPSIpPWSviFpl3wZvZIuz9//tKR/l7RHPu8USQ9J2ihptaSTx6llRv7+gwuvvULSkKTdJf2SpOvyWv8rn35VnWWdIunmwvO3Sbpf0i8kXQCoMG8/ST/I698g6QpJs/J5/wDsA/xTfljjJyTtKylqjaukOZKulfSUpFWS/rCw7AFJ38r/vTZKulfS/Ml9W2ZmZu3hBs3MrAXyc6iuAx4B9gVeCVyVzz4SeAjYHfgscEr+6AdeA8wELsizi4BdgL2B3YAPAkOSXgacB7wzInYG3gSsqFdPRGwBvgOcWHj5vcAPI2I92fbhEuDVZE3TUKGG8X7P2cC3gb8EZgP/CfxqMQJ8DpgD/I/89xjIa3o/8DPguPywxi+M8RFXAj/P3/8e4G8kvbUw/3iyf9dZwLVlajYzM0uJGzQzs9Y4gqyp+HhEPBsRwxFR2+v0eEScHxEjETEEnAx8OSIeiohNwJ8D78v3Im0ja8z2j4jtEXF7RDyTL+c54GBJfRGxJiLubVDTN3lhg3ZS/hoR8WREfDsiNkfERrLG8egSv+e7gPsi4pqI2AacC6ytzYyIVRHxLxGxJSKeAL5ccrlI2ht4M/DJ/N9vBfD3wPsLsZsj4p/zc9b+AXhDmWWbmZmlwg2amVlr7A08EhEjY8x7dNTzOWR72moeAXqAPciaju8BV0l6XNIXJE2PiGeBE8j2qK2RdL2k1zWo6QdAn6QjJb0amAf8I4CknSR9NT/M8hngJmBWiaspzin+PhERxef54ZNXSXosX+7lZHvaypgDPJU3jDWPkO2NrFlbmN4M9Pq8PjMz6yRu0MzMWuNRYJ86zUKMev442aGFNfsAI8C6iNgWEZ+OiIPIDmM8Fvg9gIj4XkS8DdgLuB/42ngFRcRzwLfI9qKdBFxXaH7+FDgQODIiXg68JX9dL1rQC60ha0azsKTic7LDGwM4NF/u745a5uh/i6LHgV0l7Vx4bR/gsQY1mZmZdQw3aGZmrfETsublHEkvyy/28at1slcCp0uaK2km8DfA1RExIqlf0iH5nqxnyA553C5pD0nH5+eibQE2AWUuTf9Nsj1vJ+fTNTuTnXf2tKRdgbNK/p7XA6+X9Nt5M/pRYM9Ry92UL/eVwMdHvX8d2Xl3LxIRjwI/Aj6X//sdCvwBcEXJ2szMzJLnBs3MrAXyc6KOA/YnuxDGz8kao7FcTHYo403AamAY+ON83p7ANWTN2U+BH5IdJrgD2V6vx4GnyM7r+qMSdd0GPEt2+OANhVnnAn3ABuDHwHdL/p4bgIXAOcCTwAHALYXIp4HDgF+QNXPfGbWIzwF/mV9h8owxPuJEsousPE52OOZZEfEvZWozMzPrBMpODzAzMzMzM7N28x40MzMzMzOzRLhBMzN7CZN0UX7T59GPi9pdm5mZmb2YD3E0MzMzMzNLhPegmZmZmZmZJcINmpmZmZmZWSLcoJmZmZmZmSXCDZqZmZmZmVki3KCZmZmZmZklwg2amZmZmZlZInraXUCrTZ8+fe3IyMge7a7DWqunp2f9tm3b9gDo6+tbOzw87DHQZXp7e9cNDQ3t6e+/e3kMdLfe3t71Q0ND3g50sdo6oN11mDXSdfdBkxQDAwMveG316tUsXbqUhQsXMnfu3IbLcL7z8pdddhkRIcjGwHjjftmyZSxcuJClS5eyYMGChst3vjPykogISYrZs2e3vR7nW58vjoHaOqCT6nd+avn+/v6G24GU63d+6vnaOqBh0KzNuv4QxxSbCeerz5eV2sbE+WrzNanU47zzzjvvfOvyZp2iaQ2apE9JulfSSkkrJB3ZID8g6Yx8+mxJx+TTiyXtVOc9H5G0SlJImj3RGlNtJpyvPl9GihsT56vLF6VQj/POO++8863Nm3WKpjRoko4CjgUOi4hDgWOAR8u+PyLOjIjv508XA2M2aMAt+bIfmWiNKTcTzrc+n+rGxPnq8hORYv3OV5cHkqrHeeedb03erFM06yIhewEbImILQERsqM2Q9DBwNdCfv3RSRKwqvlnSpcB1wJz8MShpQ0T0F3MRcWeen1BxqTUHzrc3n/LGxPnq8mWlWr/z1eRrUqnHeeedTydvlopmHeJ4I7C3pAclXSjp6FHzn4mII4ALgHPrLSQizgMeB/pHN2cTIek0ScslLQeSag6cb28+tY2D883Ll5Fy/c5PPV+UQj3OO+98OnmzlDSlQYuITcDhwGnAE8DVkk4pRK4s/DyqGTWMqmdJRMyPiPlAMs2B8+3Np7ZxcN5555ubn4gU63e+ujyQVD3Otzdvlpqm3QctIrYDy4Blku4GFgGX1mYXo82qoZ4UmgPn25tPbePgvPPONz9fVqr1O19NviaVepxvb94sRU3ZgybpQEkHFF6axwsv5HFC4eetDRa3Edi5wvIaSq2ZcL7aPPgvp8473435MlKu3/mp54tSqMf59ubNUtWsPWgzgfMlzQJGgFVkhzvWzJB0G1mDeGKDZS0BbpC0ZvR5aJI+CnwC2BNYKemfI+LUqRSeWjPhfLX5mlQ2Ds4777zzzrcmP1Gp1e98tXmzlCmitUcY5ldxnF+8smOLPz8GBgbGnJdaM+F8dfmBgQEiQpCNgTLjPrWNifNTy0siIlT7/ttdj/Otz48eA+2ux/nW5vv7+0tvB1Ks3/mp52vrgIYLNGuzphzi2IlSaiacb96es7JS2Zg477zzzjtfTb6sVOt3vpq8WSdo+R60dps+ffrakZGRPdpdh7XWtGnTnhoZGdkNoK+vb+3w8LDHQJfp7e1dNzQ0tGdfX9+64eHh3dtdj7VeYQx4HdCFat8/eDvQrXp7e9cPDQ35e7fkdV2DZmZmZmZmliof4mhmZmZmZpYIN2hmZmZmZmaJcINmZmZmZmaWCDdoZmZmZmZmiWjYoEn6mKSXK/N1SXdIensrijMzMzMzM+smZfag/X5EPAO8HXgF8AHgnKZWZWZmZmZm1oXKNGi1O66/C7gkIu4qvGZmZmZmZmYV6SmRuV3SjcBc4M8l7Qw819yymsc3p+xOxRuU9vT0PLl9+/Zd212TtVZPT8+6bdu2+SbFXcw3qu5uxZsUewx0p+L/BcxS1vBG1ZJ2AOYBD0XE05J2A14ZEStbUWDVJEW933nZsmUsXLiQpUuXsmDBgobLcr5z8pKICOXTMTAw0HD5q1evZunSpSxcuJC5c+c63+H5gYEBIkK1dUBK49P51uRr64GxtgOdUL/zU8v39/e/YDsw3v9/Uqzf+anni/8XMEtZw0McI+I5YB1wkKS3AK8HZjV6n6RPSbpX0kpJKyQd2SA/IOmMfPpsScfk04sl7VTnPVdIekDSPZIuljS9UV31pLLycL45+YlqdzPhfHPzqY1P5513vvn5slKt3/lq8madoOEhjpI+D5wA3Adsz18O4KZx3nMUcCxwWERskTQb2LFsURFxZuHpYuByYPMY0SuA382nvwmcCvxd2c+pSW3l4Xz1+YlIrZlwvto8kNz4dN5555uf7+/vT6oe51ufN+sUZc5BezdwYERsmcBy9wI21N4TERtqMyQ9DFwN1NaUJ0XEquKbJV0KXAfMyR+DkjZExAvWrhHxz4X3/AR41QRqBNJbeTjfnHxZqTUTzlebr0ltfDrvvPPOO5/WH2vN2qnhIY7AQ8BEDx28Edhb0oOSLpR09Kj5z0TEEcAFwLn1FhIR5wGPA/2jm7Oi/NDG9wPfnUiRKa48nG9OvozUmgnnq80XpTY+nXfeeeedT+ePtWbtVqZB2wyskPRVSefVHuO9ISI2AYcDpwFPAFdLOqUQubLw86iJl/0iFwI3RcS/jTVT0mmSlktaXnst1ZWH8+3Jp9ZMOF99fiJSG5/OV5sHkqrHeeedT+ePtWYpKHOI47X5Y0IiYjuwDFgm6W5gEXBpbXYxOtFlF0k6i+wG2v9rnFqWAEvyfKS88nC+9fkUmwnnq8+Xldr4dL7afE0q9TjvvPPp5M1S0XAPWkRcRran6/b88c38tbokHSjpgMJL84BHCs9PKPy8tUEJG4Gd63zOqcA7gBPzq02WktLKwPn25lNtJpyvPl9GauPT+WrzRSnU47zzzqeTN0tJmas4LgAuAx4GRHZu2aKIuGmct80Ezpc0CxgBVpEd7lgzQ9JtZA3iiQ1KWALcIGnNGOehXUTW+N0qCeA7EXF2o98plZWB8+3Np9xMON/6fGrj0/nq8xORYv3OV5cH/7HWeWuV/B7K/5o/3ZPsqvBP5M+PiIitJZZxCXBORDwwTubDwNMRccUUSx693GOAj0TEu8fJHAbsHhETuh5G3eWVuFH17WRXWnwgf/5a4MqIOHxSH5hdxXF+8cqOrdTo5pQ1qa08nJ9afvSNqhctWpRUc+B88/Ojb1Rd1O7x6Xxr8hs2bKg7Bjqhfuenlh+9HRgcHOyo+p2fet43qs7MmDHjya1bt+5a1fJ6e3vXDQ0N7VkmK2kA2BQRXxr1usj6ktJHxLVKyQbtVODgiFhcxWfuUCIzvditRsSDTPyqjh2lk1Y2zk/uL2WpNxPOty6f2vh0vnn5MlKu3/mp54tSqMf59ua71datW3eNCBo9BgcHmT17NoODg+PmhoeH95hMHZL2l3SPpIuAO4C9JC3JL+x3r6QzC9mbJc2T1CPpaUnnSLpL0q2Sds8zn5G0uJA/R9JPJD0g6U356y+T9O38vVfmnzVvjNp+I3/fzcBvFl7/lfwz75R0i6QDJPUBZwInS1oh6T1j5Sb0j9PoywEuBr4OLMgfXwMuKfPFpvjo7e1dS3ZhEj+66NHb27u2NgamTZv2ZLvr8aP1j56enrVeB3T3o7Ye8Bjozkdvb+86/1+gux/F/wt08wOIRgYHB2P27NkxODjYMJsvr+xnDwBn5NP7A88BbyzM3zX/2QP8G3BQ/vxmsmta9OTf5zvz178M/Fk+/RlgcSH/+Xz6eOC7+fSfAV/Jp99AdrjlvFE17gT8HNiP7PSubwP/N5+3CzAtn/6fwNX59KnAuYVljJkr+yhzFccPAR8GPpoXeRPZZe07UtldsPbSNTIyslu7a7D28TrAPAbMY8CsvhbvifzPiPj3wvMTJf0BWSM2BzgIuG/Ue4Yi4oZ8+nbg1+os+zuFzL759JuBzwNExF2S7h3jfQcBD0bEfwJIugL4vXzeLOAbkvZr8HuVzY2pYYMWEVvIutMvT+YDzMzMzMwsfZM5rHSKnq1N5IcBfozswiFPS7oc6B3jPcWLimynfj+zZYxM2XMQo87rnwW+FxEXStofqHdRkLK5MdU9B03St/Kfd0taOfoxkQ8xMzMzM7N0Tfacvwq9nOz2Ws9I2ovsVlpVuxl4L4CkQ8j2lo12H/BaSXPzi5cUrzi/C/BYPn1K4fXRtwWrlytlvIuEfCz/eSxw3BgPMzMzMzPrcM2+AFNJd5A1R/eQXfPilioXnjsfeGW+s+lP88/6RTEQEZuBDwI3kJ0H91Bh9ueBL0oaXdsPgDfkFwV5zzi5UspcZv/zEfHJRq+ZmZmZmVna+vr61k72yotjmchl9ttNUg/QExHD+SGVNwIHRMRIm0t7gTIN2h0Rcdio11ZGxKFNrczMzMzMzKwikmaR3TS7h+x8tDMi4sb2VvVidS8SIulDwB8Brxl1ztnONGeXo5mZmZmZWVNExNPA4e2uo5G6e9Ak7QL8EvA5snsG1GyMiKdaUJuZmZmZmVlXaXiI4/PB7C7dz1/qMiJ+1qyimmnGjBlPbt26ddd212GtVTw+uupjr60z1MbA9OnT146MjPj770LTpk17amRkZDevA7rTqO3AuuHh4d3bXZO1ViedK2Xdrcw5aMeR3QNtDrAeeDXw04h4ffPLq56kKNOUTuVqNs6nl5dERCifjsHBwY6q3/mp52tjQFIMDAy8IL969WqWLl3KwoULmTt3bsPlO9+Z+c2bNz8/BsbbDnTCeHZ+4vmxtgOdVL/zU88Xx4BZysa7zH7NZ4BfIbuj9lzgrbzEz0HrpJWN85O7431K9Tjf3nyqzYTz1efLSG18Ol9tviiFepxvb94sVWUatG0R8SSwg6QdImIQmNfoTZI+Jene/MbWKyQd2SA/IOmMfPpsScfk04sl7VTnPV+XdFf+GddImlni9xlXaisP56vN16RSj/PtzafcTDjf+nxq49P5avMTlVr9zlebt9aRtFveC6yQtFbSY4XnO05gOb8vqeEhqpL2l7SiQeY1kt5X9rNbre5VHAuezhufm4ArJK0Hxr1XgKSjyG5wfVhEbJE0Gyj9BUTEmYWni4HLgc1jRE+PiGfyz/wy8BHgnLKfM1pqKw/nq80XpVCP8+3Np9YcON/efGrj0/nq8xORYv3OV5fvdlWfi93T07N+27ZtdZeX7+iZB9kOGWBTRHxpEh/1+2Q3s147mTpHeQ3wPuCqCpZVuTIN2m8CQ8DpwMnALsDZDd6zF7AhIrYARMSG2gxJDwNXA/35SydFxKrimyVdClxHdt7bHGBQ0oaI6C/mCs2ZgD6g3BVPxpDaysP5avMTlVr9zlebT605cL69+dTGp/PNyZeVav3OV5M3GBkZ2WP0udg1k1nfXnbZZZO+4I6kRcCHyXbk/IhsZ8sOwCVkTZ2AJcC6/PnVkoaAIyJia2E5bwS+DjxL4VQsSfsBlwIzgeeAP4qI28h26ByQ72m7GLi+Tq4txj3EUdI04P9FxHMRMRIRl0XEeXknPJ4bgb0lPSjpQklHj5r/TEQcAVwAnFtvIRFxHvA40D+6OSvUeAlZJ/064Pw6mdMkLZe0fKz5qa08nK8+PxEp1u98dXkgqebA+fbmUxufzjcvX0bK9Ts/9byNb7Lr28mSdDDwW8CbImIe2Y6j95Hdp2x2RBwSEQcD34iIq4EVwAkRMa/YnOUuBT4UEUcB0wqvrwHeFhG/TLaj6bz89T8DBvNlnTdOri3GbdAiYjuwOb8nWmkRsYnsH/c04AmybveUQuTKws+jJrLsMT7rA2R72X4KnFAnsyQi5kfE/NHzUlt5ON+cfFmp1u98NfmaVJoD59ubT218Ou+88+n8sbbbNPsCTHUcA7wRWJ7vyToa2A9YBRwo6f9Iegfwi/EWkp9K1RcRtT1n/1CYPQP4uqR7yA5nPKjOYsrmWmLcBi03DNydX5DjvNqj0ZsiYntELIuIs8h2V/5OcXad6UnJG8mrR31GQymuPJxvTr6MlOt3fur5ohSaA+fbm09tfDrvvPPp/LG22zR7fTsOARfne7HmRcSBEfHX+ZF6hwI3Ax8FvlpiWfX6iT8FHgUOAY4ga8SmkmuJMg3a9cBfkV0k5PbCoy5JB0o6oPDSPOCRwvMTCj9vbfD5G4Gdx/gMSdq/Ng0cB9zfYFnPS3Xl4bzzzjcnPxGpNRPOV5sHkhufzjvvfBp/rO02bWzOAL4PvDffA1a72uM+kl4BKCKWAmcBh+X5MXuC/FoXw/lFCiE7RLFmF2BNfvPLRWRN4VjLqpdri4YXCYmIyyT1AftExAMllzsTOF/SLLIrPq4iO9yxZoak28gaxBMbLGsJcIOkNaPOQxNwmaSX59N3AR8qU1zKKw/nnXe+OfmyUmsmnK82X5Pa+HTeeefbn+82bW7OiIi7JX0a+L6kHYBtwAeB7WSHG4psz9gn87dcAvz9WBcJAT6Qz3uW7FoYNRcA10g6kawh3JK/ficwTdJdZBcXqZdrC2WN4jgB6TjgS8COETFX0jzg7Ig4flIfmF3FcX7xyo6tJClmz56dzMrA+dbkJRERyqejNu47pX7np57v7+8nIiQpqrx6lfOdkx8YGHh+DDTa9kHa49n5iedHbwcGBwc7qn7np54vjoFu1oTL7K/btm1bw/uTWXllLrM/QHYs5jKAiFghaeptcxulvPJw3nnn25NPrZlwvvr8RKQ2Pp2vNg8kVY/z7c13GzdT6SuzB+22iDhS0p35pSeRtDIiDm1JhRXr6+tbNzw8POn7NVhn6u3tXTc0NLQnQF9f39rh4eHK/nJknaE2Bqr+y6F1jtrNVL0O6E7F7cCMGTOe3Lp1667trslaqzgGzFJWZg/aPZJOIjtO8wCyq6n8qLllNc/Q0JA3yl3OK+fu5r8cmtcBtmXLlt3aXYOZWT07lMj8MfB6spPlvkl2L4KPNbMoMzMzMzOzblTmEMeF+WUux33NzMzMzMzMpqZMg3ZHRBzW6DUzMzMzMzObmrrnoEl6J/Au4JWSzivMejnZvc3MzMzMzMysQuNdJORxYDlwPHB74fWNwOnNLMrMzMzMzKwblTnEsScivMfMzMzMzMysyeo2aJK+FRHvlXQ38KJQB98Hzfe/6UK+D5rtuOOOT23ZsmU3f//dq3AvvHUjIyO+H2aX6enpWVe7zYbXA93J90GzTjFeg7ZXRKyR9Oqx5kfEI02trEkkxeDgYFJ3sHe++XlJRITy6SiO+06o3/mp5zds2EBEaPT33yn1Oz/1fG09ICkWLVrE3LlzGy5/9erVLF26lIULFzrf4fmBgYEXbQdSGp/ONz9f/L+AWcrq3gctItbkPx8Z69G6EquX8srDeeedb06+jJTrd37q+aLUmwnnm59PbXw63968WUrK3Kh6UiR9StK9klZKWiHpyAb5AUln5NNnSzomn14saacG7z1f0qaytaWyMnDeeeedd751+YlIrZlwvto8+I+1zpula7yrOE6apKOAY4HDImKLpNnAjmXfHxFnFp4uBi4HNtf5rPnArInUl8LKwHnnnXfe+dbmy0qtmXC+2nxNauPT+fbkzVJUdw+apDMk7T3J5e4FbIiILQARsSEiHs+X+7Ckz0v6Sf7Yf4zPvlTSeyR9FJgDDEoaHCM3Dfgi8IlJ1jmm1FYezlebB//l1HnnuzFfRmrNhPPV5otSG5/Otz5vlqq6DRrwSuBHkm6S9KF8L1hZNwJ7S3pQ0oWSjh41/5mIOAK4ADi33kIi4jyy+7H1R0T/GJGPANfWzperQmorD+erzdekUo/zzjufTj61ZsL5avMTldr4dL7avFnK6jZoEXE6sA/wV8ChwEpJN0j6PUk7j7fQiNgEHA6cBjwBXC3plELkysLPoyZTuKQ5wELg/BLZ0yQtl7R8vFxqKw/nq80XpVCP8847n04+tWbC+erzE5Ha+HS+2rxZ6sbbg0ZkfhgRHwL2JtvbdTqwrtGCI2J7RCyLiLPI9nT9TnF2nemJ+GVgf2CVpIeBnSStqlPLkoiYHxHz6y0stZWH89XmJyq1+p133nk3Z85PLV9WauPT+WrzZp1g3AatRtIhwNnAV4CtwF80yB8o6YDCS/OA4qX5Tyj8vLXBx28EXrTHLiKuj4g9I2LfiNgX2BwRLzqfrYzUVh7OV5+fiBTrd766PJBUPc63N59qM+F89fkyUhufzlebN+sUda/imDdYJwLvA7YDVwFvj4iHSix3JnC+pFnACLCK7HDHmhmSbiNrEE9ssKwlwA2S1tQ5D21KUlt5ON+cfFmp1u98NfmaVOpxvr35lJsJ51ufT218Ol993qxTKGLsIwwlPUR2jthVEXF3ZR+YHY44PyI2VLXMCX5+1H7nFFcezjcn39/fT0QIXjgGOqV+56eel0REqN73n3r9zk89XxwDixYtSqo5cL75+YGBgbrbgRTGp/PNz2/YsOH5MWCWsvEOcXwHcMPo5kzSr0nar7llNV+qKw/nnXe+OfmJSLF+56vLA8k3E863Lp/a+HS+eXmzTjHeHrTrgL+IiJWjXp8PnBURx7Wgvsr19fWtHR4e3qPddVhr9fb2rhsaGtoTPAa6VW9v7/qhoaE9/P13r9p6oKen58nt27fv2u56rLV6enrWbdu2zduBLlb8v4BZysZr0O6JiIPrzLs7Ig5pamVmZmZmZmZdZrxDHHvHmddXdSFmZmZmZmbdbrwG7d8l/eHoFyX9AXB780oyMzMzMzPrTuMd4rgH8I9k9z2rNWTzgR2B34qItS2p0MzMzMzMrEvUbdCeD0j9QO1ctHsj4gdNr8rMzMzMzKwLNWzQzMzMzMzMrDXGOwfNzMzMzMzMWsgNmpmZmZmZWSJ62l1Aq/nmlN2pdpNi8BjoVrUblM6YMePJrVu3+ibFXag2BrwO6E7FmxRPnz597cjIiMdAl5k2bdpTIyMju7W7DrNGuu4cNElR+52XLVvGwoULWbp0KQsWLGj4Xuc7N9/f309ECF44BjqlfuennpdERKje9596/c5PPV8cA4ODg22vx/nW5mvffz4dAwMDz+dXr17N0qVLWbhwIXPnzm24fOc7M7958+bnx4BZyrr2EMdO2Jg477zz1eUnIsX6na8uDyRVj/PtzafaTDhffd6sUzStQZP0KUn3SlopaYWkIxvkBySdkU+fLemYfHqxpJ3qvOdSSavz5a+QNK9MbaltHJx33vnm58tKtX7nq8nXpFKP8+3Np9xMON/6vFkqmtKgSToKOBY4LCIOBY4BHi37/og4MyK+nz9dDIzZoOU+HhHz8seKMstPaePgvPPOtyZfRsr1Oz/1fFEK9Tjf3nxqzYHz7c2bpaRZFwnZC9gQEVsAImJDbYakh4Grgf78pZMiYlXxzZkgP/wAAAj6SURBVJIuBa4D5uSPQUkbIqKfCqSycXDeeeedd751+YlIsX7nq8sDSTUHzrc3b5aaZh3ieCOwt6QHJV0o6ehR85+JiCOAC4Bz6y0kIs4DHgf6x2nOPpsfRvm3kmaMFZB0mqTlkpaD/3LqvPPOO9+N+bJSrd/5avI1qTQHzrc3b5aipjRoEbEJOBw4DXgCuFrSKYXIlYWfR03ho/4ceB3wRmBX4JN16lkSEfMjYn6Zhaa2MXG+2jyQVD3OO+98a/JlpFy/81PPF6XQHDjf3rxZqpq1B42I2B4RyyLiLOAjwO8UZ9eZnuhnrInMFuAS4IjJLqsmtY2J89Xma1Kpx3nnnXfe+dbkJyq1ZsL5avNmKWtKgybpQEkHFF6aBzxSeH5C4eetDRa3Edi5zufslf8U8G7gnkkVnEttY+J8tfmiFOpx3nnnnXe+dfmJSK2ZcL7avFnqmnWRkJnA+ZJmASPAKrLDHWtmSLqNrEE8scGylgA3SFozxnloV0h6BSBgBfDByRac4sbE+eryE5Va/c4777zzzk8tX1ZqzYTz1ebNOkFTGrSIuB140ziRr0TEp0e9Z6AwfUph+nzg/Dqf8+tTKjSX6sbE+eryE5Fi/c5XlweSqsd5551vTb6/v/GFoFNrJpyvNm/WKZpyiGMnSXlj4nx1+bJSrd/5avI1qdTjvPPOp5NPrZlwvvq8WadQxKSv0dGR+vr61g4PD+/R7jqstXp7e9cNDQ3tCR4D3aq3t3f90NDQHn19feuGh4d3b3c91nq19YDXAd2puB2YPn362pGREY+BLtPT07N+27Zt/t4teV3XoJmZmZmZmaWq6w9xNDMzMzMzS4UbNDMzMzMzs0S4QTMzMzMzM0uEG7QuI+m0xil7KfMYMI8B8xjobv7+zdLmBq37eKVsHgPmMWAeA93N379ZwtygmZmZmZmZJcINmpmZmZmZWSLcoHWfJe0uwNrOY8A8BsxjoLv5+zdLmG9UbWZmZmZmlgjvQTMzMzMzM0uEG7QOJWm7pBWFx77jZBdIuq7OvIclzR7j9c9KelTSpuqqtio1cwxI2knS9ZLul3SvpHOqrd6q0IL1wHcl3ZWPgYskTauuepuqZn//hfnXSrpn6hVb1VqwDlgm6YHC8nevrnozq6en3QXYpA1FxLwmLv+fgAuA/2jiZ9jUNHsMfCkiBiXtCPyrpHdGxA1N/DybuGaPgfdGxDOSBFwDLASuauLn2cQ0+/tH0m8D/kNdupo+BoCTI2J5kz/DzAq8B+0lRFKvpEsk3S3pTkn9Y2R2k3RjPv+rgMZaVkT8OCLWNL1oq1RVYyAiNkfEYD69FbgDeFXTfwGbsorXA8/kkz3AjoBPWk5cld+/pJnAnwCfaXLZVqEqx4CZtYcbtM7VVzjk4B/z1z4MEBGHACcCl0nqHfW+s4CbI+KXgWuBfVpWsVWtJWNA0izgOOBfK63eqtD0MSDpe8B6YCPZXjRLR7O//78G/jewufrSrSKt2A5cki//r/K96WbWZD7EsXONdVjDm4HzASLifkmPAK8dlXkL8Nt55npJ/9X0Sq1Zmj4GJPUAVwLnRcRDlVVuVWn6GIiId+T/ubsC+HXgX6oq3qasad+/pHnA/hFx+njnNVnbNXsdcHJEPCZpZ+DbwPuBb1RWvZmNyXvQXlrK/mXLhym9dFU9BpYA/xER506yHmu9ytcDETFM9lf235xURdZKVX3/RwGHS3oYuBl4raRlU6jLWqeydUBEPJb/3Ah8EzhiCnWZWUlu0F5abgJOBpD0WrJDFh4YJ/NO4JdaWaA1XWVjQNJngF2Axc0q1pqikjEgaaakvfLpHuBdwP3NK9sqUsn3HxF/FxFzImJfsj0yD0bEguaVbRWqah3QU7uyo6TpwLGAr+Zp1gJu0F5aLgSmSbobuBo4JSK2jMp8GniLpDuAtwM/G2tBkr4g6efATpJ+LmmgiXVbdSoZA5JeBXwKOAi4Iz//4NTmlm4VqWo98DLgWkkrgbvIzkO7qHllW0Uq2w5Yx6pqDMwAvpevA1YAjwFfa17ZZlajCB/tZmZmZmZmlgLvQTMzMzMzM0uEGzQzMzMzM7NEuEEzMzMzMzNLhBs0MzMzMzOzRLhBMzMzMzMzS4QbNDOzDiRpe377g3sl3SXpTySNu06XtK+kk1pQ299LOqhB5t2NMmZmZt3IDZqZWWcaioh5EfF64G1kN5I+q8F79gWa3qBFxKkRcV+D2LvJ7rNnZmZmBW7QzMw6XESsB04DPqLMvpL+TdId+eNNefQc4NfyPW+nj5N7Xp65X9JlklZKukbSTvm8t0q6U9Ldki6WNCN/fZmk+fn0Jkmfzffy/VjSHvnnHA98Ma9lP0kflXRf/hlXteLfzczMLEW+UbWZWQeStCkiZo567b+A1wEbgeciYljSAcCVETFf0gLgjIg4Ns/vNFZu1DL3BVYDb46IWyRdDNwHXAD8B/DWiHhQ0jeAOyLiXEnL8s9ZLimA4yPinyR9AXgmIj4j6VLguoi4Jv+cx4G5EbFF0qyIeLr6fzUzM7P0eQ+amdlLh/Kf04GvSbobWEr9QwnL5h6NiFvy6cuBNwMHAqsj4sH89cuAt4zx3q3Adfn07WSHWY5lJXCFpN8FRupkzMzMXvLcoJmZvQRIeg2wHVgPnA6sA94AzAd2rPO2srnRh1oE/90MNrIt/vtQje1AT53cbwBfAQ4HbpdUL2dmZvaS5gbNzKzDSXoFcBFwQd4M7QKsiYjngPcD0/LoRmDnwlvr5UbbR9JR+fSJwM3A/cC+kvbPX38/8MMJlP18LfnVJ/eOiEHgE8AsYOY47zUzM3vJcoNmZtaZ+mqX2Qe+D9wIfDqfdyGwSNKPgdcCz+avrwRG8gt2nD5ObrSf5rmVwK7A30XEMPABYGl+iORzZE1iWVcBH5d0J3AAcHm+nDuBv/U5aGZm1q18kRAzM6srv0jIdRFxcJtLMTMz6wreg2ZmZmZmZpYI70EzMzMzMzNLhPegmZmZmZmZJcINmpmZmZmZWSLcoJmZmZmZmSXCDZqZmZmZmVki3KCZmZmZmZklwg2amZmZmZlZIv4/FDhX26b8SWIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 864x144 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_cross_validation()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Cross-Validation in scikit-learn" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores: [0.967 1. 0.933 0.967 1. ]\n" ] } ], "source": [ "from sklearn.model_selection import cross_val_score\n", "from sklearn.datasets import load_iris\n", "from sklearn.linear_model import LogisticRegression\n", "\n", "iris = load_iris()\n", "logreg = LogisticRegression(max_iter=1000)\n", "\n", "scores = cross_val_score(logreg, iris.data, iris.target)\n", "print(\"Cross-validation scores: {}\".format(scores))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores: [0.967 1. 0.933 0.967 1. ]\n" ] } ], "source": [ "scores = cross_val_score(logreg, iris.data, iris.target, cv=5)\n", "print(\"Cross-validation scores: {}\".format(scores))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average cross-validation score: 0.97\n" ] } ], "source": [ "print(\"Average cross-validation score: {:.2f}\".format(scores.mean()))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'fit_time': array([0.013, 0.017, 0.012, 0.013, 0.012]),\n", " 'score_time': array([0. , 0. , 0.001, 0. , 0.001]),\n", " 'test_score': array([0.967, 1. , 0.933, 0.967, 1. ]),\n", " 'train_score': array([0.967, 0.967, 0.983, 0.983, 0.975])}" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.model_selection import cross_validate\n", "res = cross_validate(logreg, iris.data, iris.target, cv=5,\n", " return_train_score=True)\n", "display(res)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>fit_time</th>\n", " <th>score_time</th>\n", " <th>test_score</th>\n", " <th>train_score</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.01</td>\n", " <td>0.00e+00</td>\n", " <td>0.97</td>\n", " <td>0.97</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.02</td>\n", " <td>0.00e+00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.01</td>\n", " <td>9.94e-04</td>\n", " <td>0.93</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.01</td>\n", " <td>0.00e+00</td>\n", " <td>0.97</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.01</td>\n", " <td>9.98e-04</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " fit_time score_time test_score train_score\n", "0 0.01 0.00e+00 0.97 0.97\n", "1 0.02 0.00e+00 1.00 0.97\n", "2 0.01 9.94e-04 0.93 0.98\n", "3 0.01 0.00e+00 0.97 0.98\n", "4 0.01 9.98e-04 1.00 0.97" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mean times and scores:\n", " fit_time 1.34e-02\n", "score_time 3.98e-04\n", "test_score 9.73e-01\n", "train_score 9.75e-01\n", "dtype: float64\n" ] } ], "source": [ "res_df = pd.DataFrame(res)\n", "display(res_df)\n", "print(\"Mean times and scores:\\n\", res_df.mean())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Benefits of Cross-Validation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stratified K-Fold cross-validation and other strategies" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iris labels:\n", "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2\n", " 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n", " 2 2]\n" ] } ], "source": [ "from sklearn.datasets import load_iris\n", "iris = load_iris()\n", "print(\"Iris labels:\\n{}\".format(iris.target))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDg1NC40MDc0MDYyNSAzNTEuMjY4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicvVrLchs3ELzvV+CYHAxhZvA8+hE7xzxUySGVAyPJMl0U5Ygs+/czgEhug6ZEy6G2yi6LLe10D9CYwY5F5uNw9pLM9co481H/fjF/mb/130tD5p05e3P1eX5x9du7V+ZiNTjFb4YcvPUueRf14wI/SiDLMaegsOs+fRiG5fCvyWSDfmZ2NnrRr6KQ9RIiB0MuWzF3V+ZPszRnL7lJssFRiS5lL+ZaFX1RynfD2S+z9frqbqmazNnPZFYXy2HYxBb21jE5FpXKOVqfUgmE+KLDXbKRqAjXXDYxEFPpr4ZfzdPF06jYbBUPTTF3irlEGxMHyb1iwDvFnJ2uq3ifRsUd9vyKY7G6ni7srTHgveLAtpAvEda4w55PMReNFEr0vneGL8HWqCX0zkAcXYBxTuKOp1gbyDuzgNjOLIijMTDONIZBRjQNKkTTII4GwTjTGMeXYpP3nHNvnOS8MiSW0hsHcTQIxpmmrABj5xZQ2LkFcXQFxjmJW55ieSRH46BYNA7iaBCMc3Lj6NdjTfRkSwoh7lfxEe9rIlenq2Ss4oidTiEeHlSJhw1VIo6KMM7zKMXdQqW4u6gUcVSEcQ4q3TqyCdBrj81w8aly9DsD6W4RJWGGlG46mJKlBi9qZM1leHVuzt6SpmvO3w+UNLKXnH2gohpdtC6Y88vhh7e3C71h/WjOP5qfzofGP4iuO9cTEjs+hI/wSSq2cA76R/fpKz7u+aKunjoyUkcH6BG2kIt1JKSFpBT5ik22bL3EqD4oLSoVtpIy8f1Db2brmfl0O1+uV73O7a2Mgs3UdlIdka3rscMaPdvc/CfEtlUf5sSpEf7+aTFf72/C7kKVrY+pFB7JADtCxll9mUhd4tkzkPFhskjqqBJcBrIRO0YWktZBLc/6RchAJofJRGxK2262IRuxw2Tqj5wot8OtFkuedMk5SWN7vZitVmYx++dqcXDLnZ6xF6RHirxNRVqxZBuaB85v2ltFC/OHmWsfmK3nt8vVwUCk3qFUMtfjUI+8WkkNWPNOEaS4w85LSZuY9zG6djgeepoOPh301IsvRM41sz/0NO8/zW39fLYh5JayiLf3B6Bt1Xq2vJzdXZqLu9vV6sXn2WJ+2ZbAfJmvP5jV7d36Sr85LvFuaaDiStos5+nfp7QAaPXRdOup0123LmfSugr4osNZ3Rgk6Ovgrq912H63eA7t0Kk6/RpdDcRZpNePOGrFOFPnAD2syyFEbQch1ZLX5YA4asU4U+dAbQRQ1BmGKNqUUwy1oHL7oPdhhBcIO2eL9s1UYYyC+BQZSHS6ZD7UUJiB12tFjlozfZ8C4qgV40ydQ9CLspdCsfQ5xFqIAos2jS4HxFErxpk6h3pD0XOYohg9k5K09u5dtEe4u2cnb4O2m/shyhgE4UlOszjrfPHqbdQPV23UDzAKhSBT649SLIm+bFGnHy7gqB9gFApBTqH/0JtwHVPu3oSxcGAJBXt0JRRxLJUY5xQl9KhwrBYoHHzRCUccBWKcSYRjiUDhYIhOOOIoEONMInx7U8H6SL7U66aT0NdHxLEObmOcojYeFQy1rBONVxkUjTgKxDiTCIci1gnH+wsKRxwFYpxJhEP16oQnfe9Nkl2OvXDEUSDGmUT4Jl7XN3c3ra5t7lAsz5vHJ6nYcOHu2uR4q+ra5Ah3bX4MMolouGGjaLhGoWiAu94+Bjm1aBxTRlHyLNn3bXCEuy6ob63k9IbgRxsgdDJxsGMoENoaCgQY1UCQZxEJO4QioYWhSIBRDQQ5KPKbBpP7mdzsEK8l8eGBXaqjtyB14MasUtsAwvVTIqrlVt/l1Z4QH9HHOShkm7UsZ44UCvDwHlEdiWTPibpEEH2cqM6QvLYz71goA5HfIxLRH9SanASJEH2cSLjNe6noPVmb0EgU94g81R/UUMgD4OM03qkzArkQfJQINHmfBv5HCXgAPUKk54RdYA4hFXSCdqOeSb3cBrQ+IhOijzPp4tosxWWhEjwy7ZshxmSdoq5bO0QfZ9J91N1kvQ1kIkEm/8AwcBxDF8vfPoQm0YOQUi5xnJ4CdmRUS7XkZHKs/Z/C0SF0LUs5qv9gCA3YMTIXrItRslpXa/mxIXTW8+BzZJhBj9ARKv35GCgFcT4fn0DrTdSJlOJHphE6Nn8ObFkSUS6O/XeOn4O+XPzv6XNw7bjG5JLwU4fPDz38TbPnhx4+PHrWs6eeawav77EZJs812/fzq0vzem/2vA1Ue2D9taBtA+pHA5vrT6qz7cz1F4AoRhvK/eFN8QC86GAtDzvYH4RbX9w2w7ENXu/1tRQ3D9ckd2Q1yfO72Xw5X14bTWw2urEbfDycIX2doS5h4ebEPsUR73PUdjji/jD+PVmOfC3Nq9W6S/HX4T+jNROiCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTc4NwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVJLkltBCNu/U+gCrmr+zXmcmtXk/tsI7KyggRYSkBY4yMRLDFGNcsUfeYLxOoG/6+Vp/D7ehdSCpyL9wLVpG+/HmjVRsDRiKcw+9v0oIcdT498Q6LlIE2ZkMnIgGYj7tT5/1ptMOfwGpGlz+ihJehAt2N0adnxZkEHSkxqW7OSHdS2wughNmBtrIhk5tTI1z8ee4TKeGCNB1SwgSZ+4TxWMSDMeO2cteZDheKoXL369jdcyj6mXVQUytgnmYDuZCacoIhC/oCS5ibto6iiOZsaa24WGkiL33T2cnPS6v5xEBV4J4SzWEo4ZesoyJzsNSqBq5QSYYb32hXGaNkq4U9PtXbGv32cmYdzmsLNSMg3OcXAvm8wRJHvdMWETHoeY9+4RjMS8+V1sEVy5zLkm04/9KNpIHxTX51xNma0o4R+q5IkV1/j//N7Pzz+QN32xCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzAgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVxpAE9UEi8KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nEVRSXIEIQy79yv0ganCK/CeTs2p8/9rLDNJThZgazFpgYEteIkh1sDMgS+5fE3oNHw3MtvwOtkecE+4LtyXy4JnwpbAV1SXd70vXdlIfXeHqn5mZHuzSM2QlZU69UI0JtghET0jMslWLHODpCmtUuW+KFuALuqVtk47jZKgIxThb5Qj4ekVSnZNbBqr1DqgoQjLti6IOpkkonZhcWrxliEin3VjNcf4i04idsfj/qww61EkktJnB91xJqNNll0DObl5qrBWKjmIPl7RxoTqdKqBY7zXtvQTaeC59l/hBz59/48Y+rneP8buXCIKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYzID4+CnN0cmVhbQp4nEWQuXUEMQxDc1WBEniAOuoZP0ez/acLabzeQPp4hHiIPQnDcl3FhdENP962zDS8jjLcjfVlxviosUBO0AcYIhNXo0n17YozVOnh1WKuo6JcLzoiEsyS46tAI3w6ssdDW9uZfjqvf+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2r8IuyKUtn1cTmWcunsHtMJnK1f7fQOo5zqACmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MiA+PgpzdHJlYW0KeJwzNjNUMFAwsVQwMjZRMDY0AmIThRRDLqAIiJXLBRPLAbNAqnK4oMpzYKpyuNIA6QkNwAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjEgPj4Kc3RyZWFtCnicRZBLEsMgDEP3nEJH8EcGfJ50ukrvv60hTbOAp7FABncnBKm1BRPRBS9tS7oLPlsJzsZ46DZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+Udw9V/1R7HunM3EwGTlDoRm9SnufJsdUV3dZH/SY27Wa38V9qqwtKyl5YTbzl0zoATuqRzt/QWpczqECmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTQgPj4Kc3RyZWFtCnicPVC7EUMxCOs9BQvkznztN8/Lpcv+bSScpEI2QhKUmkzJlIc6ypKsKU8dPktih7yH5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+tcvdS3O89HG+iiJR08K755fTLzy28Tj2ORLq9+YprcaY6CkRwRmryinRhxbLIQ6TVBDU9A2u1AK7eevk3aEd0GYDsE4njNKUcQ//WuMfrA4eKUvQKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM2ID4+CnN0cmVhbQp4nE1QS25EIQzbc4pc4EkkIQHOQ9VV5/7bscNU7SqGGH9ID+myVR7rU2J1iezypU2XyjJ5FajlT9v/UQwCbv/QyEG0t4ydYuYS1sXCJDzlNCMbJ9csH487TxtmhcbEjeOdLhlgnxYBNVuVzYE5bTo3QLqQGreqs95kUAwi6kLNB5MunKfRl4g5nqhgSncmtZAbXD7VoQNxWr0KuWOLk2/EHFmhwGHQTHHWXwHWqMmyWcggSYYhzn2je5QKjajKeSsVwg+ToRH1htWgBpW5haKp5ZL8HdoCMAW2jHXpDEqBqgDB3yqnfb8BJI1dUwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nDWMuxHAMAhDe0/BCAaLj/fJpUr2b4Pt0ICkd/eCgzpB8rgbKZwubtlXehuPk54mALH0TEPt32BF1YtaFC1fbmPQYiq+P/okIJZ18l449JAS3h/FFx17CmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ1IC9oeXBoZW4gNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciA1NCAvc2l4IDU2IC9laWdodAo2NyAvQyAvRCA3MCAvRiA4MyAvUyAvVCA4NiAvViA5NyAvYSAvYiAvYyAvZCAvZSAvZiAvZyAvaCAvaSAxMDggL2wgMTEwIC9uCi9vIC9wIDExNCAvciAvcyAvdCAxMTggL3YgL3cgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvQyAxNiAwIFIgL0QgMTcgMCBSIC9GIDE4IDAgUiAvUyAxOSAwIFIgL1QgMjAgMCBSIC9WIDIxIDAgUiAvYSAyMiAwIFIKL2IgMjMgMCBSIC9jIDI0IDAgUiAvZCAyNSAwIFIgL2UgMjYgMCBSIC9laWdodCAyNyAwIFIgL2YgMjggMCBSCi9mb3VyIDI5IDAgUiAvZyAzMCAwIFIgL2ggMzEgMCBSIC9oeXBoZW4gMzIgMCBSIC9pIDMzIDAgUiAvbCAzNCAwIFIKL24gMzUgMCBSIC9vIDM2IDAgUiAvb25lIDM3IDAgUiAvcCAzOCAwIFIgL3IgMzkgMCBSIC9zIDQwIDAgUiAvc2l4IDQxIDAgUgovc3BhY2UgNDIgMCBSIC90IDQzIDAgUiAvdGhyZWUgNDQgMCBSIC90d28gNDUgMCBSIC92IDQ2IDAgUiAvdyA0NyAwIFIKL3plcm8gNDggMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjQ5IDAgb2JqCjw8IC9CQm94IFsgMCAwIDcyIDcyIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjIKL01hdHJpeCBbIDEgMCAwIDEgMCAzNTEuMjY4NzUgXSAvUGFpbnRUeXBlIDEgL1BhdHRlcm5UeXBlIDEKL1Jlc291cmNlcyA8PCAvUHJvY3NldHMgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KL1RpbGluZ1R5cGUgMSAvVHlwZSAvUGF0dGVybiAvWFN0ZXAgNzIgL1lTdGVwIDcyID4+CnN0cmVhbQp4nHWPMQ7DMAwDd72CH3AhO4rirF2y9w9tl3jJ0u+XdOfChAFT1olyOM/jML+tXvf0rceC/4/rPRu2Jl1PvKziY1aWBDWMV/WOk46DGhaNTpPTAhSdjj1l1A5q2BrYfRr822iko4eMhKCZ2MTU5GG/2aclioqspGhsLLOZnSka0WXiyV5F4/AyA3B6iMd8ZWZUwBCT8cvcQ0sswtrdvkeQN8QKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvQkJveCBbIDAgMCA3MiA3MiBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyCi9NYXRyaXggWyAxIDAgMCAxIDAgMzUxLjI2ODc1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJwljzEOwzAMA3e9gh8Q4DiK4qxduucPbZd4ydLvl1QhwoAp60Q3NNb5tAWq+1P3vUv3C2/6XzNfE9Q0HksbuOg0UNOi0+lyeoCiM3CkjGWAmrYFjlYG33Ya2TBCRkLQTOxiavO0/+7LEq4mOykaB72GOZmiEe2FJ3sTjcu9AnB7iMd8XhkVMMRkfK9/6BOrsPawHyWzMRwKZW5kc3RyZWFtCmVuZG9iago1IDAgb2JqCjw8IC9IMSA0OSAwIFIgL0gyIDUwIDAgUiA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTEgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDMzMi0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCA1MgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzkxMSAwMDAwMCBuIAowMDAwMDEyODQ1IDAwMDAwIG4gCjAwMDAwMTI4NzcgMDAwMDAgbiAKMDAwMDAxMzgyNiAwMDAwMCBuIAowMDAwMDEzODY5IDAwMDAwIG4gCjAwMDAwMTM4OTAgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDAwIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjI2MiAwMDAwMCBuIAowMDAwMDExNDExIDAwMDAwIG4gCjAwMDAwMTEyMTEgMDAwMDAgbiAKMDAwMDAxMDc0NCAwMDAwMCBuIAowMDAwMDEyNDY0IDAwMDAwIG4gCjAwMDAwMDIyODMgMDAwMDAgbiAKMDAwMDAwMjU4OCAwMDAwMCBuIAowMDAwMDAyODIxIDAwMDAwIG4gCjAwMDAwMDI5NjcgMDAwMDAgbiAKMDAwMDAwMzM3OCAwMDAwMCBuIAowMDAwMDAzNTE0IDAwMDAwIG4gCjAwMDAwMDM2NTYgMDAwMDAgbiAKMDAwMDAwNDAzMyAwMDAwMCBuIAowMDAwMDA0MzQzIDAwMDAwIG4gCjAwMDAwMDQ2NDYgMDAwMDAgbiAKMDAwMDAwNDk0NiAwMDAwMCBuIAowMDAwMDA1MjY0IDAwMDAwIG4gCjAwMDAwMDU3MjkgMDAwMDAgbiAKMDAwMDAwNTkzNSAwMDAwMCBuIAowMDAwMDA2MDk3IDAwMDAwIG4gCjAwMDAwMDY1MDggMDAwMDAgbiAKMDAwMDAwNjc0NCAwMDAwMCBuIAowMDAwMDA2ODY4IDAwMDAwIG4gCjAwMDAwMDcwMDggMDAwMDAgbiAKMDAwMDAwNzEyNSAwMDAwMCBuIAowMDAwMDA3MzU5IDAwMDAwIG4gCjAwMDAwMDc2NDYgMDAwMDAgbiAKMDAwMDAwNzc5OCAwMDAwMCBuIAowMDAwMDA4MTA3IDAwMDAwIG4gCjAwMDAwMDgzMzcgMDAwMDAgbiAKMDAwMDAwODc0MiAwMDAwMCBuIAowMDAwMDA5MTMyIDAwMDAwIG4gCjAwMDAwMDkyMjEgMDAwMDAgbiAKMDAwMDAwOTQyNSAwMDAwMCBuIAowMDAwMDA5ODM2IDAwMDAwIG4gCjAwMDAwMTAxNTcgMDAwMDAgbiAKMDAwMDAxMDMwMSAwMDAwMCBuIAowMDAwMDEwNDYxIDAwMDAwIG4gCjAwMDAwMTI5NzYgMDAwMDAgbiAKMDAwMDAxMzQwNiAwMDAwMCBuIAowMDAwMDEzOTcxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNTEgMCBSIC9Sb290IDEgMCBSIC9TaXplIDUyID4+CnN0YXJ0eHJlZgoxNDEyNQolJUVPRgo=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAFgCAYAAAC44OjyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxcVZ3//9ebdJNu9k3CTsKqEDCyiiOQKOKw6OBAZFEkKIvOIILjjNv3py3jguMCAiKCKFEQMLgxKoI4CbtKgCQQZCcYCQkEhCTQDenk8/vj3g5FUVt3VXWd6ryfj0c9uured5176i517+l77i1FBGZmZmZmZjZ0a7S6AmZmZmZmZu3ODSszMzMzM7M6uWFlZmZmZmZWJzeszMzMzMzM6uSGlZmZmZmZWZ3csDIzMzMzM6uTG1Zm1jSSJkr6ewPLGyspJHU0qswUSZoi6daC18skbVdLdgjTuk7SCUN9f72qTV/SZZK+PJx1aoShrqv1Ls/BkjRP0kE1ZkPSDkOczpDfa2bWLtywMhvhJL1d0u2SXpD0nKTbJO2djxvWgzgbmohYJyIeq7ccST2SLi8q+5CImFpv2UNVOP2U1sdS88rMzKySEf1fX7PVnaT1gN8AHwN+BqwJ7A+83Mp61UJSR0T0t1vZ1v5G+hlRMzNrDp+xMhvZdgKIiCsjYkVE9EbEDRExR9KbgIuA/fKuZs8DSDpM0j2SlkiaL6lnoLCC7k0nSPqbpMWSPl8wvjvvuvUPSfcDexdWRtJnJD0qaamk+yW9r2DclPxs2jmSngN6JI2S9M18Oo8Bh1X6sJK2lvQLSc9IelbSBRXKXkPS/5P0hKSnJf1Y0vp5vkvS5XkZz0u6U9KYgrIeyz/D45I+UKYuF0n6ZtGwX0v6ZLV5UaKsVd2oJG0s6dp8+fwF2L4o+518uS2RdJek/fPh/wx8Djg6X96z8+EzJJ2UP680Tyou+6I6jMvn2xr56x9Ierpg/OWSziicfrn1MbehpN/m8+rPkl7zmQvKrbTctsjn23OSHpF0csH7eiRdk793CfDRMvNqfUmXSnpK0pOSvixpVD6uIetqiVzJ5ZmP20fSzHzcIknfrjYfqtRpH0l35O95StIFktYsih2ar/+LJX1jYBnn7/+wpL8q2/6vl7Rtmekcmq/zS/P5+KlqdTMzawsR4YcffozQB7Ae8CwwFTgE2LBo/BTg1qJhE4HdyP7xsjuwCDgiHzcWCOASoBt4M9nZrzfl488GbgE2ArYG7gP+XlD2ZGCLvOyjgReBzQvq0g98nOxsejfZAe4DeVkbAdPz6XeU+KyjgNnAOcDaQBfw9gplfxh4BNgOWAf4BfCTPH8q8L/AWnm5e+bzcm1gCbBzntsc2LXMvD8AmA8of70h0AtsUeO8uLWgrAB2yJ9fRXb2cW1gPPBkUfaDwMb55/wPYCHQlY/rAS4vqucM4KT8eaV5UnHZl/j8fwP2zJ8/CDxWsJ78DXhLiem/5nPnwy4DngP2yT/TFcBVZaZZcrnl424CLszXiwnAM8A7C+bLcuCIfHl0l5lXvwK+n8/7TYG/AKfm4xq5rta6PO8Ajs+frwO8tdp8KFGXecBB+fM9gbfm0xoL/BU4o2g9nJ5/vm2AhwqW3RFk686b8vf/P+D2MuvwU8D+BdvFHq3+rvTDDz/8aMTDZ6zMRrCIWAK8nVcPiJ/J/2tf9r/XETEjIu6NiJURMQe4EjiwKPalyM5+zSY7QHxzPvz9wFci4rmImA+cV1T2tIhYkJd9NfAw2QHzgAURcX5E9EdEb17euRExPyKeA75W4ePuQ9ZQ+c+IeDEi+iKi8Hqd4rI/AHw7Ih6LiGXAZ4FjlHUDW052MLtDZGf67srnJcBKYLyk7oh4KiLmlqnPLWTzfeAMw1HAHRGxoMZ58Tr52ZEjgS/kn/E+skbzKhFxeUQ8m3/ObwGjgZ0rlVug0jwZUG7ZF7sJOFDSZvnra/LX48gaqbNrrBPALyLiL5F137yCrGFUSsnlJmlrsu3g0/l6MQv4AXB8wXvviIhf5cujt7jgfJs5hKyh8WJEPE3WMDomjzRyXV2lyvJcDuwgaZOIWBYRf6o0HyrUZ2Bad0XEn/JpzSNrRBZv+1/Pt++/AecCx+bDTwW+FhF/zZfTV4EJZc5aLQd2kbReRPwjIu6uVjczs3bghpXZCJcf6EyJiK3IznBsQXZAVJKkfSVNz7sovUD2n/hNimILC56/RPbfcvKy5xeMe6Ko7A9JmpV3NXo+r09h2YXvrVpeka2BJ6L8tVOlyi4s7wmy/7SPAX4CXA9cJWmBpP+R1BkRL5KdXfoo8FTePe2N+Webm3cbWyZp/4gIsrNLAweex5E1CmqdF6W8Ia9jpXn8H3l3rBfyctevodxa5smAcsu+2E1kZz8PAG4mOzN1YP64JSJW1linwUyz5HIj+1zPRcTSguwTwJYFr4vXj2LbAp1ky31gmX2f7MwVNHZdXaXK8vwIWXffB/Lufofnw8vNh2rT2knSbyQtzLtEfpXXrzvFn3GL/Pm2wHcK5s1zgHjtPB5wJHAo8ISkmyTtV61uZmbtwA0rs9VIRDxA1rVq/MCgErGfAtcCW0fE+mTXvajGSTxFdtA4YJuBJ/l/ri8BTgM2jogNyLoKFpZdXJ+y5ZUwH9hG5W88UFz2ArKDwcKy+4FFEbE8Ir4UEbsAbwMOBz4EEBHXR8S7yLoBPpB/JiJi18ju3rdORNySl3klcFT+2fcFfg41z4tSnsnrWG4e7w98muzsyYZ5uS8UlFtqedc0T6q8r5SbyM7WTcyf3wr8E1nD6qYy76lWv4oqLLcFwEaS1i2Ib0PWjbLctItfzyfr+rhJRGyQP9aLiF3z8Y1cV4HqyzMiHo6IY8kad18HrpG0dqX1t4rvka3TO0bEemTXmRWvk8WfcUHBZzq1YN5sEBHdEXF78UQi4s6I+Je83r8i69pqZtb23LAyG8EkvTH/j/dW+eutyc6gDHQZWgRsVXSB+rpk/93vk7QP2ZmWWv0M+KykDfNpfrxg3NpkB6vP5HU5kVcbeJXKO13SVpI2BD5TIfsXsoPbsyWtnV/A/08V8lcCZyq70cI6ZP+dvzoi+iVNkrRb3vVuCVnXpRWSxkh6r6S1yQ6ylwEryk0gIu7JP+8PgOsjYuCGDEOZF0TECrLrnnokrSVpF6DwN6DWJWsIPQN0SPoCWbe7AYuAsYU3HKh1nlSrW4m6Pkx2TdkHgZvzrmiLyM5WlGtYlVofa1ZuueXdUm8HvpavF7uTne25okJxr5lXEfEUcAPwLUnrKbvRx/aSBrrKNWNdrbg8JX1Q0hvys38D69aKcvOhQn0Kp7cEWJafif1Yicx/5tv31sAngKvz4ReRbfu75nVbX9Lk4jdLWlPSByStHxHL8+nVUjczs+S5YWU2si0lO1PyZ0kvkjWo7iO7CB7g/4C5wEJJi/Nh/wacJWkp8AUG99/kL5F1D3qc7CD0JwMjIuJ+4FtkF9wvIrtBxm1VyruErEvTbOBuskZFSXmj4z3ADmQ3R/g7Wbe9cn6Y1+/mvL59vNoQ3IzsmqAlZBfw3wRcTvad+R9k/6V/juzsy79V+QxXAgeRnQkcqOtQ5sWA08i6wi0kO/v4o4Jx1wPXkd1U4In8MxV23ZqW/31WUqnrWirNk6G4CXg2vx5n4LWAe8rkS62Pg1FuuUH2D4WxZMvul8AXI+IPFcoqNa8+RPaTBfcD/8intXk+rhnrarXl+c/AXEnLgO8Ax0REX5X5UMmnyP6RsjT/PFeXyPwauAuYBfwWuDT/TL8kO2t2Vd6N8D6ya9JKOR6Yp1fvwPjBGupmZpa8gbtVmZmZmZmZ2RD5jJWZmZmZmVmd3LAyMzMzMzOrkxtWZmZmZmZmdXLDyszMzMzMrE5uWJmZmZmZmdXJDSszMzMzM7M6uWFlZmZmZmZWJzeszMzMzMzM6uSGlZmZmZmZWZ06Wl2BkaKzs3Nhf3//mFbXw6xddHR0LFq+fPlmA6+7u7sX9vX1eRsyq1FXV9ei3t7eVdvQ6NGjn33llVc2amWdzNpJV1fX0729vd7vWMMoIlpdhxFBUvT09JQd//jjjzNt2jQmT57MuHHjqpbnvPMjPd/T00NEaCAjKQa+j2bMmMHkyZOZNm0aEydOrFq+886vjnlJZbehdqi/8863Oj9p0qTXbENm9XJXwGHQDge5zjufSj7lnbDzzqeWH6zU6u+88ynnzQbLDasmS+2g1XnnU86ntlN13vmU84OVWv2ddz7lvNlQuGHVRKkdtDrvfMp5IKmdqvPOp54fjBTr77zzqebNhqrtGlaSPi9prqQ5kmZJ2rdKvkfSp/LnZ0k6KH9+hqS1yrznNEmPSApJmwylnqkdtDrvfMr5AansVJ13vh3ytUq1/s47n2LerB5t1bCStB9wOLBHROwOHATMr/X9EfGFiLgxf3kGULJhBdyWl/3EUOqZ2kGr886nnC+Uwk7VeefbJV+LlOvvvPOp5c3q1W63W98cWBwRLwNExOKBEZLmAVcDk/JBx0XEI4VvlnQZ8Btgi/wxXdLiiJhUmIuIe/L8oCuY2kGr886nnB+s1HbCzjvvvPPOj4y8WSO01Rkr4AZga0kPSbpQ0oFF45dExD7ABcC55QqJiPOABcCk4kZVPVI7aHXe+ZTzg5XaTth555133vmRkTdrlLZqWEXEMmBP4BTgGeBqSVMKIlcW/N2v2fWRdIqkmZJmAkkdtDrvfOr5wUhtJ+y888477/zIyJs1Urt1BSQiVgAzgBmS7gVOAC4bGF0YHYa6XAxcDCApUjpodd751PO1Sm0n7Lzzzjvv/MjImzVaW52xkrSzpB0LBk3gtTeYOLrg7x1VilsKrNvA6iV10Oq886nna5HaTth551POA0nVx3nnU8+bNVq7nbFaBzhf0gZAP/AIWbfAAaMl/ZmswXhslbIuBq6T9FTxdVaSTgf+C9gMmCPpdxFxUr2VT/kg13nnU8unuBN23vlU8wNSqY/zzrdD3qzRFNH0HnPDIr8r4F6Fdwoc5ulHT09P2fGpHbQ673yr8z09PUTEqltvSoqB76NUd8LOO59SXlLZbagd6u+8863OT5o06TXbkFm92qorYLtqh4Nc551PJZ/yTth551PLD1Zq9Xfe+ZTzZoPVbl0By4qIsa2uQympHbQ673zK+dR2qs47n3J+sFKrv/POp5w3GwqfsWqi1A5anXc+5TyQ1E7VeedTzw9GivV33vlU82ZDNWKusWq1zs7Ohf39/WNaXQ+zdtHR0bFo+fLlmw28Hj169LOvvPLKRq2sk1k76erqerq3t3fVfqe7u3thX1+f90NmNerq6lrU29u7WfWkWW3csDIzMzMzM6uTuwKamZmZmZnVqWrDStInJK2nzKWS7pZ08HBUzszMzMzMrB3UcsbqwxGxBDgYeANwInB2U2tlZmZmZmbWRmppWA38cNqhwI8iYnbBMDMzMzMzs9VeLQ2ruyTdQNawul7SusDK5lbLzMzMzMysfVS9K6CkNYAJwGMR8bykjYEtI2LOcFTQzMzMzMwsdR3VAhGxUtIiYBdJVfNmZmZmZmarm6oNJUlfB44G7gdW5IMDuLmJ9TIzMzMzM2sbtXQFfBDYPSJeHp4qmZmZmZmZtZdauvY9BnQCblhV0N3dvbCvr29Mq+th1i66uroW9fb2bjbwurOzc1F/f/+mrayTWTsZNWrUc/39/RsPvPZ+yGxwivdDZvWq5YzVz4E3A3+koHEVEac3t2rtRVIUzssZM2YwefJkpk2bxsSJE6u+33nnV7e8JCJCBa/jhBNOYNy4cVXLf/zxx5k2bRqTJ0923vnVNv/SSy+9bhsqtU9PYXt33vkU88X7IbN61XK79WuB/wZuB+4qeFgZ7fSl4rzzrc4XSumg1XnnU8/XIrXt3XnnU86b1auWuwJOlbQmsFM+6MGIWN7carWv1L4knHc+5fxgpXyQ67zzqeVT296ddz7lvFkj1HJXwInAVGAeIGBrSSdEhO8KWCS1LwnnnU85P1ipHbQ673zK+dS2d+edTzlv1ii1dAX8FnBwRBwYEQcA7wbOaW61ypP0eUlzJc2RNEvSvlXyPZI+lT8/S9JB+fMzJK1V5j1XSHpQ0n2Sfiips5a6pfQl4bzzqecHI7WDVuedTzmf4vbuvPOp5s0aqZaGVWdEPDjwIiIeIrtL4LCTtB9wOLBHROwOHATMr/X9EfGFiLgxf3kGULJhBVwBvBHYDegGTqql/FS+JJx3vh3ytUrtoNV551POp7q9O+98inmzRqulYTVT0qWSJuaPS2jdzSs2BxYP/KZWRCyOiAUAkuZJ+rqkv+SPHYrfLOkySUdJOh3YApguaXpxLiJ+FzngL8BWtVQuhS8J551vl3wtUjtodd75lPPgnhPOOz+YvFmj1dKw+hgwFzgd+ARwP/DRZlaqghvIrvF6SNKFkg4sGr8kIvYBLgDOLVdIRJwHLAAmRcSkcrm8C+DxwO/LjD9F0kxJM2upfIpfKs47n2o+tYNW551POT8gle3XeefbIW/WaFUbVhHxckR8OyL+NSLeFxHnDJwxGm4RsQzYEzgFeAa4WtKUgsiVBX/3a8AkLwRujohbytTn4ojYKyL2qlZQql8qzjufYj61g1bnnU85XyiF7dd559slb9ZoZe8KKOlnEfF+SfcCr/vFwfwap2EXESuAGcCMvG4nAJcNjC6M1jMdSV8E3gCcWk85kPaXivPOp5ZP7aDVeedTzg9Watu7886nnDcbrEq3W/9E/vfw4ahILSTtDKyMiIfzQROAJwoiRwNn53/vqFLcUmBdYHGJ6ZxEdvfDd0bEynrqnNqXhPPOp5xP7aDVeedTzg9Watu7886nnDcbirINq4h4Kn/6bxHx6cJxkr4OfPr172q6dYDzJW0A9AOPkHULHDBa0p/JujgeW6Wsi4HrJD1V4jqri8gabHdIAvhFRJw12Mqm9iXhvPMp54GkDlqddz71/GCktr0773zKebOhUnbjuwoB6e6I2KNo2JxWdQUsR9I8YK+IeN0ZqGGafhTOy9S+JJx3PrW8JCJCBa/jhBNOSOag1XnnU8+/9NJLr9uGSu3TU9jenXc+xXzxfsisXmuUGyHpY/k1TDvnP8Y78HgcmDN8VWw/7fSl4rzzrc4XSumg1XnnU8/XIrXt3XnnU86b1avSNVY/Ba4DvgZ8pmD40oh4rqm1GoKIGNvqOkB6XxLOO59yfrBSPsh13vnU8qlt7847n3LerBGqdgVcFZQ2BboGXkfE35pVqXbU3d29sK+vb0yr62HWLrq6up7u7e1dtc10dnYu7O/v9zZkVqOOjo5Fy5cv32zgtfdDZoPT1dW1qLe3d7PqSbPa1HKN1XuAbwNbAE8D2wJ/jYhdm189MzMzMzOz9JW9xqrAl4G3Ag9FxDjgncBtTa2VmZmZmZlZG6mlYbU8Ip4F1pC0RkRMJ/v9KDMzMzMzM6PyzSsGPC9pHeBm4ApJT5P9hpSZmZmZmZlR2zVWawO9ZGe3PgCsD1yRn8UyMzMzMzNb7VVsWEkaBVwfEQcNX5XMzMzMzMzaS8VrrCJiBfCSpPWHqT5mZmZmZmZtp5ZrrPqAeyX9AXhxYGBEnN60WpmZmZmZmbWRWhpWv80fZmZmZmZmVkLVm1cASOoGtomIB5tfJTMzMzMzs/ZS9YyVpPcA3wTWBMZJmgCcFRHvbXbl2kl3d/fCvr6+Ma2uh1m76OrqWtTb27vZwGtvQ2aDU7wNdXZ2Luzv7/c2ZFajjo6ORcuXL9+setKsNrXcbv0u4B3AjIh4Sz7s3ojYbRjq1zYkxfTp05k8eTLTpk1j4sSJVd8zY8YM551fbfOSiAgVvI5K30ep1d9551udL7UN9fT0APD4448zbdo0Jk+ezLhx46qW77zzq2O+p6fnNduQWb0q3hUw1x8RLxQNq95/cDWU+k7YeedTyg9GivV33vlU86kctDrvfDvkzRqplptX3CfpOGCUpB2B04Hbm1ut9pTKTtV559shX6tU6++88ynmUztodd75lPNmjVbLGauPA7sCLwM/BV4APtHMSrWrFHaqzjvfLvlapFx/551PLQ8kddDqvPOp580arZaG1WER8fmI2Dt//D+gZTeukPR5SXMlzZE0S9K+VfI9kj6VPz9L0kH58zMkrVXmPZdKmp1P4xpJ6zSi7qnthJ133nnnnR8Z+QEpHbQ673zqebNGq6Vh9dkahzWdpP2Aw4E9ImJ34CBgfq3vj4gvRMSN+cszgJINK+DMiHhzPo2/AafVUW0gvZ2w884777zzIyNfKKWDVuedTz1v1mhlr7GSdAhwKLClpPMKRq0H9De7YmVsDiyOiJcBImLxwAhJ84CrgUn5oOMi4pHCN0u6DPgNsEX+mC5pcURMKsxFxJI8L6CbOm/WkdpO2HnnnXfe+ZGRH6yUD3Kddz61vNlgVTpjtQCYCfQBdxU8rgXe3fyqlXQDsLWkhyRdKOnAovFLImIf4ALg3HKFRMR5ZJ9vUnGjaoCkHwELgTcC55fJnCJppqSZ5aaV2k7Yeeedd975kZEfrNQOWp13PuW82VCUPWMVEbOB2ZKuiIhWnaF6jYhYJmlPYH+yM1NXS/pMRFyWR64s+HtOndM6UdIoskbV0cCPSmQuBi4GkPS6s1qp7YSddz7lPJBUfZx3PvX8YKR20Oq88ynnzYaq7BkrST/Ln96T38ThNY9hqt/rRMSKiJgREV8ku/bpyMLRZZ4PeVpk3QuPrJYtluJO2HnnU80PSKU+zjvfDvlapXbQ6rzzKefN6lHpd6wGbql++HBUpBaSdgZWRsTD+aAJwBMFkaOBs/O/d1QpbimwLrC4cGB+XdX2EfFI/vw9wAODqWeqO2HnnU8xXyiF+jjvfLvkJ00q2ZP9NVI7aHXe+ZTzZvWq1BXwqfzvE+UyLbAOcL6kDchuoPEIcErB+NGS/kx2Ju7YKmVdDFwn6ami66wETJW0Xv58NvCxWiuY8k7YeedTyw9WavV33vmU86kdtDrvfMp5s0aodMYqORFxF/C2CpHvRsSXit7TU/B8SsHz8ylxU4qIWAn801Dql9pO1XnnU84PVmr1d975lPOpHbQ673zKebNGWaPVFRhJUtqpOu986vnBSLH+zjufaj61g1bnnU85b9ZIZRtWkj4laevhrEw9ImJs4e9atUIqO1XnnW+HfK1Srb/zzqeYT+2g1XnnU86bNZoiSt88T9I5wFHA42S3L5/W6oZLyrq7uxf19fVt2up6mLWLrq6uRb29vZsNvO7u7l7Y19c3ppV1MmsnxdtQZ2fnov7+fu+HzGo0atSo5/r7+zdudT1s5CjbsIJVd8g7ADgG+BeyGzlcCfwyIpYOSw3NzMzMzMwSV7Fh9Zpg9mO5B5HdznzniFirmRUzMzMzMzNrFzXdFVDSbmRnrY4GngU+18xKmZmZmZmZtZOyDStJO5L9FtQxwArgKuDgiHhsmOpmZmZmZmbWFirdvOIxsuuproqIe4e1VmZmZmZmZm2kUsNqR2BMRNxaNHx/YEFEPDoM9TMzMzMzM0tepR8IPgdYUmJ4L3Buc6pjZmZmZmbWfio1rMZGxJzigRExExjbtBqZmZmZmZm1mUoNq64K47obXREzMzMzM7N2Valhdaekk4sHSvoIcFfzqmRmZmZmZtZeKt28YgzwS+AVXm1I7QWsCbwvIhYOSw3bRHd398K+vr4xra6HWbvo6upa1Nvbu9nAa29DZoPjbcisPsXbkFm9yjasVgWkScD4/OXciPi/pteqDUmKavPSzF4liYhQwWtvQ2aD4G3IrD7F25BZvao2rKw23qGZDY4PCs3q423IrD5uWFmjVbrGyszMzMzMzGrghpWZmZmZmVmdmtawkrSZpKskPSrpfkm/k7STpLGS7mvSNHskfapK5jJJRw2izKbV18zMzMzMRoaOZhQqSWR3FJwaEcfkwyYAY4D5zZimmZmZmZlZqzTrjNUkYHlEXDQwICJmRcQthaH8bNAtku7OH2/Lh28u6WZJsyTdJ2l/SaPys033SbpX0pmVKiDpZEl3Spot6eeS1ioYfVA+3YckHZ7nR0n6Rv6eOZJObdzssHotXLiQY445hu23355ddtmFQw89lIceeoh58+Yxfvz46gUMwcsvv8zRRx/NDjvswL777su8efOaMh2z4dCKbejmm29mjz32oKOjg2uuuaYp0zAbLq3Yhr797W+zyy67sPvuu/POd76TJ554oinTMbPGaFbDajy1/Yjw08C7ImIP4GjgvHz4ccD1ETEBeDMwC5gAbBkR4yNiN+BHVcr+RUTsHRFvBv4KfKRg3FjgQOAw4CJJXfn4FyJib2Bv4GRJ42r4DNZkEcH73vc+Jk6cyKOPPsr999/PV7/6VRYtWtTU6V566aVsuOGGPPLII5x55pl8+tOfbur0zJqlVdvQNttsw2WXXcZxxx3X1OmYNVurtqG3vOUtzJw5kzlz5nDUUUfxX//1X02dnpnVp9U3r+gELpF0LzAN2CUffidwoqQeYLeIWAo8Bmwn6XxJ/wwsqVL2+Pys1L3AB4BdC8b9LCJWRsTDeblvBA4GPiRpFvBnYGNgx0oTkHSKpJmSZg7iM9sgTZ8+nc7OTj760Y+uGjZhwgT233//1+TmzZvH/vvvzx577MEee+zB7bffDsBTTz3FAQccwIQJExg/fjy33HILK1asYMqUKYwfP57ddtuNc84553XT/fWvf80JJ5wAwFFHHcUf//hHfCtja0et2obGjh3L7rvvzhprtHpXY1afVm1DkyZNYq21sg43b33rW/n73//exE9pZvVqyjVWwFyglhtEnAksIjsrtQbQBxARN0s6gOyM0k8kfSMifizpzcC7gX8H3g98uELZlwFHRMRsSVOAiQXjio+OAxDw8Yi4vnCEpLHlJhARFwMX5zkfcTfJfffdx5577lk1t+mmm/KHP/yBrq4uHn74YY499lhmzpzJT3/6U9797nfz+c9/nhUrVvDSSy8xa9YsnnzySe67L7svyfPPP/+68p588km23nprADo6Olh//fV59tln2WSTTRr7Ac2arFXbkNlIkcI2dOmll3LIIYc05POYWXM0q2H1f8BXJZ0cEZcASNobWAso7OjI/3EAACAASURBVCC8PvD3iFgp6QRgVJ7dFngyIi6RtDawh6TfAa9ExM8lPUrWcKpkXeApSZ1kZ6yeLBg3WdJUYBywHfAgcD3wMUn/FxHLJe1U9B5L3PLlyznttNOYNWsWo0aN4qGHHgJg77335sMf/jDLly/niCOOYMKECWy33XY89thjfPzjH+ewww7j4IMPfl15pc5OZfdlMRuZGr0Nma1umrUNXX755cycOZObbrppuD6KmQ1BU/pn5D/9/j7gXfnt1ucCPcCCouiFwAmS/gTsBLyYD58IzJJ0D3Ak8B1gS2BG3lXvMuCzVarx/5F16fsD8EDRuAeBm4DrgI9GRB/wA+B+4O789urfp3kNTxuEXXfdlbvuqn7J3jnnnMOYMWOYPXs2M2fO5JVXXgHggAMO4Oabb2bLLbfk+OOP58c//jEbbrghs2fPZuLEiXz3u9/lpJNOel15W221FfPnZzex7O/v54UXXmCjjTZq7IczGwat2obMRopWbkM33ngjX/nKV7j22msZPXp0Qz+XmTVW0xoOEbGArLteKePzzMPA7gXDP5sPnwpMLfG+PapMs6fg+feA75XITCnz3pXA5/JHoRcG6mut8Y53vIPPfe5zXHLJJZx88skA3Hnnnbz00ktsu+22q3IvvPACW221FWussQZTp05lxYoVADzxxBNsueWWnHzyybz44ovcfffdHHrooay55poceeSRbL/99kyZMuV1033ve9/L1KlT2W+//bjmmmt4xzve4TNW1pZatQ2ZjRSt2obuueceTj31VH7/+9+z6aabDstnNbOhky/GbwxJ4XnZPAsWLOCMM87grrvuoquri7Fjx3LuuefS2dnJ4Ycfzn333cfDDz/MkUceyVprrcWkSZM4//zzWbZsGVOnTuUb3/gGnZ2drLPOOvz4xz9myZIlnHjiiaxcuRKAr33ta6/ru97X18fxxx/PPffcw0YbbcRVV13Fdttt14qPPyJJIiJU8NrbUBO1Yhu68847ed/73sc//vEPurq62GyzzZg7d24rPv6I5G1oeLViGzrooIO499572XzzzYHsTpvXXnvtsH/2kap4GzKrlxtWDeIdmtng+KDQrD7ehszq44aVNZrvgWtmZmZmZlYn35yhQbq6uhZJGtPqepi1i66urkXFr70NmdXO25BZfYq3IbN6uSugmZmZmZlZndwV0MzMzMzMrE5uWJmZmZmZmdXJDSszMzMzM7M6uWFlqwVJp7S6DmbtztuRWX28DZmNbG5Y2erCOzOz+nk7MquPtyGzEcwNKzMzMzMzszq5YWVmZmZmZlYnN6xsdXFxqytgNgJ4OzKrj7chsxHMPxBsZmZmZmZWJ5+xMjMzMzMzq5MbVtZWJK2QNKvgMbZCdqKk35QZN0/SJiWGf0XSfEnLGldrs3Q0cxuStJak30p6QNJcSWc3tvZmrTcM+6HfS5qdb0MXSRrVuNqbWTN1tLoCZoPUGxETmlj+/wIXAA83cRpmrdTsbeibETFd0prAHyUdEhHXNXF6ZsOt2dvQ+yNiiSQB1wCTgauaOD0zaxA3rKztSeoCvgfsBfQDn4yI6UWZjYErgTcAfwFUqqyI+FOeb2aVzZLSqG0oIl4CpufPX5F0N7BVc2tv1noN3g8tyZ92AGsCvhjerE24K6C1m+6C7he/zIf9O0BE7AYcC0zNd3KFvgjcGhFvAa4Fthm2GpulZVi2IUkbAO8B/tjQ2pu1XtO3IUnXA08DS8nOWplZG/AZK2s3pbpgvB04HyAiHpD0BLBTUeYA4F/zzG8l/aPpNTVLU9O3IUkdZP+ZPy8iHmtYzc3S0PRtKCLenTfMrgDeAfyhUZU3s+bxGSsbCWrtt+fuFGalNXobuhh4OCLOHWJ9zNpNw/dDEdFHdmbrX4ZUIzMbdm5Y2UhwM/ABAEk7kXWveLBC5hBgw+GsoFniGrYNSfoysD5wRrMqa5aghmxDktaRtHn+vAM4FHigedU2s0Zyw8pGgguBUZLuBa4GpkTEy0WZLwEH5BfTHwz8rVRBkv5H0t+BtST9XVJPE+ttloqGbEOStgI+D+wC3J1fg3JSc6tuloRG7YfWBq6VNAeYTXad1UXNq7aZNZIi3DvKzMzMzMysHj5jZWZmZmZmVic3rMzMzMzMzOrkhpWZmZmZmVmd3LAyMzMzMzOrkxtWZmZmZmZmdXLDysyszUlakd/afK6k2ZI+Kani97uksZKOG4a6/UDSLlUyR1TLmJmZpc4NKzOz9tcbERMiYlfgXWQ/KvrFKu8ZCzS9YRURJ0XE/VViR5D99pWZmVnbcsPKzGwEiYingVOA05QZK+kWSXfnj7fl0bOB/fMzXWdWyK2SZx6QNFXSHEnXSForH/dOSfdIulfSDyWNzofPkLRX/nyZpK/kZ9X+JGlMPp33At/I67K9pNMl3Z9P46rhmG9mZmb18g8Em5m1OUnLImKdomH/AN4ILAVWRkSfpB2BKyNiL0kTgU9FxOF5fq1SuaIyxwKPA2+PiNsk/RC4H7gAeBh4Z0Q8JOnHwN0Rca6kGfl0ZkoK4L0R8b+S/gdYEhFflnQZ8JuIuCafzgJgXES8LGmDiHi+8XPNzMyssXzGysxsZFL+txO4RNK9wDTKd7mrNTc/Im7Ln18OvB3YGXg8Ih7Kh08FDijx3leA3+TP7yLrjljKHOAKSR8E+stkzMzMkuKGlZnZCCNpO2AF8DRwJrAIeDOwF7BmmbfVmivu5hC82oirZnm82k1iBdBRJncY8F1gT+AuSeVyZmZmyXDDysxsBJH0BuAi4IK8EbM+8FRErASOB0bl0aXAugVvLZcrto2k/fLnxwK3Ag8AYyXtkA8/HrhpENVeVZf8boZbR8R04L+ADYB1KrzXzMwsCW5YmZm1v+6B260DNwI3AF/Kx10InCDpT8BOwIv58DlAf34jiTMr5Ir9Nc/NATYCvhcRfcCJwLS8K+FKssZdra4C/lPSPcCOwOV5OfcA5/gaKzMzawe+eYWZmdUkv3nFbyJifIurYmZmlhyfsTIzMzMzM6uTz1iZmZmZmZnVyWeszMzMzMzM6uSGlZmZmZmZWZ3csDIzMzMzM6uTG1ZmZmZmZmZ1csPKzMzMzMysTm5YmZmZmZmZ1ckNKzMzMzMzszq5YWVmZmZmZlYnN6zMzMzMzMzq5IaVmZmZmZlZndywMjMzMzMzq5MbVmZmZmZmZnVyw8rMzMzMzKxObliZmZmZmZnVyQ0rMzMzMzN7DUkbS5qVPxZKerLg9Zo1lvEjSTtXyfy7pA80ptavKfcgSb+qktlD0j83apodjSrIzMzMzMyao7u7e2FfX9+YRpW35pprPvfyyy9vXG58RDwLTACQ1AMsi4hvFmYkCVBErCxTxonV6hER3x1MvRtsD2A88PtGFOYzVmZmZmZmievr6xsTERQ/pk+fziabbML06dNfN65S/pVXXtloKPWQtIOk+yRdBNwNbC7pYkkzJc2V9IWC7K2SJkjqkPS8pLMlzZZ0h6RN88yXJZ1RkD9b0l8kPSjpbfnwtSX9PH/vlfm0JpSo22H5+24F/qVg+Fvzad4j6TZJO0rqBr4AfCA/C3dUqdxg5o0bVmZmZmZmbWjGjBlMnjyZadOmMXHixEHl67QLcGlEvCUingQ+ExF7AW8G3iVplxLvWR+4KSLeDNwBfLhM2YqIfYD/JGv4AHwcWJi/92zgLa97k7QW8H3gUGB/YIuC0X8F3h4RbwH+G/hyRPQCZwFXRMSEiLimVK7G+QG4K6CZmZmZWdupp1FVS76KRyPizoLXx0r6CFnbYguyhtf9Re/pjYjr8ud3kTV+SvlFQWZs/vztwNcBImK2pLkl3rcL8FBEPAog6QrgQ/m4DYAfS9q+yueqNVeSz1iZmZmZmbWRFjeqAF4ceJJ3l/sE8I6I2J3seqWuEu95peD5Csqf4Hm5REY11ivKDP8KcH1EjAeOKFO/weRKcsPKzMzMzKxNJNCoKrYesBRYImlz4N1NmMatwPsBJO1Gdnaq2P3ATpLG5TfVOLZg3PrAk/nzKQXDlwLr1pCriRtWZmZmZmZtIMFGFWQ3sLgfuA+4BLitCdM4H9hS0hzgP/JpvVAYiIiXgI8C1wG3AI8VjP468A1JxXX7P+DN+c0qjqqQq4kiyp0xMzMzMzOzFHR3dy/q6+vbtFHldXV1Lert7d2sUeU1k6QOoCMi+vKuhzcAO0ZEf4ur9hq+eYWZmZmZWeJ6e3sb9htWbWgd4I95A0vAqak1qsBnrMzMzMzMzOrma6zMzMzMzMzq5IaVmZmZmZlZndywMjMbRpI+IOmGgtf/JOlhScskHSHpOkknDLHsGZJOalxt0yVprKTI+9tTab4VZ4cwrc9J+kE99TUzs5HPDSszW21Jeruk2yW9IOk5SbdJ2jsfN0XSrXWW/7oD+oi4IiIOLoidBVwQEetExK8i4pCImFrPdCvUZydJ0yQtzj/zHEmflDSqGdMbTo2ab5ImSvp7UdlfjYjVosFqZmZD54aVma2WJK0H/IbstzE2ArYEvsSrv/heSxmNaJBsC8xtQDkVSdoe+DMwH9gtItYHJgN78dofRxzI+66xZmarMUkbS5qVPxZKerLg9ZqDKOfDkqre1l3SDpJmVclsJ+mYWqc93NywMrPV1U4AEXFlRKyIiN6IuCEi5kh6E3ARsF/eRe95AEmXSfqepN9JehGYJOmw/IcFl0iaL6mnYBo353+fz8vZr/BMmKRHge2A/83Hjy7uzpfvkP4q6R+Srpe0bcG4d0l6ID/7dAHZLWjL+RJwe0R8MiKeyj/7gxFxXEQ8X3B27SOS/kb2o4lIeq+kuZKez+v2poLpfzrf0S6V9KCkd+bD95E0M58niyR9u1SFJB0jaWbRsDMlXZs/rzRvi8taNd8kjZL0zfzM3GPAYUXZE/N5ulTSY5JOzYevTfbDklvky2OZpC0k9Ui6vOD9lebJPEmfys8GviDpakldFZaLmVlNOjs7F+bf0w15dHZ2Lqw0vYh4NiImRMQEsn3iOQOvI+KVQVT9w0Cjfi9rOyDZhpX/I2lmq6uHgBWSpgJXAX+KiH8ARMRfJX0UOCki3l70vuOAQ4HDgTWBtwIfIjvrNB74g6RZEfEr4ADgcWCDgd/bkLTzQEERsb2kefl0bszHr5qQpCOAzwHvAR4GPgNcCbxN0ibAz8l2WL8GTiP7xfmflPm8BwGfrWG+HAi8CVgpaad8ekcAM4AzyRqBuwDj8mnuHRELJI0FBs7gfQf4TkT8RNI6+Xwp5VrgEkk7RsTD+bDjgG/lz1+k/Lyt5GSy5fOWvIyfF41/Oh//GNkyuk7SnRFxt6RDgMsjYquBcNEyKTtPCg403g/8M9AH3AZMITsoMTMbsv7+/jE9PT0APP7440ybNo3Jkyczbty4qu8tle/p6Rny72Ipu6b138n2g7eT7Q/WAH4ETCD7R9/FwKL89dWSeoF9ChtlyrrfX0r2XX1bwfDtgcvIfr9qJfBvEfFn4GxgR2Vntn4I/LZMriV8xsrMVksRsQR4OxDAJcAzkq6VVG1H8+uIuC0iVkZEX0TMiIh789dzyA66D2xQNU8FvhYRf80bZl8FJuRnrQ4F7o+IayJiOXAuUOm/jxsDT9UwzZ6IeDEieoGjgd9GxB/yaXwT6AbeBqwARgO7SOqMiHkR8WhexnJgB0mbRMSyiPhTqQlFxEtkjcJjASTtCLyRrMFFHfP2/cC5ETE/Ip4DvlY03d9GxKORuQm4Adi/hnKpMk8GnBcRC/Jp/y/ZQYWZWUM0olFVD0njgfcBb8vPZnWQnUXaE9gkInaLiPHAjyPiamAWcHSZM12XAR+LiP149Z9zkO2v3hURbwE+AJyXD/8MMD0v67wKuZZww8rMVlt5g2VKfnZiPLAFWQOlkvmFLyTtK2m6pGckvUB21miTBlVxW+A7eZez54HnyP4LuGVe11V1iezX3ueXLCXzLLB5DdMsLGML4ImCaazMx28ZEY8AZwA9wNOSrpK0RR79CFlXywck3SnpcABJFxV0sftcnv0pecOK7GzVr/IGVz3z9jXzpvAz5OUeIulPym5Y8jxZI7XWZVZ2nhRkChu4L5H9J9XMrG6tblTlDgL2BmbmZ44OBLYHHgF2lvQdSe8GXqhUSN7zojsiBs5UFfa4GA1cKuk+sl4lu5QpptbcsHDDyswMiIgHyP5zNtBtLcpFi17/lOwMy9b5DSEu4tVrncqVUav5wKkRsUHBozsibif7L93WA0Fl/dW2LlcQcCNwZA3TLKzzArLGXfE0ngSIiJ/mXSW3zd/39Xz4wxFxLLBpPuwaSWtHxEfzux+uExFfzYu9AdhE0gSyBtZPC6Zfad5W8pp5A2xT8BlGk3UN/CYwJiI2AH5H7cus4jwxM2umBBpVkH1f/rDgequdI+K/I+JZYHfgVuB04Ps1lFXuO/c/yG+2BOxD1oCqJzcs3LAys9WSpDdK+g9JW+WvtyY7sB/otrYI2ErV73y0LvBcRPRJ2ofsrMuAZ8j6fG83xGpeBHxW0q55HdeXNDkf91tgV0n/quwOfqdT+eLgL5Jdm/UN5XdnUnYHpsslbVDmPT8DDpP0TkmdZDuwl4HbJe0s6R15Q6UP6CXrHoikD0p6Q3425/m8rBWlJpB3cbwG+AbZ3Rn/UDC60ryt5GfA6ZK2krQhWdeRAWuS7XifAfrza6oKb3+/CNhY0voVyi45T2qsm5nZkCXQqILsH3Xvz884Ddw9cBtJbwAUEdPI9jl75PmllLj7bEQsBvok7ZcP+kDB6PWBp/LeGCfw6j+/issql2sJN6zMbHW1FNgX+LOyO/z9CbiP7EAZsrvizQUWSlpcoZx/A86StBT4AtmBN7DqGqKvALfl3fneOpgKRsQvyc74XCVpSV6/Q/Jxi8lul342WTe/HSm48LdEWY8C+wFjgbl517qfAzPJ5kWp9zwIfJDslvSLyW6i8Z68j/zofNqLybq+bUp2ow3IbtwwV9IyshtZHBMRfRU+6k/JupZMG7jJR67svK3iEuB6YDZwN/CLgs+0lKwR+jPgH2SNtWsLxj9Adi3XY/ky26Kg3GrzxMysqRJoVBER95LdafZGSXPIeh6MITt7f3PePfASXt0n/Aj4gUrfpv1E4PuS7gCWFQy/ADhJ0p/IegkM/BTKPcAoSbMlnV4h1xLKGnhmZmZmZpaqzs7Ohf39/UO+k1+xjo6ORcuXL2/UbdANN6zMzMzMzMzq5q6AZmZmZmZmdXLDyszMzMzMrE5uWJmZmZmZmdXJDSszMzMzM7M6uWFlZmZmZmZWJzeszMzMzMzM6tTR6gqMFI3+bYF2VOr3ELq7uxf19fVt2qo6Wbq6uroW9fb2rlpfvA1lirej7u7uhX19fav9fLHXK7ENLerv71/tv29LbEPeD1lJxduQWb38O1YNIil6enpKjhvsL2C3a76np4eIUOEwSVFtHZsxYwaTJ09m2rRpTJw4sWp9nB8ZeUmvWV8GtqFU1udW5Yu3o+JtqF2Wr/PNz5fbhipJff1vRL7UNjR9+vSWLy/n08sXb0Nm9XJXwCZLYScznPnBSv1L1/nhzae2PqeWT215Od/a/GCltj4P5/4oheXlfHvlzYbCDasmSm0n40aV8ynngaTW59TyqS0v51ufH4zU1mfvj5xPOW82VG5YNUlqO5nhyA9Gal+izrc2PyCl9TmlfGrLy/k08rVKbX12o8r5lPNm9Wi7hpWkz0uaK2mOpFmS9q2S75H0qfz5WZIOyp+fIWmtMu85TdIjkkLSJoOtY2o7meHK1yq1L1HnW5svlNL6nEoeSGp5OZ9Ovhaprc/+J5/zKefN6tVWDStJ+wGHA3tExO7AQcD8Wt8fEV+IiBvzl2cAJRtWwG152U8Mto4p7mSGK1+L1L5EnW9tfrBSXv+b+Z/3VJaX8+2VT2199j/5nE85b9YIbdWwAjYHFkfEywARsTgiFgBImifp65L+kj92KH6zpMskHSXpdGALYLqk6cW5iLgnIuYNtnKp7mRSyaf2Jep8a/ODldr67AvvnU85n9r67H/yOZ9y3qxR2q1hdQOwtaSHJF0o6cCi8UsiYh/gAuDccoVExHnAAmBSREwaamUknSJppqSZ4AvvK0ntS9T51ucHI7X12deIOJ9yPrX1ObV8asvL+dbmzRqprRpWEbEM2BM4BXgGuFrSlILIlQV/9xuG+lwcEXtFxF5AMjuN1PKpfYk6n0a+Vqmtz25UOZ9yPrX1ObV8asvL+dbmzRqtrRpWABGxIiJmRMQXgdOAIwtHl3k+LFLYaaSWB5L6EnU+nXwtUluffeG98ynnwT0nKklteTnf+rxZo7VVw0rSzpJ2LBg0gdfeYOLogr93VCluKbBuA6tXVWo7GV9473zK+dTWZ19473zK+QGprc+p5FNbXs6nkTdrtLZqWAHrAFMl3S9pDrAL0FMwfrSkPwOfAM6sUtbFwHWlbl4h6XRJfwe2AuZI+kG9FU9tJ+ML751POZ/a+uwL751POV8otfU5hTy454TzpfNmjdbR6goMRkTcBbytQuS7EfGlovf0FDyfUvD8fOD8MtM5DzivnroWSm0n42tEnE85n9r6nFo+teXlfGvzg5Xa+uyeE86nnDcbrHY7Y9V2UtvJuFHlfMr51Nbn1PKpLS/nW5sfrNTWZ/eccD7lvNlQtNUZq0oiYmyr61AstZ2MG1XOp5wHX3hfSWrLy/nW5wcjtfXZ+yPnU86bDZUihv3meSNSZ2fnwv7+/jGtrkcrjRo16rn+/v6NC4d1d3cv7OvrW63ni5XW1dW1qLe3d7OB1x0dHc+uWLFio1bWKQUdHR2Lli9fvmq+eBuycrq6up7u7e1dtW54P5Tp6Oh4evny5avmg7chK6d4P2RWLzeszMzMzMzM6uRrrMzMzMzMzOrkhpWZmZmZmVmd3LAyMzMzMzOrkxtWZmZmZmZmdarasJL0CUnrKXOppLslHTwclTMzMzMzM2sHtZyx+nBELAEOBt4AnAic3dRamZmZmZmZtZFaGlbK/x4K/CgiZhcMMzMzMzMzW+3V0rC6S9INZA2r6yWtC6xsbrXMzMzMzMzaR9UfCJa0BjABeCwinpe0MbBlRMwZjgqamZmZmZmlrqNaICJWSloE7CKpan511d3dvbCvr29Mq+uRiq6urkW9vb2bdXZ2Luzv71+t50tHR8ei5cuXbzbwuru7e1FfX9+mrayTpWtg2xl47W2o5Dbk71sry9vQ6xVvQwCjR49+9pVXXtmoVXVKSfE6YzZUtZyx+jpwNHA/sCIfHBHx3ibXra1IisJ5OWPGDCZPnsy0adOYOHFi1fePtLwkIkKSoqen53X5xx9/nGnTpjF58mTGjRtXtfx2zvf09BARq65LLF5XSkl9+TrfvPzAtlPwOk444YRk1udW5KttQ+20fJ1vfr7UNlRqPzQg9fW/EfnibQhq2xdBesu3GfnidcZsqGo5A3UEsHNEvNzsyowUKXxJpJxPYScznPnBSm15Od/aPJDU+pxaPrXl5Xzr84OR2vrs/VFr82b1quXmFY8Bnc2uyEiR2pdEavnUdjLDkR+M1JaX863ND0hpfU4pn9rycj6NfK1SW5/dqGpt3qwRamlYvQTMkvR9SecNPJpdsXIkfV7SXElzJM2StG+VfI+kT+XPz5J0UP78DElrlXnPFZIelHSfpB9KqqlhmdqXRGr51HYyw5WvVWrLy/nW5gultD6nkk9teTmfTr4Wqa3PblS1Nm/WKLU0rK4F/hu4Hbir4DHsJO0HHA7sERG7AwcB82t9f0R8ISJuzF+eAZRsWAFXAG8EdgO6gZNqKT+lL4nU8qntZIYzX4vUlpfzrc0PVsrrf7MOElNaXs63Vz619dk9J1qfN2uUWu4KOFXSmsBO+aAHI2J5c6tV1ubA4oHrvSJi8cAISfOAq4FJ+aDjIuKRwjdLugz4DbBF/pguaXFETCrMRcTvCt7zF2CrWiqX0pdESvkUdzIp5VNbXs63Nj9Yqa3Pw/Wf91SWl/PtlU9tfXbPiTTyZo1S9YyVpInAw8B3gQuBhyQd0OR6lXMDsLWkhyRdKOnAovFLImIf4ALg3HKFRMR5wAJgUnGjqlDeBfB44Pdlxp8iaaakmUBSXxKp5MEX3leS2vJyvvX5wUhtfR7O7kypLC/n2yef2vrsnhPp5M0apZaugN8CDo6IAyPiAODdwDnNrVZpEbEM2BM4BXgGuFrSlILIlQV/92vAJC8Ebo6IW8rU5+KI2Csi9qqlsJS/VJr5n/cUdzIp5FNbXs6nka9VauuzrxFxPuV8autzavnUlldqebNa1dKw6oyIBwdeRMRDtPAugRGxIiJmRMQXgdOAIwtHl3k+aJK+CLwB+GQ95QxI7UtiOL+EUthppJZPbXk5n06+Fqmtz25UOZ9yHtxzopLUlldqebPBqKVhNVPSpZIm5o9LaN3NK3aWtGPBoAnAEwWvjy74e0eV4pYC65aZzklkZ+aOjYiVQ6zuKql9SQxHfjBS28n4wnvnU86ntj77wnvnU84PSGl9Timf2vJKLW82WLX8QPDHgH8HTgcE3EzWRa4V1gHOl7QB0A88QtYtcMBoSX8mazAeW6Wsi4HrJD1V4jqri8gabHdIAvhFRJw1lAqn9iUxXPlapbaT8YX3zqecT2199oX3zqecL5TS+pxKHvxPPrNG+//bu/cwueo6z+PvT9JtKhEFMmwCE2CbAOqGACGAAiMxAQSByOUhyMVhuSPugJJdFkR2xjCKl2UeYAyoCwYTBEGIOmaZh1HAQBhZmHTu4ZZwCQK5CUIA6STdne/+UadDWemqru6q6nOq83k9Tz9ddc6n6vzqd36/c/rX51KV3BVwE3Bj8pOqiFgAHFEmcmtEXFf0mmkFj88reDwdmF5iOZUMOHuUtY1Ef+YnTSp5T5CtsraT8YX3zmc5n7X23J/5WbNm9ZjP2vpyPt18b2W5/fuffP2fN+uruYedNQAAGMtJREFUkgMISfdFxBckLaOb65WS75GyErK2kchaPms7GV8j4nyW81lrz1nLZ219OZ9uvrey1p79T75082bVKHdk5qvJ78n9UZBqRURL2mXokrWNRNbyWdvJeFDlfJbz4Avvy8na+nI+/XxvZK09e3+Ubt6sWooof/M8Sd+LiKt7mra9Gzp06NqNGzeOTLscWZHL5da1tbXt2tzcvLajo2O7rpfBgwf/qaOj46+6nrutWDldfafreVNT05udnZ3D0yxT2pqamta1t7dvrRP3ISsnl8utb2tr29o+vB/atg+B+1Gh4u2uWV9VMrBaGBHji6Yt9amAZmZmZmZmeeWusfoy8N+A0ZKWFsz6CPD7ehfMzMzMzMysUZQ8YiVpR2Bn4DvA1wpmvRsRf+qHspmZmZmZmTWEHk8F3BqURgC5rucR8Yd6FcrMzMzMzKyRDOopIOnzklYCLwOPAauAB+tcLjMzMzMzs4bR48AK+BZwGLAiIvYCjsbXWJmZmZmZmW1VycCqPSLeBAZJGhQRc4FxdS6XmZmZmZlZwyj3BcFd3pa0AzAPuFvSeqCjvsUyMzMzMzNrHJV8j9WHgTbyR7e+COwI3J0cxTIzMzMzM9vulR1YSRoM/CYijum/IpmZmZmZmTWWsqcCRkSnpPcl7RgRG/qrUI1o6NChazdu3Dgy7XJY9uRyufVtbW1b20Zzc/Pajo6O7b6tNDU1rWtvb9+16/nQoUPXbdy4cUSaZbJsyuVy69ra2ra2FfehvG76kPdD1q3iPgTuR7BtHzKrViWnAt5H/q6ADwF/7poeEV+pb9Eai6SICB599FFOP/107r//fiZOnNjj65wf+PlJkyYREeqaJimmTZvWbf7ll1/m/vvv5/TTT2evvfbq8f0bOT9t2rRt6qWn7VEW16/z9c9L6rYPZak9p5HvqQ81yvp1vv754j6UTCu5L4Lst/9a5Iv7kFm1Krl5xb8mP9aDLG1Enc9OvlJZ2Mn0Z763srp+nU8nn7X2nLV81taX8+nmeytr7Tlr+yOzUnocWEXELElDgT0j4vl+KFPDytJG1Pns5CdNmtRjPms7mf7I90aW16/z/Z8HMtees5TP2vpyPv18b2StPXtQZY2kx++xkvR5YDHwb8nzcZLm1LtgjShLG1HnGyeftZ1Mf+UrlbX15Xy6+S5Za89ZyWdtfTmfjXylstaePaiyRtPjwAqYBnwSeBsgIhYDqbVWSddKelrSUkmLJX2qh/w0SVcmj/9R0jHJ4yskDSvxmhmSliTLmJ18j1ePsrQRdb4x8lnbyfRnvhJZW1/Op5svlLX2nIU8+MwJ57vPVyJr7TlrZ06YVaKSgVVHN3cELH+FeZ1IOhyYDIyPiAOAY4BXK319RPxDRDycPL0C6HZgBUyNiAOTZfwBuKyKYm+V5Y2u8/2fz+JOJkv5rK0v59PN91bW2nN//ec9K+vL+cbKZ609Z+3MCbNKVTKwWi7pbGCwpH0lTQeeqHO5StkNeCMiNgFExBsRsRpA0ipJ35P0H8nPPsUvljRT0hRJXwH+GpgraW5xLiLeSfIChlKDgWTWNqLOp5vP6k4mK/msrS/n0833Vtbac3+ezpSF9eV8Y+Wz1p6zduaEWW9UMrC6HNgP2AT8DNgAfLWehSrjt8AeklZI+oGkzxTNfyciPgncAtxc6k0i4vvAamBSRHR7ZwFJPwHWAp8AppfIXCKpVVJruUJnbSPqfLp58IX35WRtfTmffr43staes3aNSBbXr/Pp5bPWnrOWN+utSgZWJ0bEtRFxaPLzv4CT6l2w7kTEe8DBwCXAH4GfSzqvIHJPwe/Dq1zW+eSPaj0LnFEic1tEHBIRh5R6n6xtRJ1PN98lKzuNrOWztr6cz0a+Ullrz1n7oy+r69f5dPLgf/KZ1VolA6trKpzWLyKiMyIejYhvkL/26bTC2SUe93lZwM+LllGxrG1EnU83XygLO42s5YFMrS/ns5OvRNbac9YuvM/y+nW+//NdstSes5Q366uS32Ml6XjgBGCUpO8XzPoo0FHvgpUo08eBLRGxMpk0DnilIHIG8N3k9//r4e3eBT4CvFG0DAF7R8QLyePPA8/1tqxZ24g6n26+t7K2k/GF985nOZ+19py1C++ztr6cTzdfKEvtOSt5s2qU+4Lg1UAr+dP+FhRMfxeYWs9ClbEDMF3STuQHdy+QPy2wyxBJT5E/EndWD+91G/CgpDVF11kJmCXpo8njJcCXe1PIrG1EnU8331tZ28n4wnvns5zPWnvuz/ysWbN6zGdtfTmfbr63stz+PaiyLCo5sIqIJcASSXdHRCpHqIpFxALgiDKRWyPiuqLXTCt4fF7B4+l0c1OKiNgC/E1fy5i1jajz6ed7I2s7maztxLK4fp1PL5+19py1fNbWl/Pp5nsra+05a/sjs+6UOxXwvoj4ArBI0jbXKyXf8WQFsrYRdT4b+UplbSeTtZ1YVtev8+nks9aes5bP2vpyPt18b2WtPWdtf2RWSrlTAbtuqT65PwpSrYhoSbsMWdqIOp+d/KRJ3d7R/y9kbSfjC++dz3IefDezcrK2vpxPP98bWWvPHlRZI1FE1TfPM2DIkCFvbt68eXja5bDsyeVy69ra2nbtet7c3Ly2o6NjZJplyoKmpqb17e3tW+th6NChazdu3Ljd14ttq7gPNTU1vdnZ2bndb2+bmprWtbe3b60X9yErJZfLrW9ra/uLtuF90bb7IbNqeWBlZmZmZmZWpUFpF8DMzMzMzKzRlRxYSbpS0h79WRgzMzMzM7NGVO6I1SjgCUnzJH1Z0i79VSgzMzMzM7NGUvYaK0kCJgBnAieT/7Lce4BfRcS7/VJCMzMzMzOzjKv45hWSBgPHAN8FPh4Rw+pZMDMzMzMzs0ZR7nustpK0P/mjVmcAbwJfr2ehzMzMzMzMGknJgZWkfYGzyA+oOoF7gWMj4qV+KpuZmZmZmVlDKHkqoKSXyF9PdW9ELOvXUpmZmZmZmTWQcgOrfYGREfHvRdOPBFZHxIv9UL6G4W+8N+udXC63rq2tbdeu5+5DZr3jPmRWneI+ZFatcgOrB4CvR8TSoumHAN+IiM/3Q/kahqSo9EYgZgaSiAgVPHcfMusF9yGz6hT3IbNqlfseq5biQRVARLQCLXUrkZmZmZmZWYMpN7DKlZk3tNYFMTMzMzMza1TlBlbzJV1cPFHShcCC+hXJzMzMzMyssZS7xmok8CtgMx8MpA4BPgScGhFry76xtCtwM3AosAlYBVyRvN8DETG2BuUvXuY04L2I+KcymZnJ8mdX+J4tVFBen9tu1ju+PsSsOu5DZtXxNVZWayWPWEXEuog4AriO/KBoFXBdRBxewaBK5Adlj0bE3hExhvyXCvtuRdYna9eu5cwzz2TvvfdmzJgxnHDCCaxYsYJVq1YxdmzNx+gAbNq0iTPOOIN99tmHT33qU6xataouyzHrD2n0oXnz5jF+/HiampqYPbui/2WZZVYafejGG29kzJgxHHDAARx99NG88sordVmOmdVGuVMBAYiIuRExPfn5XYXvOwloj4gfFbzP4oh4vDAkqUXS45IWJj9HJNN3kzRP0mJJyyUdKWmwpJnJ82WSppYrgKSLJc2XtETSLyQNK5h9TLLcFZImJ/nBkm5IXrNU0pcq/KxWZxHBqaeeysSJE3nxxRd55pln+Pa3v826devqutwZM2aw884788ILLzB16lSuvvrqui7PrF7S6kN77rknM2fO5Oyzz67rcszqLa0+dNBBB9Ha2srSpUuZMmUKV111VV2XZ2bV6XFg1Udjqew6rPXAZyNiPHAG8P1k+tnAbyJiHHAgsBgYB4yKiLERsT/wkx7e+5cRcWhEHAg8C1xYMK8F+AxwIvAjSblk/oaIOJT86YsXS9qr3AIkXSKpVVJrBZ/V+mju3Lk0Nzdz6aWXbp02btw4jjzyyL/IrVq1iiOPPJLx48czfvx4nnjiCQDWrFnDhAkTGDduHGPHjuXxxx+ns7OT8847j7Fjx7L//vtz0003bbPcX//615x77rkATJkyhUceeQSfZmONKK0+1NLSwgEHHMCgQfXa1Zj1j7T60KRJkxg2LP9/4cMOO4zXXnutjp/SzKrVlPLym4FbJI0DOoGPJdPnA3dIagb+JSIWS3oJGC1pOvCvwG97eO+xkr4F7ATsAPymYN59EbEFWJm87yeAY4EDJE1JMjsC+wIrSi0gIm4DboP8ue2VfmjrneXLl3PwwQf3mBsxYgQPPfQQuVyOlStXctZZZ9Ha2srPfvYzjjvuOK699lo6Ozt5//33Wbx4Ma+//jrLly8H4O23397m/V5//XX22GMPAJqamthxxx1588032WWXXWr7Ac3qLK0+ZDZQZKEPzZgxg+OPP74mn8fM6qNeA6ungSk9pmAqsI78UalBwEaAiJgnaQL5I0o/lXRDRNwp6UDgOODvgC8AF5R575nAKRGxRNJ5wMSCecWDoAAEXB4RhQOwrptXWANob2/nsssuY/HixQwePJgVK/Jj4kMPPZQLLriA9vZ2TjnlFMaNG8fo0aN56aWXuPzyyznxxBM59thjt3m/7o5O5S8fNBuYat2HzLY39epDd911F62trTz22GP99VHMrA/qdX7G74Ahhbdrl3SopM8U5XYE1iRHj84BBifZ/wysj4jbgRnAeEm7AIMi4hfA3wPjeyjDR4A1yVGvLxbNO13SIEl7A6OB58kf0fpykkfSxyR9uNef3Gpuv/32Y8GCns8svemmmxg5ciRLliyhtbWVzZs3AzBhwgTmzZvHqFGjOOecc7jzzjvZeeedWbJkCRMnTuTWW2/loosu2ub9dt99d1599VUAOjo62LBhA8OHD6/thzPrB2n1IbOBIs0+9PDDD3P99dczZ84chgwZUtPPZWa1VZeBVXK/11OBz0p6UdLTwDRgdVH0B8C5kp4kfxrgn5PpE4HFkhYBpwH/DIwCHpW0mPzRqGt6KMbfA08BDwHPFc17HngMeBC4NCI2Aj8GngEWSloO/B/SP1XSgKOOOopNmzZx++23b502f/78bf5zt2HDBnbbbTcGDRrET3/6Uzo7OwF45ZVXGDFiBBdffDEXXnghCxcu5I033mDLli2cdtppfPOb32ThwoXbLPekk05i1qxZAMyePZujjjrKR6ysIaXVh8wGirT60KJFi/jSl77EnDlzGDFiRH0/pJlVreT3WFnv+PtD6mv16tVcccUVLFiwgFwuR0tLCzfffDPNzc1MnjyZ5cuXs3LlSk477TSGDRvGpEmTmD59Ou+99x6zZs3ihhtuoLm5mR122IE777yTd955h/PPP58tW7YA8J3vfGebc9c3btzIOeecw6JFixg+fDj33nsvo0ePTuPjD0j+Dp7+lUYfmj9/PqeeeipvvfUWuVyOXXfdlaeffjqNjz8guQ/1rzT60DHHHMOyZcvYbbfdgPydNufMmdPvn32g8vdYWa15YFUj3qGZ9Y7/KDSrjvuQWXU8sLJa8z1wzczMzMzMquRriGokl8utkzQy7XKYNYpcLreu+Ln7kFnl3IfMqlPch8yq5VMBzczMzMzMquRTAc3MzMzMzKrkgZWZmZmZmVmVPLAyMzMzMzOrkgdWZmZmZmZmVfLAyszMzMzMrEoeWJmZmZmZmVXJAyszMzMzM7MqeWBlZmZmZmZWJQ+szMzMzMzMquSBVY1IuiTtMgwkrs/acV3WluuzdlyXteX6rC3XZ+24Lm174YFV7XijUVuuz9pxXdaW67N2XJe15fqsLddn7bgubbvggZWZmZmZmVmVPLAyMzMzMzOrkgdWtXNb2gUYYFyfteO6rC3XZ+24LmvL9Vlbrs/acV3adkERkXYZzMzMzMzMGpqPWJmZmZmZmVXJAyszMzMzM7MqeWBVJUmfk/S8pBckfS3t8jQaSXtImivpWUlPS/pqMn24pIckrUx+75x2WRuFpMGSFkl6IHm+l6Snkrr8uaQPpV3GRiFpJ0mzJT2XtNHD3Tb7TtLUpJ8vl3SPpJzbZ+Uk3SFpvaTlBdO6bY/K+36yb1oqaXx6Jc+eEnV5Q9LXl0r6laSdCuZdk9Tl85KOS6fU2dVdfRbMu1JSSNolee62aQOWB1ZVkDQYuBU4HhgDnCVpTLqlajgdwP+IiP8CHAb8XVKHXwMeiYh9gUeS51aZrwLPFjz/HnBTUpdvARemUqrG9M/Av0XEJ4ADyder22YfSBoFfAU4JCLGAoOBM3H77I2ZwOeKppVqj8cD+yY/lwA/7KcyNoqZbFuXDwFjI+IAYAVwDUCyTzoT2C95zQ+S/b99YCbb1ieS9gA+C/yhYLLbpg1YHlhV55PACxHxUkRsBu4FTk65TA0lItZExMLk8bvk/3AdRb4eZyWxWcAp6ZSwsUjaHTgR+HHyXMBRwOwk4rqskKSPAhOAGQARsTki3sZtsxpNwFBJTcAwYA1unxWLiHnAn4oml2qPJwN3Rt6TwE6SduufkmZfd3UZEb+NiI7k6ZPA7snjk4F7I2JTRLwMvEB+/2+JEm0T4CbgKqDwTmlumzZgeWBVnVHAqwXPX0umWR9IagEOAp4CRkbEGsgPvoAR6ZWsodxMfie2JXn+V8DbBX8suI1WbjTwR+AnyamVP5b0Ydw2+yQiXgf+ifx/rtcAG4AFuH1Wq1R79P6pOhcADyaPXZd9IOkk4PWIWFI0y/VpA5YHVtVRN9N8//o+kLQD8Avgioh4J+3yNCJJk4H1EbGgcHI3UbfRyjQB44EfRsRBwJ/xaX99llz7czKwF/DXwIfJnxJUzO2zNtz3+0jSteRPU7+7a1I3MddlGZKGAdcC/9Dd7G6muT5tQPDAqjqvAXsUPN8dWJ1SWRqWpGbyg6q7I+KXyeR1XacGJL/Xp1W+BvI3wEmSVpE/LfUo8kewdkpOvQK30d54DXgtIp5Kns8mP9By2+ybY4CXI+KPEdEO/BI4ArfPapVqj94/9YGkc4HJwBfjgy/6dF323t7k/4myJNkn7Q4slLQrrk8bwDywqs58YN/krlYfIn9x65yUy9RQkmuAZgDPRsSNBbPmAOcmj88Fft3fZWs0EXFNROweES3k2+LvIuKLwFxgShJzXVYoItYCr0r6eDLpaOAZ3Db76g/AYZKGJf2+qz7dPqtTqj3OAf5rcge2w4ANXacMWvckfQ64GjgpIt4vmDUHOFPSEEl7kb/pwn+kUcZGERHLImJERLQk+6TXgPHJdtVt0wYsffAPGesLSSeQPyowGLgjIq5PuUgNRdKngceBZXxwXdDXyV9ndR+wJ/k/yE6PiO4ujLVuSJoIXBkRkyWNJn8EaziwCPjbiNiUZvkahaRx5G8E8iHgJeB88v+QctvsA0nXAWeQP81qEXAR+Wsr3D4rIOkeYCKwC7AO+AbwL3TTHpPB6y3k79T2PnB+RLSmUe4sKlGX1wBDgDeT2JMRcWmSv5b8dVcd5E9Zf7D4Pbdn3dVnRMwomL+K/B1B33DbtIHMAyszMzMzM7Mq+VRAMzMzMzOzKnlgZWZmZmZmViUPrMzMzMzMzKrkgZWZmZmZmVmVPLAyMzMzMzOrkgdWZmYNTlKnpMWSnpa0RNJ/l1R2+y6pRdLZ/VC2H0sa00PmlJ4yZmZmWeeBlZlZ42uLiHERsR/wWeAE8t/LU04LUPeBVURcFBHP9BA7BfDAyszMGpoHVmZmA0hErAcuAS5TXoukxyUtTH6OSKLfBY5MjnRNLZPbKsk8J2mWpKWSZksalsw7WtIiScsk3SFpSDL9UUmHJI/fk3R9clTtSUkjk+WcBNyQlGVvSV+R9EyyjHv7o97MzMyq5S8INjNrcJLei4gdiqa9BXwCeBfYEhEbJe0L3BMRh0iaCFwZEZOT/LDuckXv2QK8DHw6In4v6Q7gGeAWYCVwdESskHQnsDAibpb0aLKcVkkBnBQR/1fS/wbeiYhvSZoJPBARs5PlrAb2iohNknaKiLdrX2tmZma15SNWZmYDk5LfzcDtkpYB91P6lLtKc69GxO+Tx3cBnwY+DrwcESuS6bOACd28djPwQPJ4AfnTEbuzFLhb0t8CHSUyZmZmmeKBlZnZACNpNNAJrAemAuuAA4FDgA+VeFmlueLTHIIPBnE9aY8PTpPoBJpK5E4EbgUOBhZIKpUzMzPLDA+szMwGEEn/CfgRcEsyiNkRWBMRW4BzgMFJ9F3gIwUvLZUrtqekw5PHZwH/DjwHtEjaJ5l+DvBYL4q9tSzJ3Qz3iIi5wFXATsAOZV5rZmaWCR5YmZk1vqFdt1sHHgZ+C1yXzPsBcK6kJ4GPAX9Opi8FOpIbSUwtkyv2bJJbCgwHfhgRG4HzgfuTUwm3kB/cVepe4H9KWgTsC9yVvM8i4CZfY2VmZo3AN68wM7OKJDeveCAixqZcFDMzs8zxESszMzMzM7Mq+YiVmZmZmZlZlXzEyszMzMzMrEoeWJmZmZmZmVXJAyszMzMzM7MqeWBlZmZmZmZWJQ+szMzMzMzMqvT/AWFl89IiwxLVAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 864x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_stratified_cross_validation()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### More control over cross-validation" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import KFold\n", "kfold = KFold(n_splits=5)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores:\n", "[1. 1. 0.867 0.933 0.833]\n" ] } ], "source": [ "print(\"Cross-validation scores:\\n{}\".format(\n", " cross_val_score(logreg, iris.data, iris.target, cv=kfold)))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores:\n", "[0. 0. 0.]\n" ] } ], "source": [ "kfold = KFold(n_splits=3)\n", "print(\"Cross-validation scores:\\n{}\".format(\n", " cross_val_score(logreg, iris.data, iris.target, cv=kfold)))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores:\n", "[0.98 0.96 0.96]\n" ] } ], "source": [ "kfold = KFold(n_splits=3, shuffle=True, random_state=0)\n", "print(\"Cross-validation scores:\\n{}\".format(\n", " cross_val_score(logreg, iris.data, iris.target, cv=kfold)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Leave-one-out cross-validation" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of cv iterations: 150\n", "Mean accuracy: 0.97\n" ] } ], "source": [ "from sklearn.model_selection import LeaveOneOut\n", "loo = LeaveOneOut()\n", "scores = cross_val_score(logreg, iris.data, iris.target, cv=loo)\n", "print(\"Number of cv iterations: \", len(scores))\n", "print(\"Mean accuracy: {:.2f}\".format(scores.mean()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Shuffle-split cross-validation" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDcxMi43Njg3NSAxMzUuMjY4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicvZpPbxs3EMXv+yl4bIGUIof/DzkkTZuciqY12kNRFIajJDJkJ43UBuin73AVa95sZQsupD0YXj2v5j3u/jhLifbmelg88+bdxjhzzT+fzW/md/79xnjz0ixeLP9eXS1/evncXG0Gx/rNUDzZkmtJ/GoNr3xIlsajNZ+Jr94Pw+3wp0nNpuYyJROKTTHw31Is1rFQko3m09L8am7N4hn1OJyJfz6zyct+PAzydu/40OdYCsfxLtoQC/mM+hr1Vq1rRKFnkSqocsLnw2tzwozN2ViyK0FHFFklLM265GvwKiGqJ0i4+PFyu11+uu23cvHKm83VLSYu3saQcm46scgqcXbWeR+pqMSonv6aJrKhJcpJJxRZJYzOtuIdBZUQ1XNd085hIOfLhNQUrSu5ZD8hVXRkUqqcmNQjmRW5EA3JFRkZlRpzkAtuSC5EQ3JFRkalxonJPZJYkSzRFMkiI7NSYxaSuZ6LbJM1yuSCrS4HVzTKoCuUpcw5ui6WB3gxDMALsoJXipyY3mlGxBXDAK4gK1ylyDk6LZRHQCEMAgqyAlSKnIBQZ5Pzje9cjUHiDgCrWbyiHazkqi2lke6vnD8Fm0KqiSawio5UQpk5Gi/aIbwQDuEVGSmFIueAF8sjvBAG4RUZKYUiJ4D3f4KhuJacimuREWAocuLOu7vEqfKIanWTRUPgWca5QqsaXtAVvFJmFnjBDuDFcAAvyApeKTLHugHtAGYMBzCDrGCWInOsHMAOCYZwSDDIimApMsfaIfCEoVCDbrscmqO2FhvPW0206IgulDkB0Y9pG+iMcENOhFtkpBiKzAE32iHcEA7hFhkphiJzwA12Cm4Jp+AWGSmGIrPAnYptuVTdlm+G6MgWirE2DTfoCm4pM0e7RjsgGsMB0SAroqXILESDHRCN4YBokBXRUmTmtQc4I9yQE+EGWcEtRc6x9oiu2NxK1B2ZQ3K0mKILcQKz6EgtlDnHpzwsj/BCGIRXZKQUipwA3seAgM7IMeREjkVGYKHIHJ0Z7BS8Ek7BKzJSCkXm6MyR50qk3HQHvhkSTy2+22myjhZZoSxFZl50oDNQDjEBclEV41JibsbBGRiHmIC4qIpwKXGOrzigPBItWRBoURXPUmLmLzgSzySfeGEfJ2gnb5sPXm+NrFFXWyBSZo5FB9oh0RAOkRZZbYpIkXN8wYHlEVwIg+SKrLZBpMgczRnsFMoSTrEsstoYkSIHYb6jdAxzzbRW2CHs0fgvQ43c98ePm/uB3aAYrRvFda/KYxqeX5jF9/1bOnPxdqjeUkndmZgA4tV9Mhdvhq/81+bi2nx3MYymg+cyvo7rfnBB9WEbHrt1LlFKufoKPjTxqYEv1LgEQx9Qj/hUZ0uIle9/yBF8gvahEGyO49MSfFB92IcCz5ocQ8wMVQOfOPHh5KH0JoY2Ih5x4dH4Fmojx3cTXJJ2CZzbuxEvsEH1YZ9AzTYK4xlikicmlWwNlIvyEPGIBTeOnKhVaimiS9EuMZBNmfoWItig+rBP5KFwqEQ1uubBp058ODg13zd40AfUIz48Hu+J22bNIYNP0z6Jkzvy/Xt68EH1YR+eMjZnhsDzvCGcoO7OSF9nFy3TMu79N57atd/+fv6Ly+2l+fhhdbvdTBLCzn7fU+iNtkfM/HCayvdgyoWKH/8LwXHrdSVW77LLo+/PH9errfH3eXKjKrn3SWUp6jFHniH82cyV4sgRGNJ9hjnxZ7yQYlWGoh4zzNzJKedCrXB3FcNwn2HMNvPzMkZlKOoxw8gzrGbKtYUWwTAevP+OnxTfeH4weL6ELeze38aDi5vxf0h6hW9/MSt+pF1uVx9uN9M6tGvY1baaxjd6z8cjo6P7+7/evl0vdyE+r7bvu/MOrCdm++lydfvHZvXP8mniV8vNdveCnhiW+1s2T/fBF8/C3bO2//vL/sHGF/DLyiC7ajM/IXfPep93s6cwkGkkfC+uWYy2MQQ1iFpckhMrT42+XS0afTntahDR85HfXbi1kjOv7Kg4XkWLke/P793JkgnEKxwA6GvWi6VK1Ah1njNy9t5QqQlr7/X9UNZK3Q8a7PYX59C1vdqtPWARNFkAmf0CKHt39/bGV6mORzdDDgfkNcq81ADdH9bHGHfrHlnxvNOw51D/a9YZvegYrm7fmc1yK/NSrfWRuIPrfYjWm4zfsQcD2atqeLWI6g+pjx7a3mccGU8pHNV08uymjRjnbCmOfURlF1mFLwFkf1B+dHyx6vl/+NDjr5dX2+WbuzG8Hv4FsfM4YAplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE3MDQKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHwPh/nnS6Su6/rQ2dbLAYhPTAfWIioxYngq/EhwalwyTwbBWEezDZEXKE5ARNhrKDJHENDQalwqZjme/JpnXSSqy80X7ZdzRmnXSKLUWHdiH/5/Ui3KPgGusZPA9gMcjaSqXsmTBaZaau8qjotR/T4T0PRKvF5fUGrvDaRzepKCpL6v5EdzTY/pG3+x7fH5llOCQKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDWNsRHAMAgDe6ZgBMsBE/bJpcL7twn4aKQXHMjk5sGesnSwTecH9OekTfNCUZCqMNB0Zn1xaOQOVg4XXmhKr4roz0HvB5nqF5oKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1UkuSW0EI279T6AKuav7NeZya1eT+2wjsrKCBFhKQFjjIxEsMUY1yxR95gvE6gb/r5Wn8Pt6F1IKnIv3AtWkb78eaNVGwNGIpzD72/Sghx1Pj3xDouUgTZmQyciAZiPu1Pn/Wm0w5/AakaXP6KEl6EC3Y3Rp2fFmQQdKTGpbs5Id1LbC6CE2YG2siGTm1MjXPx57hMp4YI0HVLCBJn7hPFYxIMx47Zy15kOF4qhcvfr2N1zKPqZdVBTK2CeZgO5kJpygiEL+gJLmJu2jqKI5mxprbhYaSIvfdPZyc9Lq/nEQFXgnhLNYSjhl6yjInOw1KoGrlBJhhvfaFcZo2SrhT0+1dsa/fZyZh3Oaws1IyDc5xcC+bzBEke90xYRMeh5j37hGMxLz5XWwRXLnMuSbTj/0o2kgfFNfnXE2ZrSjhH6rkiRXX+P/83s/PP5A3fbEKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY0ID4+CnN0cmVhbQp4nDMzNFQwUNA1AhJmhiYK5kaWCimGXEA+iJXLBRPLAbPMTMyALGNTUySWAZA2MjWD0xAZoAFwBkR/GgApTxROCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzszBRMFCwAGIzczMFcyNLhRRDLiMLM6BALpcFWCCHy9DQEMoyNjFSMDQ0BbJMzY2hYjCNQFlLkEE5UP05XGkAT1QSLwplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcaQBNOBH1CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVRu3HFMAzrNQUX8J34lTSPc6/K278NQDsVYRoEQKq8ZEq5XOqSVbLC5EeH6hRN+T5gpvwO9ZDj6B7ZIbpT1pZ7GAjLxDyljlhNlnu4BYEvDE2JuYXz9wjoKwajMBOBusXfP0CzJDBpcPBTkGutWmKJDjwsFlizK8ytGilUyFV8Oza5BwVycbPQpxyaFLfcgvBliGRHarGvy2Up8rv1CRiEFeaITxSJheeBDmYi8ScDYnv22WJXVy+qERnWSYcHUgTSbG4SMDRFsuqDG9hXxzU/T0fZwclBv4rB+DY4mS9JeV8FoRCPF/4Oz9nIsZJDJBTyfbXAiCNsgBGhT+0jEGUgNEX37plSPiZViu8ARiEcfapXMrwXkdlqhs3/GV3ZKgoGVVkfn0ZwJoNJOPNkowrTUrXTv/vc4/MHY2N6gAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MiA+PgpzdHJlYW0KeJwzNTBQMFDQtVTQNTI2VTA1BLINzUwVUgy54OxcCBMkn8MFUwlhgaRzECpzuNIAVJcPHQplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODggPj4Kc3RyZWFtCnicNYy7EcAwCEN7T8EIBouP98mlSvZvg+3QgKR394KDOkHyuBspnC5u2Vd6G4+TniYAsfRMQ+3fYEXVi1oULV9uY9BiKr4/+iQglnXyXjj0kBLeH8UXHXsKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nD2MwQ2AMAwD/50iIzSJTTIQ4gX7f2kK7cc+nWTTKF3gFWlChJzayElPW+6ehIODFJCwX23o1b4qS3uqIGoy/jZ8d9cLdxwXTgplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NCAvY29tbWEgNDggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4IC9zZXZlbgovZWlnaHQgL25pbmUgNjEgL2VxdWFsIDY3IC9DIC9EIDc4IC9OIDgzIC9TIC9UIDg2IC9WIDk1IC91bmRlcnNjb3JlIDk3IC9hCjk5IC9jIC9kIC9lIC9mIC9nIC9oIC9pIDEwOCAvbCAxMTAgL24gL28gL3AgMTE0IC9yIC9zIC90IC91IDExOSAvdyAxMjIgL3ogXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvQyAxNiAwIFIgL0QgMTcgMCBSIC9OIDE4IDAgUiAvUyAxOSAwIFIgL1QgMjAgMCBSIC9WIDIxIDAgUiAvYSAyMiAwIFIKL2MgMjMgMCBSIC9jb21tYSAyNCAwIFIgL2QgMjUgMCBSIC9lIDI2IDAgUiAvZWlnaHQgMjcgMCBSIC9lcXVhbCAyOCAwIFIKL2YgMjkgMCBSIC9maXZlIDMwIDAgUiAvZm91ciAzMSAwIFIgL2cgMzIgMCBSIC9oIDMzIDAgUiAvaSAzNCAwIFIgL2wgMzUgMCBSCi9uIDM2IDAgUiAvbmluZSAzNyAwIFIgL28gMzggMCBSIC9vbmUgMzkgMCBSIC9wIDQwIDAgUiAvciA0MSAwIFIgL3MgNDIgMCBSCi9zZXZlbiA0MyAwIFIgL3NpeCA0NCAwIFIgL3NwYWNlIDQ1IDAgUiAvdCA0NiAwIFIgL3RocmVlIDQ3IDAgUiAvdHdvIDQ4IDAgUgovdSA0OSAwIFIgL3VuZGVyc2NvcmUgNTAgMCBSIC93IDUxIDAgUiAveiA1MiAwIFIgL3plcm8gNTMgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago1NCAwIG9iago8PCAvQkJveCBbIDAgMCA3MiA3MiBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyCi9NYXRyaXggWyAxIDAgMCAxIDAgMTM1LjI2ODc1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJwljzEOwzAMA3e9gh8Q4DiK4qxduucPbZd4ydLvl1QhwoAp60Q3NNb5tAWq+1P3vUv3C2/6XzNfE9Q0HksbuOg0UNOi0+lyeoCiM3CkjGWAmrYFjlYG33Ya2TBCRkLQTOxiavO0/+7LEq4mOykaB72GOZmiEe2FJ3sTjcu9AnB7iMd8XhkVMMRkfK9/6BOrsPawHyWzMRwKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iago8PCAvQkJveCBbIDAgMCA3MiA3MiBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYyCi9NYXRyaXggWyAxIDAgMCAxIDAgMTM1LjI2ODc1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJx1jzEOwzAMA3e9gh9wITuK4qxdsvcPbZd4ydLvl3TnwoQBU9aJcjjP4zC/rV739K3Hgv+P6z0btiZdT7ys4mNWlgQ1jFf1jpOOgxoWjU6T0wIUnY49ZdQOatga2H0a/NtopKOHjISgmdjE1ORhv9mnJYqKrKRobCyzmZ0pGtFl4sleRePwMgNweojHfGVmVMAQk/HL3ENLLMLa3b5HkDfECmVuZHN0cmVhbQplbmRvYmoKNSAwIG9iago8PCAvSDEgNTQgMCBSIC9IMiA1NSAwIFIgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjU2IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzMzUtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgNTcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTUwNTUgMDAwMDAgbiAKMDAwMDAxMzk0NiAwMDAwMCBuIAowMDAwMDEzOTc4IDAwMDAwIG4gCjAwMDAwMTQ5NzAgMDAwMDAgbiAKMDAwMDAxNTAxMyAwMDAwMCBuIAowMDAwMDE1MDM0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIxNzYgMDAwMDAgbiAKMDAwMDAxMjQ0MCAwMDAwMCBuIAowMDAwMDEyMjQwIDAwMDAwIG4gCjAwMDAwMTE3MjkgMDAwMDAgbiAKMDAwMDAxMzQ5MyAwMDAwMCBuIAowMDAwMDAyMTk3IDAwMDAwIG4gCjAwMDAwMDI1MDIgMDAwMDAgbiAKMDAwMDAwMjczNSAwMDAwMCBuIAowMDAwMDAyODgyIDAwMDAwIG4gCjAwMDAwMDMyOTMgMDAwMDAgbiAKMDAwMDAwMzQyOSAwMDAwMCBuIAowMDAwMDAzNTcxIDAwMDAwIG4gCjAwMDAwMDM5NDggMDAwMDAgbiAKMDAwMDAwNDI1MSAwMDAwMCBuIAowMDAwMDA0Mzg5IDAwMDAwIG4gCjAwMDAwMDQ2ODkgMDAwMDAgbiAKMDAwMDAwNTAwNyAwMDAwMCBuIAowMDAwMDA1NDcyIDAwMDAwIG4gCjAwMDAwMDU2MTUgMDAwMDAgbiAKMDAwMDAwNTgyMSAwMDAwMCBuIAowMDAwMDA2MTQxIDAwMDAwIG4gCjAwMDAwMDYzMDMgMDAwMDAgbiAKMDAwMDAwNjcxNCAwMDAwMCBuIAowMDAwMDA2OTUwIDAwMDAwIG4gCjAwMDAwMDcwOTAgMDAwMDAgbiAKMDAwMDAwNzIwNyAwMDAwMCBuIAowMDAwMDA3NDQxIDAwMDAwIG4gCjAwMDAwMDc4MzQgMDAwMDAgbiAKMDAwMDAwODEyMSAwMDAwMCBuIAowMDAwMDA4MjczIDAwMDAwIG4gCjAwMDAwMDg1ODIgMDAwMDAgbiAKMDAwMDAwODgxMiAwMDAwMCBuIAowMDAwMDA5MjE3IDAwMDAwIG4gCjAwMDAwMDkzNTcgMDAwMDAgbiAKMDAwMDAwOTc0NyAwMDAwMCBuIAowMDAwMDA5ODM2IDAwMDAwIG4gCjAwMDAwMTAwNDAgMDAwMDAgbiAKMDAwMDAxMDQ1MSAwMDAwMCBuIAowMDAwMDEwNzcyIDAwMDAwIG4gCjAwMDAwMTEwMTYgMDAwMDAgbiAKMDAwMDAxMTE0MCAwMDAwMCBuIAowMDAwMDExMzAwIDAwMDAwIG4gCjAwMDAwMTE0NDYgMDAwMDAgbiAKMDAwMDAxNDEyMCAwMDAwMCBuIAowMDAwMDE0NTQwIDAwMDAwIG4gCjAwMDAwMTUxMTUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTcgPj4Kc3RhcnR4cmVmCjE1MjY5CiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAACICAYAAAD6bB0zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZgU1fX/8feHGWBYBRxAFgUjm6ABBY3iBu7GJSaRKGrc4h5j1GjUxJiJSYxG8w2K0WjUQFRwjdGfS6IYUINGAyqbIi6gKOsIssiAs5zfH1WDTdPrLHR193k9zzzTy62qc6tuV52+fatKZoZzzjnnnHMu0CLXATjnnHPOORclniA755xzzjkXwxNk55xzzjnnYniC7JxzzjnnXAxPkJ1zzjnnnIvhCbJzzjnnnHMxPEF2TUbSGZL+04jpvy1psaT1kvaQNFDSm5LWSbpY0gRJv2nKmJPEMU3S2eHjUyQ91wzL+Jmku1O836h1mSvhtvtaruNoiOaMXdKfJf2iOeZdyCTNkzQq13FEjSST1C987G3LuWbgCbLLiqT9Jb0iaY2kVZKmS9qriWZ/M3CRmbU3szeBnwLTzKyDmd2aizjN7AEzOzxmvpsPTI1hZtebWX0S3jecb2lD5yfpIkkzJG2SNCHB+4dImi9pg6Spkvo0Ivykwm33YSZlm2pdShol6ZPGzieb2Bsw7/PN7NfNMe94kiokVYcJf/1fRol/OO39TRRHo7evmQ0xs2lNEU8qklpLukfSR+EX8jclHdXcy20KsW2rqT4LyUg6PdyuZzfXMpyLCk+QXcYkdQSeAsYDXYBewK+ATU20iD7AvBTPM7IN4oyiJcBvgHvj35BUDvwd+AXB+pgBPLRNo8uxxnz5yFMPhQl/++ZM/AtIKbAYOAjYjuCz8rCkvjmMKVIkdQaupgH7ZOfykSfILhsDAMxsspnVmlmVmT1nZrNjC0m6WdJqSQtje2EkLZJ0aMzzCkn3h70364ESYJakDyT9GxgN3Bb2gA2ID0bSMZLekvR52Fv89UziDIcvTJc0Puxhni/pkEQVjh3qIOml8OVZYUwnJij/kaTh4eNTw96WweHzsyX9I7bu4WT18/08nO++6dZlPDP7u5n9A/gswdvfAeaZ2SNmthGoAIZKGpSkzoskXS3p7XDZf5VUFvP+OZLeD3vmn5TUM+a92J9+J0j6k6Snw1651yTtkmxdSiqX9FS4PVdJellSyn2UpHbAs0DPmN7SnuH6fTRsX2uBMyTtLenVcP5LJd0mqVW2saeIRZL+KGlF2K5mS9otZn6/CR//P23Zu1sn6YzwvUGSng/r/66k76VaZlOSdCTwM+DEMK5Z4evbKehdXSrpU0m/kVQSvtdP0othfSslPRS+nvazErPcpNtdMfuM8P36dfZFuL36hu8l2xdkxMy+MLMKM1tkZnVm9hSwEBie4bprjvby57AtrAvXccJfferbVorPwt4Kfl1aK2m5pP/LZt3E+B1wK1DZwOmdyyueILtsLABqJU2UdJSCHoV43wDeBcqB3wP3SFKqmZrZJjNrHz4dama7mNnBwMt8NeRiQew0kvYk6C09D9geuBN4UlLrLOL8MIzzl8DfJXVJE+eBMTG2N7NEvbAvAqPCxweGyzgo5vmLCaapn2+ncL6vxsSY1bpMYggwK6YeXwAfhK8ncwpwBLALwReOawAkHUxwoPwe0AP4CHgwxXzGEvTedwbeB34bxpBoXf4E+AToCnQnSNYsVcXCuhwFLInpLV0Svv0t4FGgE/AAUAtcSrA+9wUOAS7MNvYUDifYlgPCZZ5Igi8sZnZsfazACcAy4IUwwXkemAR0C5d/u6QhAJKuChPAhH9xizk2TDbnSbogTdz1cf0TuJ6vep+Hhm9NBGqAfsAeYT3rf2L/NfBcuI56E/xqk+lnpV5G293MOsWst1sI9g+fptkXEJN8J/p7KlFAkroTbMdsekubur2cQrB+y4G3CNpwUik+C7cAt5hZR4LP88P106RqT5Kuiim3NzAC+HPateBcgfAE2WXMzNYC+xMcvP4CrFTQg9g9pthHZvYXM6slOLD2IDjoNbVzgDvN7LWwl3giwRCKfTKMcwUwzsyqw4P3u8DRTRDXi3yVEB9AkEzWPz+IxAlyMk21LtsDa+JeWwN0SDHNbWa22MxWERzox4avnwLca2ZvmNkmgp9c91Xyn6L/bmavm1kNwQF+WIplVhPUsU+4XV42s5QJchqvmtk/wh7BKjObaWb/NbMaM1tEkEgdlGL6bGKvj78DMAiQmb1jZkuTFVbwq8jfgBPNbDFwDLDIzP4axvgG8BhBEo2Z3RAmiQn/Ymb9MLArQcJ5DnCtpLE0QPiZOQq4JOxlXQH8ETgpps59gJ5mttHMGnJiaVbbPeyNPhn4rplVk2JfAGBmx6RYb8ckmH9Lgu090czmZ1GPpm4vT5vZS+Hn7OcEn7Mds4gndjn9JJWb2Xoz+2/9G6nak5ndABD+WnA78CMzq2vA8p3LS54gu6yEO/EzzKw3sBvQExgXU2RZTNkN4cP2NL0+wE/ietB2DOPJJM5P4w7CH9VP20gvAgdI2oFgyMhDwH5hArkdQU9QpppqXa4HOsa91hFYl2KaxTGPY9dNz/B5fVzrCXq9eiWZz7KYxxtIHf9NBD1vz0n6MLYHq4Fi64CkAWFv4jIFwy6uJ+idSyab2DGzfwO3AX8Clku6S8F4+K1I2g54AviFmb0cvtwH+EZcmz4F2CHVchPE8baZLQmTxVcIehBPyGYeMfoALYGlMTHdSdDDDcGJtAJeD3urz2rAMjLe7pL2IFjH3zazlTExJt0XZEPB0I77gC+Bi7KcvKnby+KYsuuBVTRsH/UDgl7q+ZL+J2mrLwVpXAjMtq9+2XKuKHiC7Bos7F2ZQJCAZuILoG3M86wO/HEWA7+N6/Foa2aTM4yzV9xwhZ0ITnRrFDN7n+DgeDHwkpmtIzhwngv8J0kPTGN6STMxD6j/ubx+3O4upP75OLanKnbdLCFISGLntT3waWODNLN1ZvYTM/sacCxwmZKMDY+fNMPX7wDmA/3Dn5t/RpDcNRkzu9XMhhMMXxkAXBFfJkzCJgFTzezOmLcWAy/Gten2ZnZBON3PtOXY5S3+UoVF5vWMX2eLCXpjy2Ni6mhmQ8L6LjOzc8ysJ8EQh9uV5ZUrMt3ukroCjxMMu3ozLsak+wJJz6ZYb8/GzF/APQS/0tT3TjerNO1l82dQUnuCE2zT7aMSDU15z8zGEnypuRF4NPzckqo9SfpZOItDgG+HXyyXASOBP0i6rWG1di4/eILsMqbgBKKfSOodPt+R4Kf3/6aecrO3gJMktZQ0gob3akEwdOJ8Sd9QoJ2koyV1yDDObsDFYSxjCH6SfiaD5S4H0l0y60WC3qf64RTT4p7HWwnUZTDfpCSVKjiRrgQokVSmr67c8Diwm6TvhmWuJegRSvXz8Q8l9VYwLvtnfHXVi0nAmZKGKRjjeT3wWjhkIVtbrEsFJ1r1CxOVtQRjhmvD9yYoweXrYuazfdgrm0qHcL7rFZygmNHY3ExJ2itsjy0JvgxuJIw/zm+BdsCP415/Chgg6fthu2wZznNX2HxpwPbJ/mLi+JakzuHnYm+CL2tPxLy/SOFJgQksB/qGSTzhT/7PESREHSW1kLSLpIPCeY2p/5wBqwkStNqYeaVt06m2e0yZUoLhJg/Y1uOZk+4LwjoclWK9xZ74egfBfuBYM6tKEKepCa/JnEF7+aaCy1W2IhiL/JoFQ3FS2eqzoOBk4a7hl/P6seq1sPnShsn+rg/LnkGwXoaFfzMIxlr/vDH1dy7qPEF22VhHcOLYa5K+IEg45xKcZJOJXxD0XK4m2MFOamggZjaDYOzhbeH83ifYkWca52tAf4Izsn8LnGBmia4AEa8CmKjgp9xkVxh4kSAZeynJ8/i6bAhjmB7Od58M4oh3DVAFXAWcGj6+Jpz/SuC74TJWE6ybkxLPZrNJBInRh+Hfb8J5vUCwHR8DlhJsz3TzSqaCLddlf2AKwZCQV4Hb7atr4O4ITE80kzDRnwx8GM4r2c/QlxOMXV1HkFQ19aXuOobzXU0wDOUzgmt7xxtLMD52dUxv3Snhrw2HE6zPJQS/PNwItM4yjpMIPg/rCMY432jBuFzCZGt7kn+pfST8/5mkN8LHpwGtgLfDuj1KMGYYYC+Cz9l64Engx2a2MHyvgvSfFUi93ev1JhjTf0lcL+dOafYFGVFwhYjzCBLAZbHbJXy/dxjfnGzmm0a69jKJ4ATiVQRX0zgl3QyTfBaOBOaF2+gW4CQLrmaTETP7PPylYJmZLSMYfrLWzOLPa3CuoMgadQ6Mc/kn7D0728z2z3UsUSRpEcH6mZLrWGBzUjcL+Pq2+Nm7kEnaH/hh+JO7y5CkU4EhZnb1NlreBOATM7tmWyzPObe1Yrt4vnMuz5jZlwQ/8bpGsuAqE3l3C/NcM7Mmubugcy5/+BAL55zLkKQDlP1JckVPyU8wfDb91PnL24tz+cuHWDjnnHPOORfDe5Cdc84555yL4Qmyc84555xzMTxBds4555xzLoYnyM4555xzzsXwBNk555xzzrkYRXcd5DZt2izbuHFj91zHkY2ysrLlVVVVO8S+lm/1KCsrW1FVVbVFvPlWB0i8LVq2bLmspqYmr+pRWlq6vLq6Ot/bVKLPxfKNGzd2y1VMDVHg9cirNgWFUY9E+9tC2U85t60U3WXeJFm+1VkSZqa417aqx7Rp0xgzZgyPPPIIo0aNSjvfbVl+9OjRaesQ5fjryyfbFhUVFSxcuJBHHnmEMWPGsPPOO6edfy7LV1RUZNSmoizZtpg6dWpk208imX6+oxp/TMx536agsPe3FRUVm5/nw/4q0X6qUMycObNbaWnp3cBu+K/5uVIHzK2pqTl7+PDhK+LfbLYeZEk/B04GasMgzjOz11KUrwDWm9nNkq4DXjKzKZIuAe4ysw0JprkIuATYBehqZpXNUJW8EOWddTGUz4eDTbGIQnvItny2ohb/tGnT0pYpJFFc/76/yi+lpaV377DDDrt27dp1dYsWLfLrW2SBqKur08qVKwcvW7bsbuC4+Peb5VuLpH2BY4A9zezrwKHA4kynN7NrzWxK+PQSoG2SotPDeX/UiHDzXtR2vsVWHojUwaMYDzbZiGL7yUbU4q8vXyyiuv49Oc47u3Xt2nWtJ8e506JFC+vatesagl78rd9PNwNJP5bUUYF7JL0h6fA0k/UAKs1sE4CZVZrZknB+iyTdKOn18K9fgmVOkHSCpIuBnsBUSVPjy5nZm2a2KF0dClnUdr7FVr5eVA4eRXywyUjU2k+2Pa9RjL++fDGI8vr35DjvtPDkOPfCbZAwF86kB/ksM1sLHA50Bc4EbkgzzXPAjpIWSLpd0kFx7681s72B24BxyWZiZrcCS4DRZjY6g1iLStR2vg1JLqMUT2N6/qJw8Cjyg01aUWs/2fa8RjX+5uopj5qorU//pcu55pXJGOT6AfLfBP5qZrMkpRw0b2brJQ0HDgBGAw9JusrMJoRFJsf8/2P2YWdH0rnAuc29nG0tSjvfhh4soxJPcx/s/WCTW1FrP7HlR49O/90/yvEXQ3IMhbG/jcr+x/dXW+vdu/fQTz/9tMnOC+vVq1fNJ598MivZ+8uWLSsZNWrUQIDKysqWLVq0sC5dutQAvPXWW++UlZWl7d0+4YQT+v7iF79YOnTo0E3Jyvzud7/r2qlTp9oLLrhgVUPq0VBPPvlkh3bt2tUdcsghXzR0Hpn0IM+U9BxBgvwvSR0ITrpLycxqzWyamf0SuAj4buzbSR43CzO7y8xGmNmI5l7WthSVnW9jDpZRiKfYkuOFCxdmFHehiFr7KbbyhSIq69N/6SpMn376aamZMXXqVMrLy5k6dSpmlvYvWfl0yfYOO+xQO3/+/Lfnz5//9mmnnbby/PPPX17/vD45rquro7a2Nuk8Hn300UWpkmOAq6++euW2To4BpkyZ0mH69OntGjOPTBLkHwBXAXuFV5JoRTDMIilJAyX1j3lpGFueSHdizP9X0yx/HdAhgziLThR2vs19sMz3+KN2sKkvXyyi1n6KrXwhicL6LLb9VbGJQnuYO3du6/79+w85+eSTdxoyZMjgjz/+uOXYsWP77Lbbbrv269dvyOWXX96jvuzw4cMHvvLKK22qq6vp0KHDsAsvvLDXwIEDBw8bNmxQfYJ+8cUX97zuuuu61Ze/8MILe+2+++679u3bd7fnn3++HcDatWtbHHHEEbsMHDhw8LHHHrvzbrvttusrr7zSJj628847r/cuu+wyZMCAAYMvuOCCXgCLFy8uPfzww3fZbbfddt199913feGFF9rNmzev9aRJk7redtttOwwaNGhw/XKylbY738zqJC0HBkvKtPu/PTBeUiegBnifLYc4tJb0GkGCPjbNvO4CnpW0NH4ccngS30+BHYDZkp4xs7MzjLHg5fvOOmrxT8vyhKqoHWxiy0+cODGjOuSzKLafYipfbPJ9/Udxf1VsotIePvjgg7K777574UEHHfQxwLhx4z7p3r17bXV1Nfvss8/AmTNnrh4+fPjG2GnWr19fMmrUqHW33377p2effXbvP/3pT+XXX3/9svh5mxlz5sx554EHHtjuuuuu63nYYYe9d8MNN3Tr1q1b9b/+9a8PXn311Tb777//4PjpFi9eXPrCCy9s9957781r0aIFlZWVJQDnn3/+TldeeeWyQw455It333231THHHNP/vffem3fyySevLC8vr7n22mu3ur5xptImvJJuJOjpfZvgmsYQDIt4Kdk0ZjYTGJlitn8ys1/FTVMR8/iMmMfjgfFJlnMrcGvKChSpfN9ZRy3++vKZiuLBpph6bqLafrL5vEQpHk+OU8v39R+1/U+x/dJVLyrtYccdd9x00EEHbb73xL333tvlvvvuK6+pqdHKlStbzp49u018glxWVlb3ve99by3A8OHDN7z88svtE817zJgxnwOMHDlywzXXXNMK4NVXX21/5ZVXLgPYd999q3bZZZeq+Om6detW26JFCxs7dmyfo48+es2JJ564BmD69OkdP/jgg7L6cmvWrClZv359k9xcJpMe4eOBgfWXbMt3ZWVlyyXl1e02y8rKlid6LZN6ZHIC0LYo36pVq63GIGVSh6jEXy/RtigtLV1eUVGRsB7Z9tRuq/KlpaUNblNRkcnnImrtJ1H5RPVo1arVqsrKyi75EH+9xuynoqRQ97ep9lP1ora/SrSfKmRRSI4B2rRps/k8szlz5rS+8847u8+YMeOd8vLy2m9961s7V1VVbZWAlpaWbj6frKSkxGpraxMmqWVlZXXxZTK522br1q1t1qxZ7/zjH//o+OCDD3a58847u06fPv09M8v4pMJsZZIgfwi0BJokQTazvk0xn4aqqqoqiPu6F0I9CqEOANXV1QVRj0LYHoVQB4BNmzZtn+sYmkKhbI9CqEeh7KeKWS5+yfn8889L2rVrV9u5c+fajz76qOVLL73U8YgjjljTlMvYd99910+ePLnzkUceuf71119v8+GHH241/nj16tUtqqqqWowdO3bNQQcd9MWQIUOGAOy3335rb7zxxq6//OUvVwC88sorbUaOHFnVoUOHunXr1pU0Jq5MEuQNwFuSXiAmSTazixuzYOecc845F1yWLdPzvDL5JaFHjx41jQ4K2G+//Tb0799/44ABA4bstNNOm4YPH76+KeYb66qrrloxZsyYnQcMGDB4991339CvX7+qLl26bHH5jFWrVpUcf/zx/b788kuZGb/5zW8WA9x9990fn3XWWTsNGDCgvLa2ViNHjlw3cuTIj0844YTPTzzxxK899dRTnW+99daPDjvssKwv96Z0XduSTk/0upkV/lk+zjnnnHNNbNasWYuGDh1ames4oqC6uprq6mq1bdvW5syZ0/rII48csGjRojktW7bcJsufNWtW+dChQ/vGv57JVSwmSmoFDAhfetfMqps4Puecc845V2TWrFlTctBBBw2oqamRmTF+/PiPtlVynEomV7EYBUwEFhHcVW9HSaebWdKrWDjnnHPOOZdOeXl57bx5897JdRzxMhnv8gfgcDN7F0DSAIJbRA9vzsCcc84555zLhUzupNeyPjkGMLMFBFe1cM4555xzruBk0oM8Q9I9wH3h81OAmc0XUvNq06bNso0bN+bddTnjLzPUunXrz7788ssuuYopW4nqUCjbIh/r0apVq1XxlxLLt3qUlZWtqKqq2iLeli1bLqupqcmbOkBwrdf4S3Dl27aAwvlsJKpHaWnpZ7W1tXmzv03SppZv3LixW65iaohE28K5bSWTq1i0Bn4I7E8wBvkl4PZ8vXGIJMvkotRRIgkzU9xrGdUjKnd4akwdoiTbekRl/ceXr6yszKgeUY3/kUceYfTo0QnrUFFRsfl5VO8QFlu+oqIi6baI8vqPL1/on/HYdpVMVNpbqjaVStTaW6JtUSj8KhbR0ZirWGwC/i/8y5iknwMnE9yeug44z8xeS1G+AlhvZjdLug54ycymSLoEuMvMNiSY5gFgBFANvB4uw6+wEYrazq7YRG39xyeXUYqnOcpHJVlpaPmorU//vKcWtfaTrai1n2nTpqUtU0i6des2dOXKlRldBzkT3bt3r1m2bNmsZO8vW7asZNSoUQMBKisrW7Zo0cK6dOlSA2R1Z7px48Zt/53vfGfNTjvt1KjrLv/nP/9pu2zZstITTjhhbWPm05SSbgxJD5vZ9yTNAbZaUWb29RTT7gscA+xpZpsklQOtMg3KzK6NeXoJcD/BDUviPQCcGj6eBJwN3JHpcgpZ1HZ2xSZq67/YykctWWlIchOl9emf99Si2H6yEbX2U1++mKxcubL09NNPb7L2UFFRkTLZ3mGHHWrnz5//NsBll13Ws3379rXXXXdd1rf2vu+++8r33nvvDY1NkF9//fW2c+fObZMXCTLw4/D/MQ2Ybw+gsn4Yhplt/hlB0iLgIaC+C+tkM3s/dmJJE4CngJ7h31RJlWa2RbeXmT0TM83rQO8GxFpworizKyZRXP/FVD5qyUpDk5uorE9PjlOLWvtZuHBhRnHXi1r7yfaXrkIShS9LAOPHj9/+rrvu6lZdXa0RI0asnzhx4sd1dXWMGTNm57fffruNmen0009f2b179+p33nmn7cknn7xLWVlZXXzP869+9atuf/vb37qWlpbaoEGDqp544omFa9asaXHWWWfttGDBgjY1NTX6xS9+8elxxx239qabbuqxcePGFq+88kqHK6+8cumZZ565ulkql4WkCbKZLQ0fXmhmV8a+J+lG4Mqtp9rsOeBaSQuAKcBDZvZizPtrzWxvSacB40iShJvZrZIuA0bHJtnxJLUEvs9XSX3RiurOrlhEdf0XS3kgcslKQw9mUVifnhynFrX2U18+U1FrP97eUtsWyfH//ve/sieeeKLTG2+88U7Lli0ZO3Zsn7/85S9dBgwYsGnVqlWlCxYseBugsrKypLy8vPbPf/5zt/Hjx388cuTIqvh53XbbbTssXrx4TllZmVVWVpYAXHnllT2POOKINY899tiilStXluy11167Hn/88fOuuOKKpXPnzm1z7733Lm6WijVAJpd5OyzBa0elmsDM1hNcJ/lcYCXwkKQzYopMjvm/bwYxpHM7wZjllxO9KelcSTMkzWiCZUVW1HZeseWLQZTXf6YHmyjF09CDZdSSlWL5WbzYRK39xJbPRNTaj7e31LZFcgzw7LPPdpw9e3a73XffffCgQYMGv/rqqx0++OCD1oMHD9744Ycflp155pk7PvbYYx27dOlSm25e/fv33/id73xn5zvuuKNLq1atDGDatGkdb7755h6DBg0afMABBwzctGmT3n///YyH4G5LqcYgXwBcCHxN0uyYtzoA09PN2MxqgWnAtHAc8+nAhPq3Y4tmF/JWcf4S6AqclyKWu4C7wvL5dUp1hqK28yq2nV3U1mdD139U4mlM+4laslIMyfG0IhtGFbX24yeAFrbmHmYTy8wYO3Zs5S233LIk/r158+bNe+yxx7YbP358t0cffbTz5MmTP0o1r5deemnBM8880+Hxxx/vdNNNN/VYsGDBPDPj8ccf/2DIkCFbXAltypQpHRocdDNJ1YM8CTgWeDL8X/833MxOTTEdkgZK6h/z0jAgdkWeGPP/1TQxriNIyhMt52zgCGCsmdWlmU/BitrOqxh3dlFan41Z/1GIp7nbT9SSlWxFbf3Xly8WUWs/nhwXtuYeZhPvqKOOWvfEE090Wbp0aSkEV7t47733Wi1ZsqS0rq6Os846a/V11123ZM6cOW0B2rVrV7d27dqS+PnU1NTw4YcftjruuOPW3XHHHZ+sXr26dN26dS1Gjx699uabb958Pe7p06e3AejQoUPt+vXrMxnVsM2kGoO8BlgDjAWQ1A0oA9pLam9mH6eYb3tgvKROQA3wPsFwi3qtJb1GkKCPTRPjXcCzkpbGn6QH/Jkg8X5VEsDfzey6NPMrKFHbeRXrzi4q67O513++xx+1ZMVPqMovUWw/nhwXhu7du9ekuvLExIkTs55fQ+LYe++9q6666qolo0ePHlBXV0fLli3t9ttv/6ikpIRzzjmnr5khid/+9refAJx22mmV559/ft/4k/Sqq6t10kknfW39+vUtzEwXXXTRss6dO9f9/ve/X3LuuefuOGDAgMF1dXXq06fPxhdeeOGDo48+et0tt9yyw6677jr4pz/9aSRO0svkRiHHElwDuSewAugDvGNmQxq0wOAqFiNSnXTXnArpwvVTp06N1M4rVflCv4lAPt20JYw563pEKf4w3qxu6BC1ZKW+/IYNG/L+pi2jRo0q+M/46aefHsn2k6h8shuFlJeXR7b9JOI3CnHbQrIbhWSSIM8CDgammNkekkYTDGk4N+WEyee3iBwmyIVy69N8u21oId+GNk/rsdVtmvOtHolul+23ms6dAvpsbFWPli1bLq+pqcmb/W2iNtW6devPvvzyy7y5XTYU9q2mPUGOjgbfSQ+oNrPPJLWQ1MLMpoaXeWsQM9sqiG2pUD5s8clNPiqgbeH1iIj4pCBfFcK2gMKpR3V1dd7vb+O/TDrnUvNj4BoAABamSURBVMskQf5cUnvgJeABSSsIxhU755xzzjlXcDI5Y/BbBLd5vhT4J/ABwdUsnHPOOeecKzgpe5AllQBPmNmhQB2Q3WmUzjnnnHPO5ZmUPcjhzT42SNpuG8XjnHPOOedcTmUyxGIjMEfSPZJurf9r7sCcc84554pB7969h0oa3lR/vXv3HppumZKGn3POOb3rn1977bXdL7vssp6pprnvvvs6zZw5s6yx9X333Xdb9e/fv0GXC7711lu3X7RoUcvmXl4mJ+k9Hf4555xzzrkm9umnn5Y25TXDJaXN71q1amXPPPNM56VLly7r0aNHRhdf+Mc//tGppqZmzfDhwzc2PsqGuf/++8uHDRtW1bdv3+rmXE7aFWhmEyW1AXYys3ebM5htoVCuy5lv9SiEOkBh1yPfrpNaCNcHh8JpU4V8Xep8q0chX1vbNZ2SkhI77bTTVl5//fXdx48f/2nsewsWLGh1+umn9/3ss89Kt99++5q//e1vixYtWtRyypQpnf773/92uPHGG3s89thjHwwZMmRT/TT33ntv59/97nc9W7RoYR06dKidMWPGuzU1Nfzwhz/sPX369A5ffvmlzjnnnBVXXHHFFtd/TlXmmmuu6f7www9vL4lDDjlkzV577bVh7ty5bU877bSvlZWV1c2YMeOdN998s81ll12244YNG1p07ty55oEHHljUp0+f6pdffrnt2Wef3bdNmzZ13/jGN9Znu37SJsjhnfRuBloBO0saBlxnZsdlu7Ao2LhxY/c8vEPVVju12HpEPX4gbR3yRSHX48svv+yST3cETLItuqWrQ1Tir5dtm4pa/PXlKysrt/pyVVNT0z3+zoZRvaNhffmKioqttkdsPaIeP5CwDoWyn3JN64orrlix++67D6moqFgW+/r555+/08knn/zZj370o8/GjRu3/QUXXLDjlClTPjj00EM/P+aYY9YkuhX0DTfc0OO5555bsPPOO1dXVlaWAIwbN658u+22q507d+47VVVV2muvvQYde+yxa6WvbpCYrMzs2bPLnn766c4zZ86c36FDh7rly5eXdO/evfaOO+7odvPNNy8+8MADN2zatEkXX3zxTk8//fT7PXv2rPnLX/7S+fLLL+/1yCOPLPrBD37Q949//OPHRx999Przzjuvd3y86WQyBrkC2Bv4HMDM3gLSfmol/VzSPEmzJb0l6RtpyldIujx8fJ2kQ8PHl0hqm2SaeyTNCpfxaHi95qxE9WBTLOVdfsn39hO1+KdNm5a2zLaOp6HlM5EPyWUhl3cuXpcuXerGjBnz2Q033LDFL29vvvlmu3PPPXcVwAUXXLBq5syZafOrESNGrD/llFP6/uEPfyivqQlGbEyZMqXjww8/vP2gQYMG77HHHruuXr269O23395iDHOyMs8//3zHU089tbJDhw51AN27d6+NX+bs2bNbv/fee20OPvjgAYMGDRp800039ViyZEnLzz77rGTdunUlRx999HqAs84667Ns100mY5BrzGxNbLYPpPwaKmlf4BhgTzPbJKmcoAc6I2Z2bczTS4D7Ca7FHO9SM1sbLvP/gIuAGzJdTpQPNsVQ3uWXfG8/UYu/vnymohp/puWjliwWW3nnkrn66quX77nnnoNPOumkRt36etKkSR//+9//bvfkk09uN2zYsCFvvfXWPDPTH/7wh4+/+93vro0t++67727OCZOVeeaZZzrG5Z5bMTP169ev6q233pof+3plZWVJumnTyaQHea6kk4ESSf0ljQdeSTNND6DSzDYBmFmlmS0BkLRI0o2SXg//+sVPLGmCpBMkXQz0BKZKmhpfLiY5FtCGNIl7rKgdPBqSHEQpHk+OC1vU2k+x9bxGOf5iSI6BSMXjybFrSt27d6899thjV0+aNKm8/rU99tjji7vvvrszwJ133tllxIgR6wHat29fu3bt2oS547x581offPDBX4wbN25J586daz788MNWhx122Jo77rij66ZNmwRBj2/89MnKHHnkkWvvu+++8nXr1rUAWL58eUl9DGvWrCkB+PrXv75x1apVpVOmTGkHsGnTJs2YMaOsvLy8tn379rX/+te/2gNMmDAh6/NrMkmQfwQMATYBk4A1wI/TTPMcsKOkBZJul3RQ3PtrzWxv4DZgXLKZmNmtwBJgtJmNTlRG0l+BZcAgYHwG9YncwaOhyWVU4vHkuLBFrf0UW89rvpePWrLY0OQyKvF4clyYevXqVSOJpvrr1atXRlelqPfzn/982eeff755VMEdd9zx8X333Vc+YMCAwZMnT97+9ttvXwxwyimnrLr11lt32HXXXQfPmzevdew8Lr300t4DBgwY3L9//yH77LPPun322afq0ksvrRw0aNDG3Xfffdf+/fsPOeecc/pUV1crbrqEZU444YS1Rx111OfDhg3bddCgQYN//etf7wBw2mmnVf7oRz/qM2jQoME1NTU8+OCDH1x11VW9Bw4cOHjIkCGDX3zxxfYA99xzz6KLL754p2HDhg1q06ZN1gPwlW7QvqQxZvZIutcSTFcCHACMBs4DrjKzCZIWAQeb2YeSWgLLzGx7SRXAejO7WdIE4CkzezQsP8LMknb9h8saD/zPzP6a4P1zgXPDp8PLy8sjc/DIpLwkzExxr1menVDV4DpESbHVIyrtJ1H50aNHp61DlOOvL59qW+RD/DExJ6xH27ZtI5MsZlK+oqIiYT3iTzaMavyp6lAI+6lCMWvWrEVDhw5t1JAG1zRmzZpVPnTo0L7xr2fSg3x1hq9twcxqzWyamf2SYGzwd2PfTvK4QcI7/j0Ut4zY9+8ysxFmNgKKp+c13+N3uRW19uPl86t8vVwniw0tn618j985t6WkJ+lJOgr4JtAr7s55HYGUXfeSBgJ1ZvZe+NIw4KOYIicSnEx3IvBqmhjXAR2ALb5pheOOdzGz98PHxwLzE0y/lSgcPDw5dlEWtfZTbOWhcM4xiEKy6Mmxcy5bqa5isQSYARwHzIx5fR1waZr5tgfGS+pEkEy/z1dDHABaS3qNoAd7bJp53QU8K2lp3DhkARMldQwfzwIuSDOvjET5YJOJqMU/LcsTqlxuRbH9FFP5elGJp7n3V/meXEYt/oULF2YUt8u5urq6OrVo0SK/xr0UmLq6OgF1id5LmiCb2SxglqQHzCyrwd5mNhMYmaLIn8zsV3HTVMQ8PiPm8XgSnHxnZnXAftnElYmoHWyyTS6jGH82J1S53Ipq+ynGntcoxFNsyXG2yWUU43/kkcyujOJybu7KlSsHd+3adY0nyblRV1enlStXbgfMTfR+0pP0JD1sZt+TNIcE44TN7OsNCSiTk+6aU57ebnNFVVXVFjHnWz0K5Xa6BV6PvLpNcyHcLhsKqk1ttZ/Kt1s0A5SWlq6orq7O63r4raajb+bMmd1KS0vvBnYjs/PBXNOrA+bW1NScPXz48BXxb6ZKkHuY2VJJfRK9b2YfJXrdOeecc865fJb2Mm/OOeecc84VE+/Wd84555xzLoYnyM4555xzzsVImiBLulzSjtsyGOecc84553ItVQ9yL+AVSS9JukBS+bYKyjnnnHPOuVxJeZJeeIe6A4GTgG8R3IxjMvC4ma3bJhE655xzzjm3DWV8FQtJJcChBLeIHmhmbZszsOZSKNeCzLd6FEIdIHE98u0aqVAY10n1NhUtidqUX5c6NwqhDgCtWrVatWnTpu1zHYcrThklyJJ2J+hFPhH4DJhsZuOaObZmIcny7dJ2kjAzxb2Wsh5Ru8NWQ+oQRcnqUVFRsUW5qN5hq758RUVFyu0RtfaTqHyqNpUP8cfEnLAebdu2jWz7SSRdm0olSturEPZV2dYhSus/tnxlZeVW9XBuW0l1kl5/SddKehuYBGwADjezb2SSHEv6uaR5kmZLekvSN9KUr5B0efj4OkmHho8vkZSyt1rSeEnr08VULKK4sysmUUhWGlM+iu2nmMrXi0p7yLZ8tqK6/otF1NZ/bHnncqk0xXv/IhhvfKKZzclmppL2BY4B9jSzTeEJfq0ynd7Mro15eglwP0GCnmhZI4BO2cRXyKK6sysWUUtWii05BiIVT2OSsyi0h2JLjovty3wU179/mXFRkeoqFkcAz8Ynx5IOkLRLmvn2ACrNbBOAmVWa2ZJw+kWSbpT0evjXL35iSRMknSDpYqAnMFXS1ATlSoCbgJ+miacoRG3nVWw9AVFLVhqS3ES1/WRzsIxKPM19sI9i+8lG1NZ/sX2Zj+r69+TYRUWqBPmPwNoEr1cB6YZYPAfsKGmBpNslHRT3/loz2xu4LdW8zOxWYAkw2sxGJyhyEfCkmS1NE0/Bi9rOq9h2dlFLVhqa3ESlPTSm/UQhnmJLjhcuXJhR3PWitv6L7ct8lNd/MRwvXH5IlSD3NbPZ8S+a2Qygb6qZmtl6YDhwLrASeEjSGTFFJsf83zeLeDeT1BMYA4zPoOy5kmZImtGQZUVd1HZexbizi1qy0tCevyi0h+ZuP/kef9TaT335TEVt/Rfb/ipq67PY1r/LH6kS5LIU77VJN2MzqzWzaWb2S4Ke3u/Gvp3kcTb2APoB70taBLSV9H6SWO4ysxFmNqKBy4qsqO28inVnF7VkpVh+Fs9W1OKfluWY16i1n9jymYji+i+m/VXU1mexrX+XX1IlyP+TdE78i5J+AMxMNVNJAyX1j3lpGPBRzPMTY/6/mibGdUCH+BfN7Gkz28HM+ppZX2CDmW01nrmQRW3nVcw7u6glK54cb/t4Glo+U1FrP8V4Ami+i9L6LMb17/JLqqtYXAI8LukUvkqIRxBcjeLbaebbHhgvqRNQA7xPMNyiXmtJrxEk6GPTzOsu4FlJS5OMQy5aUdp5+c4utaglK9mKWvvJtuc1ivHXlx89Ov1uLWrtx5Pj/BSV9Vms69/ll6QJspktB0ZKGg3sFr78tJn9O91MzWwmMDJFkT+Z2a/ipqmIeXxGzOPxZDDO2MzapytTaKKy8/KdXWpRS1YK5YSqTEU1/kzLR7H9eHKcn6KwPot5/bv8kvGtpptsgcF44RFmVrlNFxzKx9ttJrlt6PKNGzd2y1VM2SqUW58W0G2BV1RXV28Rc75tD29T0ZLk9uV5tZ+CwmhXhVAHgLKyshVVVVV5FbMrHNs8QXbOOeeccy7KUp2k55xzzjnnXNHxBNk555xzzrkYniA3A0nnpi8VbYVQB/B6RE0h1KMQ6gBej6gphHoUQh2cq+cJcvMohJ1EIdQBvB5RUwj1KIQ6gNcjagqhHoVQB+cAT5Cdc84555zbgifIzjnnnHPOxfAEuXnclesAmkAh1AG8HlFTCPUohDqA1yNqCqEehVAH5wC/DrJzzjnnnHNb8B5k55xzzjnnYniC7JxzzjnnXAxPkJuQpHslrZA0N9exNJSkHSVNlfSOpHmSfpzrmBpCUpmk1yXNCuvxq1zH1FCSSiS9KempXMfSUJIWSZoj6S1JM3IdT0NJ6iTpUUnzw8/IvrmOKVuSBobbof5vraRLch1XtiRdGn6250qaLKks1zE1hKQfh3WYl0/bIdHxTlIXSc9Lei/83zmXMTrXGJ4gN60JwJG5DqKRaoCfmNmuwD7ADyUNznFMDbEJONjMhgLDgCMl7ZPjmBrqx8A7uQ6iCYw2s2FmNiLXgTTCLcA/zWwQMJQ83C5m9m64HYYBw4ENwOM5DisrknoBFwMjzGw3oAQ4KbdRZU/SbsA5wN4E7ekYSf1zG1XGJrD18e4q4AUz6w+8ED53Li95gtyEzOwlYFWu42gMM1tqZm+Ej9cRJAC9chtV9iywPnzaMvzLuzNSJfUGjgbuznUsxU5SR+BA4B4AM/vSzD7PbVSNdgjwgZl9lOtAGqAUaCOpFGgLLMlxPA2xK/BfM9tgZjXAi8C3cxxTRpIc774FTAwfTwSO36ZBOdeEPEF2SUnqC+wBvJbbSBomHJrwFrACeN7M8rEe44CfAnW5DqSRDHhO0sw8vh3t14CVwF/DIS93S2qX66Aa6SRgcq6DyJaZfQrcDHwMLAXWmNlzuY2qQeYCB0raXlJb4JvAjjmOqTG6m9lSCDpbgG45jse5BvME2SUkqT3wGHCJma3NdTwNYWa14c/IvYG9w58z84akY4AVZjYz17E0gf3MbE/gKIJhOwfmOqAGKAX2BO4wsz2AL8jjn5AltQKOAx7JdSzZCse2fgvYGegJtJN0am6jyp6ZvQPcCDwP/BOYRTDMzTmXY54gu61IakmQHD9gZn/PdTyNFf4MPo38Gx++H3CcpEXAg8DBku7PbUgNY2ZLwv8rCMa77p3biBrkE+CTmF8iHiVImPPVUcAbZrY814E0wKHAQjNbaWbVwN+BkTmOqUHM7B4z29PMDiQYsvBermNqhOWSegCE/1fkOB7nGswTZLcFSSIYY/mOmf1fruNpKEldJXUKH7chOKDOz21U2TGzq82st5n1Jfgp/N9mlne9ZJLaSepQ/xg4nOCn5bxiZsuAxZIGhi8dArydw5Aaayx5OLwi9DGwj6S24T7rEPLwhEkASd3C/zsB3yF/twnAk8Dp4ePTgSdyGItzjVKa6wAKiaTJwCigXNInwC/N7J7cRpW1/YDvA3PC8bsAPzOzZ3IYU0P0ACZKKiH4IviwmeXtZdLyXHfg8SCPoRSYZGb/zG1IDfYj4IFweMKHwJk5jqdBwvGuhwHn5TqWhjCz1yQ9CrxBMCThTfL3NsePSdoeqAZ+aGarcx1QJhId74AbgIcl/YDgS8yY3EXoXOP4raadc84555yL4UMsnHPOOeeci+EJsnPOOeecczE8QXbOOeeccy6GJ8jOOeecc87F8ATZOeecc865GJ4gO+fynqRaSW9JmidplqTLJKXcv0nqK+nkbRDb3ZIGpylzfLoyzjnnth1PkJ1zhaDKzIaZ2RCC6/t+k+C6rKn0BZo9QTazs80s3Q1Fjgc8QXbOuYjwBNk5V1DC21mfC1ykQF9JL0t6I/yrvyXxDcABYc/zpSnKbRaWmS9poqTZkh4Nb7qBpEMkvSlpjqR7JbUOX58maUT4eL2k34a93P+V1D1cznHATWEsu0i6WNLb4TIe3BbrzTnn3Ff8RiHOubwnab2ZtY97bTUwCFgH1JnZRkn9gclmNkLSKOByMzsmLN82Ubm4efYFFgL7m9l0SfcS3G76NuA94BAzWyDpb8AbZjZO0rRwOTMkGXCcmf0/Sb8H1prZbyRNAJ4ys0fD5SwBdjazTZI6mdnnTb/WnHPOJeM9yM65QqXwf0vgL5LmAI+QfChDpuUWm9n08PH9wP7AQGChmS0IX58IHJhg2i+B+luezyQY5pHIbIJbWp9KcCtl55xz25AnyM65giPpa0AtsAK4FFgODAVGAK2STJZpufif3YyvkvF0qu2rn+1qgdIk5Y4G/gQMB2ZKSlbOOedcM/AE2TlXUCR1Bf4M3BYmo9sBS82sDvg+UBIWXQd0iJk0Wbl4O0naN3w8FvgPMB/oK6lf+Pr3gRezCHtzLOHVN3Y0s6nAT4FOQPsU0zrnnGtiniA75wpBm/rLvAFTgOeAX4Xv3Q6cLum/wADgi/D12UBNeMLcpSnKxXsnLDcb6ALcYWYbgTOBR8IhGnUESXqmHgSukPQm0B+4P5zPm8AffQyyc85tW36SnnPOZSg8Se8pM9stx6E455xrRt6D7JxzzjnnXAzvQXbOOeeccy6G9yA755xzzjkXwxNk55xzzjnnYniC7JxzzjnnXAxPkJ1zzjnnnIvhCbJzzjnnnHMx/j+2zyZwA+Ji/gAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x144 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_shuffle_split()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores:\n", "[0.947 0.987 0.973 0.96 0.933 0.96 0.987 0.947 0.947 0.933]\n" ] } ], "source": [ "from sklearn.model_selection import ShuffleSplit\n", "shuffle_split = ShuffleSplit(test_size=.5, train_size=.5, n_splits=10)\n", "scores = cross_val_score(logreg, iris.data, iris.target, cv=shuffle_split)\n", "print(\"Cross-validation scores:\\n{}\".format(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Cross-validation with groups" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDcxMi40ODc1IDEzNS4yNjg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzFmktz20YQhO/4FTgmh6xm37tHO46dqlziROUcUjmoaMWRiqYckYn/fmZBEdMDUSKVEqGDymSbO90Avn0BsP11d/bK9p/WPfXX/Pe1/73/g//92Nv+XX/25vLfq8XlL+9e94t1R6x/7rJ1JpQc+ctSvlgfjUvt05J/h9/+6rpV93cfq4mVkou9zyYGz/8XIxm31XI0ob+97H/rV/3ZK9fycCj++8o2nOPni83m8nbVUpz9aPv1YtV1UtESf7Qp5Mz5ajbsnFJBeQlyLYaqc76FkxqocuTX3fv+mUJ3i3W/J3QlE3Ki7FVmUTFyroaiLd6qyKj+/8hkItnKliX4XfpOnXJO76bpszXBx5SqSi8qpk9kyNrgskqP6glPuCVrqqPEZ1RhYkPzz9kmzQnoiASUmYkUdARUMB+wAjJiAUXmpwXNAReMCryAjGhAkbmICcG4SNnZCTHFGc8fU5gQI7oiRsrMRQw4IjGQD4kRWREjRV6AGDBHYiAqEiOyIkaKPA8xTzqCkkwslDmggse5YFLOxToND+gKHikzFzzgCPBgPoAHZAWPFHkeeJ4SG4nBfEAMyIoYKTI/Mc4VUy0VmyfEpGyIKyQ7IUZ0RAPKzEQMOiIxkA+JERnRgCIzEYOOSAzkQ2JERjSgyAsQwwFdoJImK1/PX7zPlaomBnRFjJSZixhwBGIwHxADsiJGisxFDDgCMZgPiAFZESNF5ifGW29ipmoni2AfrUkp15gnxIiOaECZmYhBRyQG8iExIiMaUGQmYtARiYF8SIzIiAYUmWnl62M0lagmN8GkelNrIYoTTERXmEiZ58HkSaiDORIDUZEYkRUxUmQuYsARiYF8SIzIihgpMhcxfIGd5z2aBib4ZLwrFL0GBnQFzFjlBXgRb8AFgwIuICtcxhpz0SKGAAumA1hAVrCMNWZiJfAGPyZLsUxgycWkWCYQLVFHLKDM/LSgOeICUREXkREMKDITL+iIwEA+BEZkRAOKzEUMb/BLtZaSJiY6MrUUGyYLXdAVMVLmBYgBcyAGowIxICtipMhcxIAjEIP5gBiQFTFSZCZioovGOWtjmBCTvPG22DpZ6IKuHgtImfmJQXMkBqIiMSKrpwRSZCZi0BGJgXxIjMjq8YAUeX5i+DM+wojO+Bodb8jwEYao+AiDh76aLTmvHmGg+owR4ZY3ZoQb5BgSZMwDRU4VU+6zqphyV1bFFFnFlCKniik39zAm3ArEmCCrmFLkRDHhjpKKKfefVEyRMQ8UOVVMuY2BMeGmB8YEWcWUIieKCXtnFVN22iqmyJgHipwqpmzYVEzZ3qmYIquYUuRUMcetAqaEfQWmBFmlHGucKCQsT1VKWcyqlCJjHihyqpiyJsKYsILCmCCrmFLkRDFhIlYxZdpWMUVWM6UU2RtztzgazK95kVTg/ZMWhf+nK2RyjInPwHgsn1EMhgZx2aryMXSvz/uzt20v2Z//2WVuk2NNNvoSe+dMjf35x+4b+21/ft3/cN4Npp113lCJiQ8AXFB93Mbayn0wtV7YjlZ83MQn8bm3MYeofEA94JMc96JEkWciPpfi47WPo2y4XK4efVB93MdR4H7QOkIzAp8w8WGqKMcSrPIB9YBPSAzycHVCQp848anOBO6VRVGA6gGfUpnE5HgRzoMQ+CTt47lO9rF6xQGqj/t4bw1z6RC1PLFgJCnFWpKyAPWARfamlOTqdjkiPkX7BEbS85bDB/RB9XGfYJNxNvkwXB3wqROfZE12iYpTPqAe8OHpy/Ps25aqhD6WtFFkJokHZ4U0iAds2mK+phwDn7eMNpOhIDKSnhdWuSgfUB83im097lIhV5hpNBrHAn09KZrSyjGhbd25/fGbi81F/+XmarVZT+LBW28MArUd1TAw8zZ1Kj/Ut03Jdnhpj6itIgNPg4mnkub765fl1aafnpLRs3BHSG3YV5aiHnLkcZuvAV8AcuTA0D1kyCNj5s13KMpQ1EOGqe2CmC5Xcy1g6B8y5OuceK8cgjIU9QFDthn8ghs6ZyrV1zD4vbu9+efL3itPPOt9Z3mSs3z+qt+2rsOH88/D25at/fcf+ivebF9srm5W67119BzXEuRIiVev3CtaBdrbajJlHd1Mz0DHNptMKPeb2f3N9PxwdDM93B/bTEbvo1vowfh+s/19fjK2Ht0sFh6QuKcF14bK+8383maRWndIobXioe/oZsEbR7zGonbyj2nmhnNfK9O8HYosb0eHoXLsCD+9vVl+3LU7e+V3i8/29vG48uMuebcMTdby+bXb10X5hA1jceYRzg2de6ctWeN9u6PivaiZR9bd74qn0N74GCV396NFN2q13aW7q7aT2D4MVcGAVx3D78YcO2EBeXfakjWuG3Jt78nciYn3xXc/Gw1Ao7HcqI15lyiOxwUe4+HvOXeL7dobFv2Tt6vldh5PqXet25htt2c++XviEsUsot0jDua71b6s8z9p7lKwU5OGz/ntxdXqavWpX19uZPBWt1URor23ViVV4g4YhhEbj0pUPCzu46LafepTD0x8hiO7XG/wqN53/wGV9/viCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMTkxNAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJw9kEsSwyAMQ/ecQkfA+H+edLpK7r+tDZ1ssBiE9MB9YiKjFieCr8SHBqXDJPBsFYR7MNkRcoTkBE2GsoMkcQ0NBqXCpmOZ78mmddJKrLzRftl3NGaddIotRYd2If/n9SLco+Aa6xk8D2AxyNpKpeyZMFplpq7yqOi1H9PhPQ9Eq8Xl9Qau8NpHN6koKkvq/kR3NNj+kbf7Ht8fmWU4JAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuNAADcRiTCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDQgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPip7a/19LOhhMD4YYWeISdycmsvCyhboWOhxfNvJK2Az8HrTmxM+IFf/RNiKtfFBtgUzERJHQRd1o3CPd8CpE+5EKXqneY81H3K00b+nYxf7eB9OaR6qsCvGQY3NkI2ldE0XH99B6zw3RKYME+tyEHBClOXoVkv7aD9e10ezW2syeqA4emRLKJ81qaE6nmCGzoR63qVjJKNyoMiruUxlpPcjbOMsATo4Tymg92bGaiPJTn1xCXkzECbvs7FiITSxsHNJ+VPrE8vOtN+NvprWWQsYFidAUl97PeI/vP91YW7QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgyID4+CnN0cmVhbQp4nDWNwRUAMQQF76lCCSFI9LNvT9L/dUnshTEPX0Whg60oOidMMniwxZy0G9p1fogJg4S4nAoW0TIY67j40nOLb8+7IViU5oT5n+Ht/QCcRxm6CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVJLkltBCNu/U+gCrmr+zXmcmtXk/tsI7KyggRYSkBY4yMRLDFGNcsUfeYLxOoG/6+Vp/D7ehdSCpyL9wLVpG+/HmjVRsDRiKcw+9v0oIcdT498Q6LlIE2ZkMnIgGYj7tT5/1ptMOfwGpGlz+ihJehAt2N0adnxZkEHSkxqW7OSHdS2wughNmBtrIhk5tTI1z8ee4TKeGCNB1SwgSZ+4TxWMSDMeO2cteZDheKoXL369jdcyj6mXVQUytgnmYDuZCacoIhC/oCS5ibto6iiOZsaa24WGkiL33T2cnPS6v5xEBV4J4SzWEo4ZesoyJzsNSqBq5QSYYb32hXGaNkq4U9PtXbGv32cmYdzmsLNSMg3OcXAvm8wRJHvdMWETHoeY9+4RjMS8+V1sEVy5zLkm04/9KNpIHxTX51xNma0o4R+q5IkV1/j//N7Pzz+QN32xCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzAgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVxpAE9UEi8KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMCA+PgpzdHJlYW0KeJw1UbtxxTAM6zUFF/Cd+JU0j3Ovytu/DUA7FWEaBECqvGRKuVzqklWywuRHh+oUTfk+YKb8DvWQ4+ge2SG6U9aWexgIy8Q8pY5YTZZ7uAWBLwxNibmF8/cI6CsGozATgbrF3z9AsyQwaXDwU5BrrVpiiQ48LBZYsyvMrRopVMhVfDs2uQcFcnGz0KccmhS33ILwZYhkR2qxr8tlKfK79QkYhBXmiE8UiYXngQ5mIvEnA2J79tliV1cvqhEZ1kmHB1IE0mxuEjA0RbLqgxvYV8c1P09H2cHJQb+Kwfg2OJkvSXlfBaEQjxf+Ds/ZyLGSQyQU8n21wIgjbIARoU/tIxBlIDRF9+6ZUj4mVYrvAEYhHH2qVzK8F5HZaobN/xld2SoKBlVZH59GcCaDSTjzZKMK01K107/73OPzB2NjeoAKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgutIAcvgSkQplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggL3NldmVuIC9laWdodCAvbmluZQo2NyAvQyAvRCA3MCAvRiAvRyA3NSAvSyA4MyAvUyAvVCA4NiAvViA5NyAvYSAxMDAgL2QgL2UgMTAzIC9nIDEwNSAvaSAxMDggL2wKMTEwIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9DIDE2IDAgUiAvRCAxNyAwIFIgL0YgMTggMCBSIC9HIDE5IDAgUiAvSyAyMCAwIFIgL1MgMjEgMCBSIC9UIDIyIDAgUgovViAyMyAwIFIgL2EgMjQgMCBSIC9kIDI1IDAgUiAvZSAyNiAwIFIgL2VpZ2h0IDI3IDAgUiAvZml2ZSAyOCAwIFIKL2ZvdXIgMjkgMCBSIC9nIDMwIDAgUiAvaSAzMSAwIFIgL2wgMzIgMCBSIC9uIDMzIDAgUiAvbmluZSAzNCAwIFIgL28gMzUgMCBSCi9vbmUgMzYgMCBSIC9wIDM3IDAgUiAvciAzOCAwIFIgL3MgMzkgMCBSIC9zZXZlbiA0MCAwIFIgL3NpeCA0MSAwIFIKL3NwYWNlIDQyIDAgUiAvdCA0MyAwIFIgL3RocmVlIDQ0IDAgUiAvdHdvIDQ1IDAgUiAvdSA0NiAwIFIgL3plcm8gNDcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago0OCAwIG9iago8PCAvQkJveCBbIDAgMCA3MiA3MiBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyCi9NYXRyaXggWyAxIDAgMCAxIDAgMTM1LjI2ODc1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJwljzEOwzAMA3e9gh8Q4DiK4qxduucPbZd4ydLvl1QhwoAp60Q3NNb5tAWq+1P3vUv3C2/6XzNfE9Q0HksbuOg0UNOi0+lyeoCiM3CkjGWAmrYFjlYG33Ya2TBCRkLQTOxiavO0/+7LEq4mOykaB72GOZmiEe2FJ3sTjcu9AnB7iMd8XhkVMMRkfK9/6BOrsPawHyWzMRwKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvQkJveCBbIDAgMCA3MiA3MiBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYyCi9NYXRyaXggWyAxIDAgMCAxIDAgMTM1LjI2ODc1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJx1jzEOwzAMA3e9gh9wITuK4qxdsvcPbZd4ydLvl3TnwoQBU9aJcjjP4zC/rV739K3Hgv+P6z0btiZdT7ys4mNWlgQ1jFf1jpOOgxoWjU6T0wIUnY49ZdQOatga2H0a/NtopKOHjISgmdjE1ORhv9mnJYqKrKRobCyzmZ0pGtFl4sleRePwMgNweojHfGVmVMAQk/HL3ENLLMLa3b5HkDfECmVuZHN0cmVhbQplbmRvYmoKNSAwIG9iago8PCAvSDEgNDggMCBSIC9IMiA0OSAwIFIgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUwIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzMzYtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgNTEKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTQxNjEgMDAwMDAgbiAKMDAwMDAxMzA1MiAwMDAwMCBuIAowMDAwMDEzMDg0IDAwMDAwIG4gCjAwMDAwMTQwNzYgMDAwMDAgbiAKMDAwMDAxNDExOSAwMDAwMCBuIAowMDAwMDE0MTQwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIzODUgMDAwMDAgbiAKMDAwMDAxMTYyMyAwMDAwMCBuIAowMDAwMDExNDIzIDAwMDAwIG4gCjAwMDAwMTA5NTIgMDAwMDAgbiAKMDAwMDAxMjY3NiAwMDAwMCBuIAowMDAwMDAyNDA2IDAwMDAwIG4gCjAwMDAwMDI3MTEgMDAwMDAgbiAKMDAwMDAwMjk0NCAwMDAwMCBuIAowMDAwMDAzMDkwIDAwMDAwIG4gCjAwMDAwMDM0MDcgMDAwMDAgbiAKMDAwMDAwMzU2MSAwMDAwMCBuIAowMDAwMDAzOTcyIDAwMDAwIG4gCjAwMDAwMDQxMDggMDAwMDAgbiAKMDAwMDAwNDI1MCAwMDAwMCBuIAowMDAwMDA0NjI3IDAwMDAwIG4gCjAwMDAwMDQ5MjcgMDAwMDAgbiAKMDAwMDAwNTI0NSAwMDAwMCBuIAowMDAwMDA1NzEwIDAwMDAwIG4gCjAwMDAwMDYwMzAgMDAwMDAgbiAKMDAwMDAwNjE5MiAwMDAwMCBuIAowMDAwMDA2NjAzIDAwMDAwIG4gCjAwMDAwMDY3NDMgMDAwMDAgbiAKMDAwMDAwNjg2MCAwMDAwMCBuIAowMDAwMDA3MDk0IDAwMDAwIG4gCjAwMDAwMDc0ODcgMDAwMDAgbiAKMDAwMDAwNzc3NCAwMDAwMCBuIAowMDAwMDA3OTI2IDAwMDAwIG4gCjAwMDAwMDgyMzUgMDAwMDAgbiAKMDAwMDAwODQ2NSAwMDAwMCBuIAowMDAwMDA4ODcwIDAwMDAwIG4gCjAwMDAwMDkwMTAgMDAwMDAgbiAKMDAwMDAwOTQwMCAwMDAwMCBuIAowMDAwMDA5NDg5IDAwMDAwIG4gCjAwMDAwMDk2OTMgMDAwMDAgbiAKMDAwMDAxMDEwNCAwMDAwMCBuIAowMDAwMDEwNDI1IDAwMDAwIG4gCjAwMDAwMTA2NjkgMDAwMDAgbiAKMDAwMDAxMzIyNiAwMDAwMCBuIAowMDAwMDEzNjQ2IDAwMDAwIG4gCjAwMDAwMTQyMjEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTEgPj4Kc3RhcnR4cmVmCjE0Mzc1CiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAACICAYAAAD6bB0zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de7xUdb3/8debvYHNTRG5KaCo3DcECVJgKWRqF0UPSopWqJW3zNRTqfUrkfKRpuccFNMyM7G8FJiHjqbHywEtJUlU7oqJIIjcFLnEbV8+vz9mbRtnz+yZYc/e67vg83w81mPP5bPWvPdXZ/aHNWutr8wM55xzzjnnXEqLuAM455xzzjkXEm+QnXPOOeecS+MNsnPOOeecc2m8QXbOOeeccy6NN8jOOeecc86l8QbZOeecc865NN4gO+dcgCSdJ+mvDTw/R9LXmzOTc87tL7xBds4lkqSzJb0o6Z+SNkS3L5WkZs7RW5JJKo/uS9I0Sa9J6hE1ujWStqcttzdnRuecc8XxBtk5lziS/h24FbgZ6A50Ay4GjgVaZakva6ZcAn4JjAGON7N3oqfmmln7tOWy5sjjnHNu73iD7JxLFEkHAlOAS81spplts5RXzOxcM9st6V5Jd0r6s6R/AmMlHSjpPkkbJa2S9P8ktYi2OVnS79JeI3Ov8BxJP5U0T9IWSbMkdcqIVgbcC4wAxpjZ+kJ+l1yZstSeGO2V3hLtgW7WPeXOObc/8QbZOZc0o4DWwKw8decANwAdgL8C04ADgSOB44GvAucX8bpfBS4ADgWqgdsynr8fGAB8xszeK3CbBWWS1Bl4GPh/QGfgTVJ7y51zzjUBb5Cdc0nTGdhkZtV1D0h6QdIHknZKOi56eJaZPW9mtUAVcBZwbbTHeSXwH8BXinjd35rZYjP7J/BD4EsZh26cBPzBzD7Isu4no3x1yyejdQvN9AVgabTHvAqYCqwrIrtzzrkilMcdwDnnivQe0FlSeV2TbGajASSt4V//8F+dtk5nUscmr0p7bBXQo4jXTd/eKqBltN06pwCPStpsZvdkrPs3M/tU+gOSuhWR6dD01zczk7Q6S51zzrkS8D3IzrmkmQvsBk7LU2dptzeR2ot8eNpjhwF1J9H9E2ib9lz3LNvrlbFuVbTdOi8ApwK3SjonT7ZCMqV7N/31o5MBe2Wpc845VwLeIDvnEiU6hOF64A5JZ0pqL6mFpGFAuxzr1AB/AG6Q1EHS4cBVQN2Jea8Cx0k6LDoJ8Nosm/mypEGS2pI6SXBmtN3013kWGA/cJenMPL9HvkzpHgMqJY2PThy8nOxNvHPOuRLwBtk5lzhm9jNSzeT3gA3AelKXV7ua1J7cbL5Fak/xClIn7T0A3BNt7yng98BCYD7waJb1f0vqKhXrgApSTWq2bE+ROrb4Xkmn5vlVcmbK2OYmYAJwI6lDTPoCz+fZtnPOub0kM8tf5Zxz+zFJc4DfmdndcWdxzjnX9HwPsnPOOeecc2m8QXbOOeeccy6NH2LhnHPOOedcGt+D7JxzzjnnXBpvkJ1zzjnnnEvjDbJzzjnnnHNpvEF2zjnnnHMujTfIzjnnnHPOpSmPO0Bza9Omzbpdu3Z1iztHpoqKivU7d+78cOrYgHNu2Llz54e5Qs0J9ce0ZcuW66qrq4PLWlZW9n51dfXBdfdDzVleXr6+qqoq+PEEKC8v31BVVfVhtlCzZo5pmzZt1u/atatrnJmySfL7vnXr1u/t2bOnU5yZsknQZ34ixhPqZ3WuMfa7y7xJsly/85w5c5gwYQIzZsxgzJgxebdVynpJmJnSc86ePTu2PLnqx44dWy9niOMZZauXtW3btkyYMIEjjjgi7/bfeustZsyY0eT1O3bsqJdz8uTJseXJVT958uREjOeECROYPn163jGNezwh+5jOnj07mPd7XX0h7/u43+9p2Qr+jIozf76cPp7F12dmda4xmuwQC0k/kLRE0kJJr0r6RJ76yZK+E92eIumz0e0rJLXNsc5lkv4hySR1bkzeUD6M0oWUp66+UCGOJxBkM1eIEJq5bELJk/T6dCG8X5JeX6zQ8odWX6yk53cOmqhBljQKOAU42sw+BnwWWF3o+mb2IzN7Orp7BZC1QQaej7a9qhFxg30zh5Invb4QoY4nEEQzlPT6dCHkSXp9sUJ7f4VWX6zQ8odWX6yk53euTt4GWdK3JR2glF9LelnSSXlWOwTYZGa7Acxsk5mtjba3UtJNkuZFS58sr3mvpDMlXQ4cCsyWNDuzzsxeMbOVBfyeOYX8Zg4hT9LrixVa8xRafbFCyx9afbFCe3+FWF+MEPOHVl+M0PI71xiF7EG+wMy2AicBXYDzgRvzrPMk0EvSckl3SDo+4/mtZjYSuB2YmmsjZnYbsBYYa2ZjC8halKS/mUPLH1p9sUJrnkKrL1Zo+UOsL0Zo769Q6wsVWn7ww+pKWe9cYxXSINcd8P4F4DdmtiDtsazMbDswHLgQ2Aj8XtJ5aSUPpv0cVUzgvSHpQkkvSXqp7rGkv5lDyx9ifTFCbJ5Cqy9GaPmBoPLU1RcqtPcXhNnMFTqmIY4n+GF1pap3rhQKaZDnS3qSVIP8v5I6ALX5VjKzGjObY2bXAZcBZ6Q/neN2kzCzu8xshJmNgPDezEn/GivU+kJ5M1dYfaFCHE8I84TCQoT2/qoTSp6k16cLIU/S650rlUIa5K8B1wDHmNkOoBWpwyxyktRfUt+0h4bx0RPpzkr7OTfP628DOhSQs2AhvZn3ha+xQspT7J4Pb+YKry9EqOMJyTyhMMT3e50Q8iS9vlih5Q+t3rlSytsgm1ktsB4YJOk4oBLomGe19sB0SUslLQQGAZPTnm8t6UXg28CVebZ1F/B4tpP0JF0uaQ3QE1go6e58vw+EueejEKF+GIWSp9j60JqhdCHkSXp9sULLH9r7pVih5Q+tvlih5Q+x3rlSyjuTnqSbSO3pXQrURA8b8FyudcxsPjC6gc3+3Myuz1hnctrt89JuTwOm5Xid24DbGvwFsgjlzZzk+nQh5NmXmuNChJY/tPpihZY/tPdLsULLH2J9MULMH2K9cyVlZg0uwOtA63x1hS7ASqBzqbZX7FJRUbGOVIMf1FJRUbHOczZt1vLy8iCzlpeXr09IzkSMJ2BlZWXvJSFr5piG+n5q1arVe0nICVk/o9bHnSlHzvVJGNOkjGe2rL740pgl71TTkh4HJljqyhTOOeecc87t0/IeYgHsAF6V9Aywu+5BM7u8yVI555xzzjkXk0Ia5D9Fi3POOeecc/u8vIdYAEhqBfSL7r5uZlVNmso555xzzrmYFHIM8hhgOqmT6wT0AiaZWc6rWDjnnHPOufzmz5/ftby8/G5gMIXNT+FKoxZYXF1d/fXhw4dvyHyykEMs/gM4ycxeB5DUj9QU0cNLGtM555xzbj9TXl5+d/fu3Qd26dJlc4sWLfJ/re9Kora2Vhs3bhy0bt26u4Fxmc8X8i+VlnXNMYCZLQdaljCjc84559z+anCXLl22enPcvFq0aGFdunTZQmrPfT2F7EF+SdKvgd9G988F5pcoX7Nr06bNul27dnWLO0emVq1avb979+6D6+6HmrOiomL9zp07u9fdDzUnQEVFxYadO3d+mC3UrFnGdP2uXbu6xpkpm6SMJ9Qf09atW7+3Z8+eTnFmyiYzZ8uWLddVV1cHN6bl5eXrq6qquqfdf6+mpia48YT6WZMypi1btlxfXV0d3Ps+KeMJ9bMmSAtvjuMRjXvWncWFHIPcGvgm8ClSxyA/B9xhZrsbXDFQkqxz587BzQC0adMmzEzpObP9t4l7BiNJ9XKGOJ4zZsxg7Nixecc07vGMctXLOXv2bB/PRtRnG9NCTkhu7vzZck6ePPnD+lBm+Js8eXKDOZs7T0P1DWUNZTzz5YwjT676pIxntqxJsWDBgpVDhw7dFHeO/dWCBQs6Dx06tHfm43n3IEeN8H9GS8Ek/QA4h9T01LXARWb2YgP1k4HtZnaLpCnAc2b2tKQrgLvMbEeWde4HRgBVwLzoNfJeYSPuP97Z6seOHRtUnmKmnw0lT9Lr04WQJ+n1xQotf2jNR7FCyx9afbFCyx9i/b6iZ8+eQ995551CvuEvSI8eParXrFmzINfz69atKxszZkx/gE2bNrVs0aKFderUqRrg1VdfXVZRUZF378KZZ57Z+4c//OG7Q4cOzbnz9Kc//WmXjh071lxyySXv783vsbf+9Kc/dWjXrl3tCSec8M9i1sv5H0DSH8zsS5IWkZrG8SPM7GMNrDsKOAU42sx2S+oMtCo0lJn9KO3uFcDvSE1Ykul+4MvR7QeArwN35tt+CH/8kl6fLoQ8Sa8vVmj5Q6svVmj5Q2s+ihVa/hDrixFi/hDr9xXvvPNOeUPfeBX7eSKpwWa7e/fuNa+99tpSgKuuuurQ9u3b10yZMmV9ek1tbS1mRllZWdZtzJw5c2W+HNdee+3GvGGbwNNPP92hc+fO1cU2yA2dpPft6OcpwKlZloYcAmyqOwzDzDaZ2VoASSsl3SRpXrT0yVxZ0r2SzpR0OXAoMFvS7Mw6M/uzRUjtQe6ZJ1dBQvtjGVp9sULLH1p9sULLH2J9MULLH2LzUYzQ8gNB5Sm2mfPxLLx+f9DUn4fpFi9e3Lpv376V55xzzmGVlZWD3n777ZYTJ048fPDgwQP79OlT+Z3vfOeQutrhw4f3f+GFF9pUVVXRoUOHYZdeemmP/v37Dxo2bNiAur3hl19++aFTpkzpWld/6aWX9hgyZMjA3r17D37qqafaAWzdurXFySeffFT//v0HnXrqqUcMHjx44AsvvNAmM9tFF13U86ijjqrs16/foEsuuaQHwOrVq8tPOumkowYPHjxwyJAhA5955pl2S5Ysaf3AAw90uf3227sPGDBgUN3rFCJng2xm70Y3LzWzVekLcGme7T4J9JK0XNIdko7PeH6rmY0EbgemNpDhNmAtMNbMch6DIKkl8BXgiTy58grtj2Vo9cUKLX+I9cUIMX+I9YUKLT+E2XwUKsRmDggmT7HNnI9naeuTrqk/D7N58803Ky666KJNy5YtW3rEEUdUTZ06dc3ixYuXLVu2bMns2bMPmD9/fkXmOtu3by8bM2bMttdff33piBEjtv/85z/vnG3bZsaiRYuW3XDDDaunTJlyKMCNN97YtWvXrlWvv/760u9///vrli1b1jZzvdWrV5c/88wzB77xxhtLli9fvvTHP/7xOoCLL774sKuvvnrd4sWLl82cOfPNiy++uHdlZeXuc845Z+Nll1227rXXXlt64oknFrwXuZDLvJ2Y5bHPN7SCmW0ndZ3kC4GNwO8lnZdW8mDaz1EFZMjnDlLHLP8l25OSLpT0kqSXGtpIaH8sQ6wvRmj5gaDy7AvNXEh50usLEeJ4QpjNRyFCboZCyJP0+nQh5PHmuPD6xujVq9fu448//sNDXO+5555OgwYNGlhZWTloxYoVFQsXLqy3d7eioqL2S1/60laA4cOH71i5cmXWQ2wnTJjwAcDo0aN3rFmzphXA3Llz25977rnvA4waNWrnUUcdtTNzva5du9a0aNHCJk6cePh9993XsUOHDrUAzz///AHf/OY3Dx8wYMCg0047rc+WLVvKtm/fvtcnbTZ0DPIlpPYUHylpYdpTHYDn823YzGqAOcCc6DjmScC9dU+nlxYXuV7O64AuwEUNZLkLuCuqz/p6If6xDCnPvtDMQZgnFPoJml6fLoRmIun1xQotf2j1xUp6/tA05+dPpjZt2tTW3V60aFHrX/7yl91eeumlZZ07d6457bTTjti5c2e9BrS8vPzDPqusrMxqamqyNqkVFRW1mTWFXG2odevWtmDBgmX//d//fcBDDz3U6Ze//GWX559//g0zK/ikwkI0tAf5AVLHGv+Jjx57PNzMvtzAekjqL6lv2kPDgFVp989K+zk3T8ZtpJrybK/zdeBkYKKZ1WarKUSofyxDybOv7JkDP6GwFPXpQsiT9PpihdZ8hFZfrNDyh1ZfrKTnD01Inz8ffPBBWbt27WoOOuigmlWrVrV87rnnDijpCwCjRo3a/uCDDx4EMG/evDYrVqyot4d68+bNLTZv3lw2ceLELXfeeefqpUuXtgU49thjt950001d6urqjl3u0KFD7bZt27KfXdiAnHuQzWwLsAWYCCCpK1ABtJfU3szebmC77YFpkjoC1cA/SB1uUae1pBdJNegT82S8C3hc0rtZjkP+BanGe64kgD+a2ZQ82/uIkP9YhpAn6fXFCi1/aPXFCi1/aPXFCq35CLG+GCHmD62+GKHlT6oePXpUZ155opBvGnPV9+jRo7oUuY499tgdffv23dWvX7/Kww47bPfw4cO3l2K76a655poNEyZMOKJfv36DhgwZsqNPnz47O3XqVJNe8/7775edfvrpffbs2SMz4yc/+clqgLvvvvvtCy644LB+/fp1rqmp0ejRo7eNHj367TPPPPODs84668hHH330oNtuu21VocchFzJRyKmkroF8KLABOBxYZmaVe/PLS1oJjDCzWC6KnT5hQEh/LPdmYoM48jeUM6TxzJc1jjy56nPl9PHc+/pck6+ENJ5z5szJOvlKrski4mw+sk0WMWnSpKCaobr6HTt2FDSmcTdz2ca0bdu2Pp6NqPeJQpKvqqqKqqoqtW3b1hYtWtT6c5/7XL+VK1cuatmyZZO9Zq6JQgppkBcAnwGeNrOPSxpL6pCGCxtcMff2VhJjgxzq9LhJmcY3SVNN+/TdpZWU8YTkTt8d6jS+SZkWGZIzNXJSpu9OynhCcqea9gb5XzZt2lR2/PHH96uurpaZceONN64ZP3781qZ8zcY0yC+Z2YioUf64mdVKmhddps0555xzzu0lb5DjtddTTQMfSGoPPAfcL2kDqeOKnXPOOeec2+cUch3k00hN83wlqYk43iT/THrOOeecc84lUoN7kCWVAbPM7LNALTC9WVI555xzzjkXkwb3IEeTfeyQdGAz5XHOOeeccy5WhRyDvAtYJOkp4MNrx5nZ5U2WyjnnnHNuP9S9e/eh69evL6Q/K0iXLl2qN2zYsCDX8+vWrSsbM2ZMf4BNmza1bNGihXXq1KkaKGpmuqlTpx48fvz4LYcddlijzlP761//2nbdunXlZ555ZpNevSKfQv4DPBYtzjnnnHOuCa1fv74881rTjblu9PTp0xvs9bp3717z2muvLQW46qqrDm3fvn3NlClT1heb+7e//W3nkSNH7mhsgzxv3ry2ixcvbhN8g2xm0yW1AQ4zs9ebIVOTCvUajkm5zmh5efmGqqqq4K/bCvXHtHXr1u/t2bMnuOuMJuU6yJk5Qx1PSO6YBny95kSMJyQnq+csvcys+4o4ZxycNm3awXfddVfXqqoqjRgxYvv06dPfrq2tZcKECUcsXbq0jZlp0qRJG7t161a1bNmytuecc85RFRUVtZl7nq+//vqu9913X5fy8nIbMGDAzlmzZr21ZcuWFhdccMFhy5cvb1NdXa0f/vCH74wbN27rzTfffMiuXbtavPDCCx2uvvrqd88///zNjfol9lLeBjmaSe8WoBVwhKRhwBQzG9fU4ZpCdXV1t1L+y6yEMwB95AOnurq666RJk4KaUSn6l+hH/niHOp5Qf0z37NnTKd91v6H5Z4CT9JGcu3bt6paeM5QZ9TJzhjqe2bKmj2ko45kjZ9dAZ9BMxHjmyxpHngZm0Mya08dz7+szs+4L4myO//73v1fMmjWr48svv7ysZcuWTJw48fBf/epXnfr167f7/fffL1++fPlSSE3u0blz55pf/OIXXadNm/b26NGjd2Zu6/bbb+++evXqRRUVFbZp06YygKuvvvrQk08+ecvDDz+8cuPGjWXHHHPMwNNPP33Jd7/73XcXL17c5p577lndqF+gkQq5zNtkYCTwAYCZvQrkHXVJP5C0RNJCSa9K+kSe+smSvhPdniLps9HtKyS1zbHOryUtiF5jZnS95qKE0sxlE0KepNcXK7Q/TqHVFyu0/KHVFyu0/CHWFyPE/KHVFyO0/EkX99/Hxx9//ICFCxe2GzJkyKABAwYMmjt3boc333yz9aBBg3atWLGi4vzzz+/18MMPH9CpU6eafNvq27fvrvHjxx9x5513dmrVqpUBzJkz54BbbrnlkAEDBgz69Kc/3X/37t36xz/+0arRwUukkGOQq81si/SR6c0b3MUhaRRwCnC0me2W1JnUHuiCmNmP0u5eAfyO1LWYM11pZluj1/xP4DLgxkJfJ+nNXGj5Q6svVmgf7qHVFyu0/CHWFyPE/CHWFyq0/EBQefaF8UyyEP4+mhkTJ07cdOutt67NfG7JkiVLHn744QOnTZvWdebMmQc9+OCDqxra1nPPPbf8z3/+c4dHHnmk480333zI8uXLl5gZjzzyyJuVlZW702uffvrpDiX5BRqpkD3IiyWdA5RJ6itpGvBCnnUOATaZ2W4AM9tkZmsBJK2UdJOkedHSJ3NlSfdKOlPS5cChwGxJszPr0ppjAW3I07inS3ozF1r+EOuLEdqHe4j1xQgtP3jzUcp6CHM8Z8yYkT94M+cpppkLJc++Mp5JFkK/8fnPf37brFmzOr377rvlkLraxRtvvNFq7dq15bW1tVxwwQWbp0yZsnbRokVtAdq1a1e7devWssztVFdXs2LFilbjxo3bduedd67ZvHlz+bZt21qMHTt26y233PLhYZvPP/98G4AOHTrUbN++vZD+tEkVsgf5W8APgN3AA8D/Aj/Os86TwI8kLQeeBn5vZs+mPb/VzEZK+iowldTe5nrM7DZJVwFjzSzrPOWSfgN8AVgK/HsBv0/im7kQ84dYX6gQP9xDyrMvNHMQZvMxduzYoPIkfTyTWJ8uhDxJr98XHHTQQTWbN28umz69uLnZctV369Ztr64qMXLkyJ3XXHPN2rFjx/arra2lZcuWdscdd6wqKyvjG9/4Rm8zQxI33HDDGoCvfvWrmy6++OLemSfpVVVV6eyzzz5y+/btLcxMl1122bqDDjqo9mc/+9naCy+8sFe/fv0G1dbW6vDDD9/1zDPPvPnFL35x26233tp94MCBg773ve/FdpKe8p0QImmCmc3I91iW9cqATwNjgYuAa8zsXkkrgc+Y2QpJLYF1ZnawpMnAdjO7RdK9wKNmNjOqH5GrQU57rWnA383sN1mevxC4MLo7vG3btsE1czt27MDMPjyORZJlnvzWnHly1U+ePLlezhDHc8KECUyfPr1e1sz/30P4cJdUL+fs2bOD+GOT2cwlYTyjbHmzNmeeXPX5cvp4Fl/fUNZQxjNfzjjy5KpPynhmy5oUCxYsWDl06NCcPY5rWgsWLOg8dOjQ3pmPF7IL+9oCH/sIM6sxszlmdh2pY4PPSH86x+29Es349/uM10h//i4zG2FmI4Agm7lCxN0c5xJKnmLrQ/twTxdCnqTXFyu0/KHVFyu0/KHVFyu0/CHWO1dKOQ+xkPR5Uocu9JB0W9pTBwAN7q6X1B+oNbM3ooeGAekHcJ9F6mS6s4C5eTJuAzoAH/nXVXTc8VFm9o/o9qnAa3m2BfjVIUpRny6EPPtSc1yI0PKHVl+s0PKHVl+s0PKHWF+MEPOHWO9cKTV0DPJa4CVgHDA/7fFtwJV5ttsemCapI6lm+h/86xAHgNaSXiS1B3tinm3dBTwu6V0zSz9gT8B0SQdEtxcAl+TZVkFCa+ZCqy9WaPlD+3AvVmj5Q6wvRoj5Q6svRmj5wY/pL2U9hDmeM2YUdkx/oGpra2vVokWLRn+j7opTW1sroDbbczkbZDNbACyQdL+ZFXWAt5nNB0Y3UPJzM7s+Y53JabfPS7s9jdTxxZmvUQscW0yuQoTWzIVWX6zQ8of2xybpzUeo9YUKLT+E2XwUKsTxhDBPKPQTNJu/PmCLN27cOKhLly5bvEluPrW1tdq4ceOBwOJsz+c8SU/SH8zsS5IWkeU4YTP72N4EKuSku6YU6tTIWaaaDjJnWVnZ+9XV1QfX3Q81J9Qf04Cn8d2wc+fOD8cw1KlckzItMiRnetykTN+dlPGE5Px/mpQxTcp4QnKnmp4/f37X8vLyu4HBFHZumCuNWmBxdXX114cPH74h88mGGuRDzOxdSYdne97MGrwotHPOOeecc0mU9zJvzjnnnHPO7U98V75zzjnnnHNpvEF2zjnnnHMuTc4GWdJ3JPVqzjDOOeecc87FraE9yD2AFyQ9J+kSSZ2bK5RzzjnnnHNxafAkvWiGuuOAs4HTSE3G8SDwiJlta5aEzjnnnHPONSczK2gByoCTgVeAHYWuF9pSUVGxjtR1nYNaKioq1nnO/TOr59x/s3rO/Ter52z6rL740piloMu8SRpCai/yWcB7wINmNjXvigGSZIX8zs1NEmamtPues5GSktVzll5SsnrO0ktKVs9ZeplZnWuMhk7S6yvpR5KWAg8AO4CTzOwTxTTHkrpJekDSCknzJc2V9G8lyB67J554gv79+9OnTx9uvPHGuOM0KClZk5LzggsuoGvXrgwePDjuKA1KSk5ITtak5Fy9ejVjx45l4MCBVFZWcuutt8YdKauk5ATYtWsXI0eOZOjQoVRWVnLdddfFHSkrz+lcCeTatQysAG4Ahuzt7mlAwFzg4rTHDge+lVFX3ly7zFO/cuNVV1fbkUceaW+++abt3r3bPvaxj9mSJUv2entRrpLnNCtt1qTkNGvarM8++6zNnz/fKisrG70tz5mSlKxJybl27VqbP3++mZlt3brV+vbtG+T7vpQ5zZo2a21trW3bts3MzPbs2WMjR460uXPn7tW2PGdpc5rVz+qLL41ZGrqKxcnA42a2KP1BSZ+WdFSB/fdngD1m9ou6B8xslZlNk3SepBmS/gd4Uik3S1osaZGks6LXGyPp0bTXv13SedHtlZJukjQvWvoUmKvR5s2bR58+fTjyyCNp1aoVZ599NrNmzWquly9KUrImJSfAcccdR6dOneKOkVdSckJysiYl5yGHHMLRRx8NQIcOHRg4cCDvvPNOzKnqS0pOSH2F3759ewCqqqqoqqoidS57WDync43XUIP8X8DWLI/vBAo9xKISeLmB50cBk8zsM8B4YBgwFPgscLOkQwp4jQyUU5oAAAs8SURBVK1mNhK4vYhcjfbOO+/Qq9e/LhPds2fPYD/Uk5I1KTmdS5qVK1fyyiuv8IlPfCLuKA1KQs6amhqGDRtG165dOfHEE4PN6jmda5yGGuTeZrYw80EzewnovTcvJunnkhZI+nv00FNm9n50+1OkTv6rMbP1wLPAMQVs9sG0n6NyvO6Fkl6S9NLe5M7GrP5JCqH+yzcpWZOS07kk2b59O2eccQZTp07lgAMOiDtOTknJWVZWxquvvsqaNWuYN28eixcvjjtSVp7TucZpqEGuaOC5NgVufwlwdN0dM/smcALQJXron2m1uTqhaj6aMzOX5bj9rwfN7jKzEWY2opDQhejZsyerV6/+8P6aNWs49NBDS7X5kkpK1qTkdC4pqqqqOOOMMzj33HMZP3583HFySkrOdB07dmTMmDE88cQTcUdpkOd0bu801CD/XdI3Mh+U9DVgfoHb/z+gQtIlaY+1zVH7HHCWpDJJXUhNUDIPWAUMktRa0oGkGux0Z6X9nFtgrkY75phjeOONN3jrrbfYs2cPDz30EOPGjWuuly9KUrImJadzSWBmfO1rX2PgwIFcddVVccfJKSk5ATZu3MgHH3wAwM6dO3n66acZMGBAzKnq85zOlUCus/eAbsALwBzgP6LlWVJNaPdCzwIEDgEeAt4i1fDOJtXMngfcnlYn4GZgMbAIOCvtuZ8BrwOPAn8EzoseXwlcB7wI/B3oU0AeK5XHHnvM+vbta0ceeaT95Cc/adS2aOIrBJQqa1JymjVt1rPPPtu6d+9u5eXl1qNHD7v77rv3elueMyUpWZOS8y9/+YsBNmTIEBs6dKgNHTrUHnvssX06p1nTZl2wYIENGzbMhgwZYpWVlXb99dfv9bY8Z2lzmtXP6osvjVnyThQiaSxQd8HPJWb2fw2u0IwkrQRGmNmmItaxfL9zHJJyMfak5ITkZPWcpZeUrJ6z9JKS1XOWnk8U4kqpPF+Bmc0mtdd3n1BRUbFeUre4c2SqqKhYn3nfczZOUrJ6ztJLSlbPWXpJyeo5Sy8zq3ONUdBU084555xzzu0vGjpJzznnnHPOuf2ON8jOOeecc86l8Qa5BCRdGHeGQiQlJyQnq+csvaRk9Zyll5SsnrP0kpTV7R+8QS6NpLyxk5ITkpPVc5ZeUrJ6ztJLSlbPWXpJyur2A94gO+ecc845l8YbZOecc84559J4g1wad8UdoEBJyQnJyeo5Sy8pWT1n6SUlq+csvSRldfsBvw6yc84555xzaXwPsnPOOeecc2m8QXbOOeeccy6NN8iNIOkeSRskLY47S0Mk9ZI0W9IySUskfTvuTNlIqpA0T9KCKOf1cWdqiKQySa9IejTuLA2RtFLSIkmvSnop7jy5SOooaaak16L/V0fFnSkbSf2jsaxbtkq6Iu5c2Ui6MnovLZb0oKSKuDNlI+nbUcYloY1lts95SZ0kPSXpjejnQXFmjDJlyzkhGtNaSSPizFcnR86bo/f9QkmPSOoYZ0bnwBvkxroX+FzcIQpQDfy7mQ0EPgl8U9KgmDNlsxv4jJkNBYYBn5P0yZgzNeTbwLK4QxRorJkNM7Mg/kjmcCvwhJkNAIYS6Nia2evRWA4DhgM7gEdijlWPpB7A5cAIMxsMlAFnx5uqPkmDgW8AI0n9dz9FUt94U33EvdT/nL8GeMbM+gLPRPfjdi/1cy4GxgPPNXua3O6lfs6ngMFm9jFgOXBtc4dyLpM3yI1gZs8B78edIx8ze9fMXo5ubyPVePSIN1V9lrI9utsyWoI8i1RST+CLwN1xZ9kXSDoAOA74NYCZ7TGzD+JNVZATgDfNbFXcQXIoB9pIKgfaAmtjzpPNQOBvZrbDzKqBZ4F/iznTh3J8zp8GTI9uTwdOb9ZQWWTLaWbLzOz1mCJllSPnk9F/e4C/AT2bPZhzGbxB3s9I6g18HHgx3iTZRYctvApsAJ4ysyBzAlOB7wG1cQcpgAFPSpof8HSuRwIbgd9Eh63cLald3KEKcDbwYNwhsjGzd4BbgLeBd4EtZvZkvKmyWgwcJ+lgSW2BLwC9Ys6UTzczexdSOyCArjHn2ZdcADwedwjnvEHej0hqDzwMXGFmW+POk42Z1URfXfcERkZfvwZF0inABjObH3eWAh1rZkcDnyd1eM1xcQfKohw4GrjTzD4O/JMwvrbOSVIrYBwwI+4s2UTHxZ4GHAEcCrST9OV4U9VnZsuAm0h9zf4EsIDUYWFuPyPpB6T+298fdxbnvEHeT0hqSao5vt/M/hh3nnyir9fnEOYx3scC4yStBB4CPiPpd/FGys3M1kY/N5A6VnZkvImyWgOsSfvGYCaphjlknwdeNrP1cQfJ4bPAW2a20cyqgD8Co2POlJWZ/drMjjaz40h9/f5G3JnyWC/pEIDo54aY8ySepEnAKcC55hM0uAB4g7wfkCRSx3YuM7P/jDtPLpK61J29LKkNqT/wr8Wbqj4zu9bMeppZb1Jfsf+fmQW3Zw5AUjtJHepuAyeR+ko7KGa2DlgtqX/00AnA0hgjFWIigR5eEXkb+KSkttFnwAkEeuKjpK7Rz8NInVQW8rgC/AmYFN2eBMyKMUviSfoccDUwzsx2xJ3HOUh9ren2kqQHgTFAZ0lrgOvM7NfxpsrqWOArwKLo+F6A75vZn2PMlM0hwHRJZaT+8fYHMwv6EmoJ0A14JNUfUQ48YGZPxBspp28B90eHLqwAzo85T07RsbInAhfFnSUXM3tR0kzgZVJfW79CuNP5PizpYKAK+KaZbY47UJ1sn/PAjcAfJH2N1D9EJsSXMCVHzveBaUAX4DFJr5rZyfGlzJnzWqA18FT0WfU3M7s4tpDO4VNNO+ecc8459xF+iIVzzjnnnHNpvEF2zjnnnHMujTfIzjnnnHPOpfEG2TnnnHPOuTTeIDvnnHPOOZfGG2Tn3D5BUo2kVyUtkbRA0lWSGvyMk9Rb0jnNkO1uSYPy1Jyer8Y551zz8AbZObev2Glmw8ysktQ1ir9A6hqrDekNNHmDbGZfN7N8E5+cDniD7JxzAfAG2Tm3z4mm1b4QuEwpvSX9RdLL0VI35fKNwKejPc9XNlD3oajmNUnTJS2UNDOaOARJJ0h6RdIiSfdIah09PkfSiOj2dkk3RHu5/yapW/Q644CboyxHSbpc0tLoNR5qjnFzzjmX4hOFOOf2CZK2m1n7jMc2AwOAbUCtme2S1Bd40MxGSBoDfMfMTonq22ary9hmb+At4FNm9ryke0hNi3078AZwgpktl3Qf8LKZTZU0J3qdlyQZqSl1/0fSz4CtZvYTSfcCj5rZzOh11gJHmNluSR3N7IPSj5pzzrlsfA+yc25fpuhnS+BXkhYBM8h9KEOhdavN7Pno9u+ATwH9gbfMbHn0+HTguCzr7gHqplCfT+owj2wWkpp6+8ukpop2zjnXTLxBds7tkyQdCdQAG4ArgfXAUGAE0CrHaoXWZX71ZvyrGc+nyv711V0NUJ6j7ovAz4HhwHxJueqcc86VmDfIzrl9jqQuwC+A26Nm9EDgXTOrBb4ClEWl24AOaavmqst0mKRR0e2JwF+B14DekvpEj38FeLaI2B9mia6+0cvMZgPfAzoC7RtY1znnXAl5g+yc21e0qbvMG/A08CRwffTcHcAkSX8D+gH/jB5fCFRHJ8xd2UBdpmVR3UKgE3Cnme0CzgdmRIdo1JJq0gv1EPBdSa8AfYHfRdt5BfgvPwbZOeeaj5+k55xzRYhO0nvUzAbHHMU551wT8T3IzjnnnHPOpfE9yM4555xzzqXxPcjOOeecc86l8QbZOeecc865NN4gO+ecc845l8YbZOecc84559J4g+ycc84551ya/w+32v5bpxtDegAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x144 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_group_kfold()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores:\n", "[0.75 0.6 0.667]\n" ] } ], "source": [ "from sklearn.model_selection import GroupKFold\n", "# create synthetic dataset\n", "X, y = make_blobs(n_samples=12, random_state=0)\n", "# assume the first three samples belong to the same group,\n", "# then the next four, etc.\n", "groups = [0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3]\n", "scores = cross_val_score(logreg, X, y, groups=groups, cv=GroupKFold(n_splits=3))\n", "print(\"Cross-validation scores:\\n{}\".format(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grid Search" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Simple Grid Search" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Size of training set: 112 size of test set: 38\n", "Best score: 0.97\n", "Best parameters: {'C': 100, 'gamma': 0.001}\n" ] } ], "source": [ "# naive grid search implementation\n", "from sklearn.svm import SVC\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " iris.data, iris.target, random_state=0)\n", "print(\"Size of training set: {} size of test set: {}\".format(\n", " X_train.shape[0], X_test.shape[0]))\n", "\n", "best_score = 0\n", "\n", "for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " for C in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " # for each combination of parameters, train an SVC\n", " svm = SVC(gamma=gamma, C=C)\n", " svm.fit(X_train, y_train)\n", " # evaluate the SVC on the test set\n", " score = svm.score(X_test, y_test)\n", " # if we got a better score, store the score and parameters\n", " if score > best_score:\n", " best_score = score\n", " best_parameters = {'C': C, 'gamma': gamma}\n", "\n", "print(\"Best score: {:.2f}\".format(best_score))\n", "print(\"Best parameters: {}\".format(best_parameters))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The danger of overfitting the parameters and the validation set" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDg1MS40IDEwNi40MDI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlCj4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK2SvW7cMBCEez7FlnFDcXdJLln6ENtpAtiBgBRBCuFOdnTQychJsV8/KzlGKEMGUqQgRA40Mx9/EI6mukR4GMHBUcczfIPv+j0Awg1UH9unbt9+udnBfjRO9ZNJAa3XWf9nhi5a7yio4MrFD2MG8xPEEhDanBhVTiwQvOUI5xa+wgDVJc3lSqDjWWO19LaZpvY8aCVUnxDG/WAMomXPIXqgZB0tYScTnLeeRIgLuS9libPvRf6bUarKuTN38K+kzgaHOTpJnjegzQJNL9DBJRsEKcmKOupC2Mewpi7kkq8I+e/YZi0bE5lskkSYVsSJg80zAq6IC7lEK0I2iV+RFo7jwvL66OajVN3saqiutcxBfW/IkRUffUrkKeoWbc6ZJUB9MB+mc9MN3fAAYztdQH2Eq3rt9tlboRhTpEj+jfup6btDM3WPw7v+mPVakkTOxCRv29tx2nAiL9yYLbIg8sKdbXbLUczGz4+Htof7bpqUfdPts1j9n4Vl5l65b5tzc2r1vWl33+5n/s0M0ZNDvYnoF/ZVxpXu/VdTWu/Mb2XI6HsKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iago0MjAKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzkgPj4Kc3RyZWFtCnicTc27DcAgDATQnik8AuD/PlGqsH8bGyJCYz/pTjrBDhXc4rAYaHe4WvGlUZh96pkSklBzPURYMyU6hKRf+ssww5jYyLbvt1buF94bHBkKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg3ID4+CnN0cmVhbQp4nD2OuxHAMAhDe6ZgBPMJhn1yqZz924A/adBDOk64CTYMz9Htws6BN0HuRS+wLm+ACiGLJBn59s7FolaZxa+mReqENEmcN1HoTotK5wPj9A54Prp1HXoKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA2OSAvRSA3NyAvTSA4MCAvUCA5NyAvYSA5OSAvYyAvZCAvZSAvZiAvZyAxMDUgL2kgMTA4IC9sIC9tIC9uCi9vIDExNCAvciAvcyAvdCAvdSAvdiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9FIDE2IDAgUiAvTSAxNyAwIFIgL1AgMTggMCBSIC9hIDE5IDAgUiAvYyAyMCAwIFIgL2QgMjEgMCBSIC9lIDIyIDAgUgovZiAyMyAwIFIgL2cgMjQgMCBSIC9pIDI1IDAgUiAvbCAyNiAwIFIgL20gMjcgMCBSIC9uIDI4IDAgUiAvbyAyOSAwIFIKL3IgMzAgMCBSIC9zIDMxIDAgUiAvc3BhY2UgMzIgMCBSIC90IDMzIDAgUiAvdSAzNCAwIFIgL3YgMzUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjM2IDAgb2JqCjw8IC9CQm94IFsgMCAwIDcyIDcyIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTIKL01hdHJpeCBbIDEgMCAwIDEgMCAxMDYuNDAyNSBdIC9QYWludFR5cGUgMSAvUGF0dGVyblR5cGUgMQovUmVzb3VyY2VzIDw8IC9Qcm9jc2V0cyBbIC9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUkgXSA+PgovVGlsaW5nVHlwZSAxIC9UeXBlIC9QYXR0ZXJuIC9YU3RlcCA3MiAvWVN0ZXAgNzIgPj4Kc3RyZWFtCnicJY8xDsMwDAN3vYIfEOA4iuKsXbrnD22XeMnS75dUIcKAKetENzTW+bQFqvtT971L9wtv+l8zXxPUNB5LG7joNFDTotPpcnqAojNwpIxlgJq2BY5WBt92GtkwQkZC0EzsYmrztP/uyxKuJjspGge9hjmZohHthSd7E43LvQJwe4jHfF4ZFTDEZHyvf+gTq7D2sB8lszEcCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0JCb3ggWyAwIDAgNzIgNzIgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MgovTWF0cml4IFsgMSAwIDAgMSAwIDEwNi40MDI1IF0gL1BhaW50VHlwZSAxIC9QYXR0ZXJuVHlwZSAxCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9UaWxpbmdUeXBlIDEgL1R5cGUgL1BhdHRlcm4gL1hTdGVwIDcyIC9ZU3RlcCA3MiA+PgpzdHJlYW0KeJx1jzEOwzAMA3e9gh9wITuK4qxdsvcPbZd4ydLvl3TnwoQBU9aJcjjP4zC/rV739K3Hgv+P6z0btiZdT7ys4mNWlgQ1jFf1jpOOgxoWjU6T0wIUnY49ZdQOatga2H0a/NtopKOHjISgmdjE1ORhv9mnJYqKrKRobCyzmZ0pGtFl4sleRePwMgNweojHfGVmVMAQk/HL3ENLLMLa3b5HkDfECmVuZHN0cmVhbQplbmRvYmoKNSAwIG9iago8PCAvSDEgMzYgMCBSIC9IMiAzNyAwIFIgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM4IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzMzYtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgMzkKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDg3MjIgMDAwMDAgbiAKMDAwMDAwNzY1OCAwMDAwMCBuIAowMDAwMDA3NjkwIDAwMDAwIG4gCjAwMDAwMDg2MzcgMDAwMDAgbiAKMDAwMDAwODY4MCAwMDAwMCBuIAowMDAwMDA4NzAxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA4ODcgMDAwMDAgbiAKMDAwMDAwNjM3OSAwMDAwMCBuIAowMDAwMDA2MTc5IDAwMDAwIG4gCjAwMDAwMDU3OTIgMDAwMDAgbiAKMDAwMDAwNzQzMiAwMDAwMCBuIAowMDAwMDAwOTA3IDAwMDAwIG4gCjAwMDAwMDEwNTggMDAwMDAgbiAKMDAwMDAwMTIxNyAwMDAwMCBuIAowMDAwMDAxNDU1IDAwMDAwIG4gCjAwMDAwMDE4MzIgMDAwMDAgbiAKMDAwMDAwMjEzNSAwMDAwMCBuIAowMDAwMDAyNDM1IDAwMDAwIG4gCjAwMDAwMDI3NTMgMDAwMDAgbiAKMDAwMDAwMjk1OSAwMDAwMCBuIAowMDAwMDAzMzcwIDAwMDAwIG4gCjAwMDAwMDM1MTAgMDAwMDAgbiAKMDAwMDAwMzYyNyAwMDAwMCBuIAowMDAwMDAzOTU1IDAwMDAwIG4gCjAwMDAwMDQxODkgMDAwMDAgbiAKMDAwMDAwNDQ3NiAwMDAwMCBuIAowMDAwMDA0NzA2IDAwMDAwIG4gCjAwMDAwMDUxMTEgMDAwMDAgbiAKMDAwMDAwNTIwMCAwMDAwMCBuIAowMDAwMDA1NDA0IDAwMDAwIG4gCjAwMDAwMDU2NDggMDAwMDAgbiAKMDAwMDAwNzc4OSAwMDAwMCBuIAowMDAwMDA4MjA4IDAwMDAwIG4gCjAwMDAwMDg3ODIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzOCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzkgPj4Kc3RhcnR4cmVmCjg5MzYKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAABqCAYAAABZJQtkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAfWElEQVR4nO2deZwdVZ23ny/phIR9k02EBEUFFGUEdzSIgAuIW0QEDG6j4+AGr8iqUVQGHF/A7R0YljDIJoICAgOyxJeAwLiAAqJsiaCEhC0ISSCd/OaPcy4pqqv7rt1dTb7P53M/t7vqqVPn3lt1zvmdOqdKEYExxhhjjDHGmPZYZbQzYIwxxhhjjDFjEQdTxhhjjDHGGNMBDqaMMcYYY4wxpgMcTBljjDHGGGNMBziYMsYYY4wxxpgOcDBljDHGGGOMMR3gYMqYmiNphqSQNLXLdKbmdGb0JmfGmOc7kuZImlNadkAuSw5oI52ZeZvJvc3hgP0MyK8xxgwnDqaMaQNJk3ODYOZo58UMjX8rY55/SJolyQ/IxB1k7TKadUKvOkV7SR3zNFbpG+0MGGOa8gPgXOCvXaZzM7A18HDXOTLGrMz8DLgReHC0M1LBLqOdAWPMyoWDKWNqTkQ8TA8CoIhYBNzZfY6MMSszEbEQWDja+agiIu4Z7TwYY1YuPMzPmBbJQynuy/9Oz5fHozh3oDjsQtJrJV0q6dHiXAFJO0s6WdIdkp6QtFjSbZK+Jmli1X6rLsXnZbMkbZDTe1DS05Jul/SxinQqh4Q0hs1I6pN0uKS7cjr3SzpW0oRBvo99Jf0u53++pDMlbdruMBxJ20k6J891eFrSgpzuCZLGl9w+SZ+VdGP+7hZJ+r2kAyWtUvBm0OS3MmYsI+kN+Xi+cAjnT/mcWi//PyGfK5dJmpvXPSrpKknvbGPfg86ZkvR2SddJeiqn/XNJL2+S1gWS7s1lyROSrpe0X8mbnMuVt+b/i+f0rIJXOWdK0qqSDpX0h1xuPJHz+aEK99nhYPnvcyU9LGmJpN9I2qPV7yqnt5OkSyQ9kL/zebkM+1qFu5qkwyTdkr/DJyX9WtI+JW8mcG3+92ul72NqO/lbGWinTpC0ez5HHs6/1z2SviNpnYp0m9Zf+Xhs/NbXFvfdQr4labqkG3LaS5Tq5isk7V3hbybpB/l8elrSI5IulrRjyes4T2YgvjJlTOvMAtYBvgDcCvy8sO6WkvsG4DBgNnAasAHwTF73FeDlwA3ApcBE4E3ADGCqpLdHxLIW87QOcH1O+6c5rQ8Cp0laHhFntP7xOBvYCbgceAJ4F3AIsCHwnOBM0peB44DHgDNIvdS75ry03GMtaTvgJiCAi0mV3VrAS4DPAkcCS7M7HrgE2B34c87vEmBn4PvA64D9c9KzaP23MmbMERG/lvRnYA9J60fEI8X1kl5LKmcuiIhH8+L1gBNJZc8vgQXAJsCewGWSPhURp3SaJ0kfBM4jlUfnkYYBvhn4NfCHQTb7f8AdwP/P/vqksudMSS+LiKOy9zjwdeAAYIv8d4M5TfI1AbiCFIjdCfwQWI1UVp4n6dURcXjFpluQhkffC5xJ+v72Bi7K5fS1FduU9/0OUjn/BKmM+1tOZ2tSGff1grsOcA2wPfA7Ut2xCqnMO1vSthFxZNYbZdp04FekMq/BnGb5WgmZRQt1gqSvkn6TR4FfAPOB7YD/A7xL0hsi4onstlp/nQC8l3T8nUF7v8+3SG2J+4CfkOrXTYAdgWmk86yR938CriQdX1cAF5LaHu8FZkt6X0RclvVu8mTKRIRffvnV4guYTCo4Zw6yfmpeH8CnB3G2BFSx/Oi83d6l5TPy8qml5Y39nAKMKyzfBugH7hgkbzNKy2fl5b8F1issXx24G1gGbFzK/1JSQ+xFheUCzmnkq8Xv87vZ36ti3brAKhXfw/dLn3cccGo5nWa/lV9+jfUXqZEVwIEV636Y1+1ZWLYqsFmFuzZwG6kBOam0bg4wp7TsgJz2AYVlawCP5LJhh5J/fKG8mlxa9+KK/EwArs5pvbC0btZQ5csg+W18T5cBfYXlG2Y/gDcWlk8u5PdrpbR2b6TV4m90QfZfVbFug9L/M7N7SGn5ROC/geXAqwvLp1JRpvs16G8xZJ1A6pgLUmfDOqV1jWP++MKyTuqvqW3m+RHgAWC1oY4f0sWRu0kdjG8teZuSgvgHgVW7zZNfA18e5mfM8HBLRJxUtSIi7o1ckpU4Ib/v3sZ+FgEHReFKVkTcQbpCtLWkNdtI6yuxogebiHgKOIvUM7pDwfsIqeD+fkTcX/ADOJQUfLXL4vKCiHgsIpYDKA3hOxCYB3yp9HmXAQeTKoV9O9i3MWOVM0kN7OnFhflKzIdJveqXN5ZHxNMR8UA5kUhzoE4jNQB3LK9vkb1IPeJnR8RvSutmMMgV66iY4xQRz5CCwT56c0OJj5PKh4Mior+wn/mkTiyAT1ZsNxf4ZilvV5BuBvTaNvNQVcY9OxdW0vrAfsBvIuK4kreENKJBpPLXDA+fz++fiojHiysiYibpClZVHTNk/dUDllJRrxaPH+DdwItJ9fKvSt7fSSNJNsY3aBkWPMzPmOHh5sFWSFqdNNTgfcBLgTVJlWSDF7axn7siDzko0Qhy1gH+0WJa5QZQMZ11C8u2z++zy3JEzJV0P6kHsBXOI30XP5f0U+Aq4PqKBtZLScN/7gKOlEQFi0lDZ4xZKYiIByRdDewqaZvckQJp2N56pF70/uI2krYFvgy8hTRcqDxPs53yp8g/5fdflVdExEJJt5DnO5XyszkpUNgF2ByY1KP8NNJfkzTs6m8RUXUDnmvy+/YV626J6iHX95OGcrfCWcD7gZsknUea53R9RVC7I+kq+2C3Om/MH3UZN3y8gRS4TJM0rWL9BOAFhWG1rdZf3XAW8Dngdknnk86vX+cOkHLeAbYY5PjZKr9vTbpCa3qIgyljhod5VQvzvJ9rSL2at5EK4wXkeUGkCaGrtrGfxwdZ3mhAjWs1oXJP3BDprJ3fHxokqYdoMZiKiJsl7QQcQZq/sD9Angvy9Yg4J6vr5/etWDFptoo1WtmvMc8jZpLmK04nBSWw4krVc+ZMSno9qfzpIw2ju5g0l2c58GrS1aV2yp8izcqFAWWipC1JHU/rAteR5nssJPXCT86fo9P8lPM12G3cG8sH3FyAocvXlkb2RMSF+YYVB5OukH0aQNJvgcMi4pdZbZRxOzL01UGXccPH+qRzY6g6BvKQ1jbqr274EnAP6dg5NL/6JV0GHBwRdxfyDmkeVbO8mx7jYMqY4WGwO+LsRQqkzoiIA4orJG1C80K8DjSuhG0E3F6xfqN2EouIX5Mm0a8KvAZ4B6kn7mxJCyLiKlYMEfpZRLy/s2wb87zkZ6Rzcj9Jh5OuSL0TuDUibi25R5Ku/OwcEbOKKyQdRiqfOqVxjg52/m9csewgUiPwY3kYVTE/+1Aavthlvqr2D+nqXNHrORFxKXBpHpXwOmAP4F+AX0jaPl9RbOz/+Ig4aLjyYoZkIWme03qtbtBi/dUx+croicCJkjYk3dDlw6Sgadt8U5KnWXH87BURF3ezT9M+njNlTHs0hny0fMWnxEvy+wUV6wYMgakpv8/vby6vkLQF8KJOEs3zOW6IiK+yYux6o3F3J6mX+PUq3S59CLr9rYypPRGxmHSXr02Bt5PmdPRRuiqVeQnwaDmQynRb/vxusHQkrU268lWVH2ivPFyW02zpvI6If5B69l8oaasKZef8/ruKdT0lIp6KiGtysPRt0rCxxi3pbyZdIdypjSRdxrVHs+/rRmDdPBS2LZrUX63su5V9zI+ICyPiQ6QrzC8GXpFX35jfffyMAg6mjGmPx0hXnTbvcPs5+X1qcWEe7nJsx7kaWc4mDXP5nKRnAyeliUzH0EbBrPT8lbUrVjV6txcB5Hkf3yf1In9PUnleBZI2kbRNYVG3v5UxY4WZ+f2j+dVPmmtRZg6wXr6l87NI+gTt3fimiotI59xHJO1QWjeDFcPtyvmBgeXh7lTfEALS3c2gvfP6NNK81O8UgzBJGwBHFZyeI2mXqvKKgWXcfNJvtoOkoyQNGDkk6cWSphQWdfJdrMw0qxOOz+//KWnT8kpJq+ehso3/W6q/Mm3/VkrPRttFpUnCuUOxcfWssY+LSJ0G/yrpXYOk9wZJq3WTJ1ONh/kZ0wYR8aSkm4CdJJ0F/IXUu3NxRAz2HJUil5BuX3qQpFeSrvJsThr2cSljoFCLiHvyszi+DdyaJ1U3njO1HukZHtsNkUSRg4HdlB66eS/wJLAtqbf2MeDkgns08CrgM8Cekq4h3e51Q9JcqjeRxq7fkfPZ7W9lzJggIq6XdDdp6M944JLcOC9zAilomi2p8cyaHUhXmX9KmvfRaR6elPTPpHmg1+VyofGcqVeQniP1ltJmPyI9w+58SReQzudXkIZK/YT0TKcyV+fPeWGeN7IYmBsRZw6RvX8nlSl7kcqsy0jPmZpGKj+Oi4gBN9TpEd8FJucybg7pGVyvAd5GulvguQX3QFJZ9g1gf0mzSXPQNiXdOGBHYB9WPHz2z6Tv7MOSniHdZTCAMyNi7jB9njFLszohIq6WdCipU/CufJzcR5pntAXpauls0vEJ7dVf15KuPB4j6RV5PRHxnLtFlphEuqnFnJzvuaQbxuxKOh4ujog/5XSWSno/6flSl0q6gXT3wUWk0SI7kh5rsgkrArBO8mSqGK57rvvl1/P1RRqacgmpV2c5heet0MJzP0gF21mkSnAxad7RIaTOjQBmlfwZDP6cqVmD7GMmpWe6DJY3hnhuCxXPkyms258UDC4h3UTjx6RK/zbg8Ra/y92A00kB0ELgKVID4XvAFhW+8n6vJj0T55n8Pc4GDqfw3Ktmv5Vffj2fXqT5UI1nI31gCG8P0pCgf5CGzl5JCnIqz3VafM5UYd2u+XxcRGqcXUR6ePCAMin7byQNWXos52k26WGig5VX40gdOfeSbtzznHKwKr95+cRcRtxGKncb+9qnwp3M0M8jGrTMrHA/RHr+3l2kxvYTOQ/fAl5Q4U8gBVU35DLxaVKQdDXwRWD9kr9jXrewUMZNHe3jsa6vVuoEUgfAT4C/5zpmASkw+b8UnqFG+/XXfjmdxY1ztUlex5PaBpfnY6BR195I6lScULHNhsC/5WNsUT7m7iJ1luxH4TlrneTJr+qX8pdpjDFdI2ktUk/qLRHR6q2DjTHGGGPGJJ4zZYxpG0kvKN8IIo/x/y6pB/hno5IxY4wxxpgRxFemjDFtI+kzpHH9V5EeYLkeaajQS0lDBt4Y6S5jxhhjjDHPW3wDCmNMJ9xEmm/wFlY8LPA+0jyAYx1IGWOMMWZlwFemjDHGGGOMMaYDPGfKGGOMMcYYYzrAwZQxxhhjjDHGdEBbc6YmTZo0b8mSJRs1N40xxhgzmkycOPGhxYsXb1xcNn78+If6+/s3HK08meGlr69v/tKlS59tp40fP35ef3+/223GNKGvr++hpUuXbtzcHEhbc6YkRdmfNWsW06ZN4/zzz2fq1KlN07Bv3759+/btD78viYhQaVlMnz6dKVOmNE3/vvvu4/zzz2fatGn2x4h/xhlnPOc3lxQzZsxouq0xKzszZswYUF62SlfD/Ea7orBv3759+/btN/eL1KXhb7/3vjFm5Ok4mKpbRWHfvn379u3b7566Bgr2m/vGmJGno2CqbhWFffv27du3b7976hwo2O/eN8b0nraDqbpVFPbt27dv37797qlbw99+b31jzPDQdjBVp4rCvn379u3bt1/tt0PdGv72e+sbY4aPtoOpOlUU9u3bt2/fvv1qv1Xq1vC331vfGDO8tB1M1amisG/fvn379u1X+61Qt4a//d76xpjhp+1gqhl1rljs27dv3759+4m6Nfzt99Y3xowMPQ2m6lZR2Ldv3759+/YHUreGv/3e+saYkaNnwVTdKgr79u3bt2/f/kDq1vC331vfGDOy9CSYqltFYd++ffv27duvpk4Nf/u99Y0xI0/XwVTdKgr79u3bt2/f/uDUpeFvv/e+MWbk6SqYqltFYd++ffv27dsfmro0/O333jfGjDwdB1N1qyjs27dv3759+91T10DBfnPfGDPydBRM1a2isG/fvn379u13T50DBfvd+8aY3tN2MFW3isK+ffv27du33z11a/jb761vjBke2g6m6lRR2Ldv3759+/ar/XaoW8Pffm99Y8zw0XYwVaeKwr59+/bt27df7bdK3Rr+9nvrG2OGl7aDqTpVFPbt27dv3779ar8V6tbwt99b3xgz/LQdTDWjzhWLffv27du3bz9Rt4a//d76xpiRoafBVN0qCvv27du3b9/+QOrW8LffW98YM3L0LJiqW0Vh3759+/bt2x9I3Rr+9nvrG2NGlp4EU3WrKOzbt2/fvn371dSp4W+/t74xZuTpOpiqW0Vh3759+/bt2x+cujT87ffeN8aMPF0FU3WrKOzbt2/fvn37Q1OXhr/93vvGmJGn42CqbhWFffv27du3b7976hoo2G/uG2NGno6CqbpVFPbt27dv37797qlzoGC/e98Y03vaDqbqVlHYt2/fvn379runbg1/+731jTHDQ9vBVJ0qCvv27du3b99+td8OdWv42++tb4wZPtoOpupUUdi3b9++ffv2q/1WqVvD335vfWPM8NJ2MFWnisK+ffv27du3X+23Qt0a/vZ76xtjhp+2g6lm1LlisW/fvn379u0n6tbwt99b3xgzMvQ0mKpbRWHfvn379u3bH0jdGv72e+sbY0aOngVTdaso7Nu3b9++ffsDqVvD335vfWPMyNKTYKpuFYV9+/bt27dvv5o6Nfzt99Y3xow8XQdTdaso7Nu3b9++ffuDU5eGv/3e+8aYkaerYKpuFYV9+/bt27dvf2jq0vC333vfGDPydBxM1a2isG/fvn379u13T10DBfvNfWPMyNNRMFW3isK+ffv27du33z11DhTsd+8bY3pP28FU3SoK+/bt27dv33731K3hb7+3vjFmeGg7mKpTRWHfvn379u3br/bboW4Nf/u99Y0xw0fbwVSdKgr79u3bt2/ffrXfKnVr+NvvrW+MGV7aDqbqVFHYt2/fvn379qv9Vqhbw99+b31jzPDTdjDVjDpXLPbt27dv3779RN0a/vZ76xtjRoaeBlN1qyjs27dv3759+wOpW8Pffm99Y8zI0bNgqm4VhX379u3bt29/IHVr+NvvrW+MGVl6EkzVraKwb9++ffv27VdTp4a//d76xpiRRxHRsjxp0qR5S5Ys2WgY82OMMcaYHjBx4sSHFi9evHFxWV9f3yPLli1bb7TyZIaXcePGPdrf379+4//x48fP6+/vd7vNmCb09fU9tHTp0o2bmwNpK5gyxhhjjDHGGJPo6Q0ojDHGGGOMMWZlwcGUMcYYY4wxxnSAgyljjDHGGGOM6QAHU8YYY4wxxhjTAQ6mjDHGGGOMMaYDHEwZY4wxxhhjTAc4mDLmeYSkfklTW3SnSupv4hwq6SFJT0raUdLlkg7pIF+HS7qk3e2MMWY0kTRZUkjabBj3cbukvYcrfTOy5OPlzcO8Dx8zNcLBlDEjiKRZuaD9UGn56/LyOaOUtQHkxsO3gZ0jYo2I+J+IeGdEHFdwBlQa+TMeWVwWEd+OiD1HJufGrFzkc+7p3OmxUNLvJX1gtPPVLpLmSNpvtPMxXAwWmEXEthFx3mjla2WkdM4UX68c7bwV8TEzNnAwZczI8yfgU6Vln8rL68RkYHlE3DHaGTHGNOXoiFgDWB84BzhP0kvbTUTSOEljtm0gafxo58GMGY7OHYXF1x9HO1Nm7DFmC0xjxjAXAttL2hJA0prAB4DTi5Kk1SSdKOl+SQ9L+rmkzQvr15R0hqRHJc2VNL28I0nvlfRbSY9L+pOkfVvJYB4+8EtgXO6tuycvf/aqk6Rbs35ldk6R9ANgJ+CovOzP2Z0h6apC+nPy0L+rs3ebpDcW1o+XdLyk+ZLmSTpE0t2SDmgl/8asrEREP/AjYBzwSgBJ35Z0b+NclvTFhl/o+f6EpDuARcCGkj4s6VZJT0h6UNJJklYvbDdH0pGSrs3p/lHSdpL2yefqwlwm9BW22VzST3N6D0o6OZd/5GHAmwOn5PSuzMv7clnxl1yOXS/pNYU0Z0o6S9Lpkh4Fvlf+TiRNyPuanz/PXyR9sLB+J0mzc1l6j6SDJWmw77hZuSrprZKuy+k9LKlRtjfKzD/nz3hU4bvcr7T9Tfk7vFPSpwvrpioN594753WhpJ80vkfTHZL2yMfJ+MKyNfLv9Zb8/6DnU0V6B0i6u7RspqRTCv+frlTP/0PSHZI+UtB9zIwBHEwZM/IsAc4CPpH/3wf4FfBgyTseeH1+bQE8DFwiaVxefwKwFbANsB2wF6kBBYCkXYFTgS8C6wHTgR80KoShyMMH3gksy711L65wXpX/3C07n4yIA4HrWNHj97IhdvNx4PPA2qTA7YzCusPy/l8PTAE2y9+BMWYIJE0A/hVYyoqG2B3Am4E1SVfBj5G0e2nTjwBvy84CYGFetg6pg2Qn4MjSNtOBzwLr5n39DNgZeBUpkHsP8KGcr4nANTkvW5LKrc2AEwHyMOC/Ap/MZcdueR/fIJVt7yBddTsNuELSuoV8TAP+G3gBcHDF13IAsCOwdUSsBeyS84GkbYHLgO/k7d8NHAjsX5FO03JV0nbAFdnZBHgR8F9580aZ+bL8GY+uSH9K/iz/kT/vAaTfa1pBGwfsltN7KbA9qSw13XM50E86DhpMA+aR6jZo7Xxqh9nAq0nn2jeAmZK2yet8zIwBHEwZMzr8J/Cx3Gv7z/n/Z1EaZvNR4MiI+FtEPEWqvLcGXpvX7wscFRHzImIh8JXSPr4AnBgR10XE8oi4GfhxTrcOnBQRt0fEMuAU4CWS1s7rPgocFxH3RsRi0mdbPloZNWYMcISkx4EHSMHHByLiboCI+HFE/D0S1wCXkgKKIl/PZckzEbEsIi7P5+fynM6PKrY5OSL+FBFLgbNJQdIREfFURPwVmEUKYgD2ABQRX42IxRHxGHAUsG+hg+g55KtDnwO+nMuCZRFxKqnjqdjYnR0R5+X1iyqSegZYA9hGUl9E3F8YvvwvwPkRcVHe/k7gBwxeTjYrVz8DXBIRMyPi6fxZrx0krSr2AX4XEadHRH9E3AicBHyy5B0aEU9GxEPAz4Ed2tiHSRyRry4++8r10ZnAxwrex4DTIyKg5fOpZSLi1Ih4JB9/5wJ/AKa2kYSPmVGmr7lijOk1EXGbpLmkxsRGpF6lfQrKC4CJwL2FbZ6UNJ/U03kvsCowp7DNfaXdTAF2lnRQYdk4VvSujTbFK3FP5fc1ST3iLwTmNlZGxGJJC0Ywb8aMNb4VEd+sWiHp86Qe9M0AAZNIwU+ROaVtdgW+CrycVNaMA+aXtimew4tIV7IXlJY1hhJNATbPAV+RADYG/laR9Q1IQdAlkqKwfHz+LJV5r+DHpHL2eGArSVcDh+QgcQrwNknvL/irAPcPklazcnUy8Psm+RmKRvle5B5SgNyg/D0/xYrv2bTOYOfM6cAfJG1I+l7fSLpKC7R8PrVE7hidAexNOg8CWJ3UBmgVHzOjjK9MGTN6nEwKpk7NvWFFFgBPkypuII3bBjYkVfILSL2tkwvbTOG5zAVmRMQ6hdeaEfGuHn6GqFjWiytIf6MwrE/SJNqrXIwxgKQ3AccCnwY2iIh1gEtIjcAiywvbTCD1XJ8LbJ6Hxn2lYpt2mAv8pVQerRMREyOiEUiVy46HSY2+t5e2WT0i/q0q71Xk3vpjI2IHUrmyiDRcsJGv00rprxUR2w7xOYYqV+eQhl9X0UrZeD8Dy/ItGTy4Mz0mX538LbAfacjcVRHxALR1PjV4khQcFdm08Pc+pCtIHwDWzendWkjPx8wYwMGUMaPHOaQxzCeWV0TEctI4+6MlbSppNeC7wJ3AzXn92cDXJW0kaS3gmFIyJwBfzJOrxylNwn6NpF5e2p/HwIbDPOAlXaZ7JvBlSVPyXItjcHllTCesBSwjdcCEpHeT5iMOxQTSlfHH8lXhbUjziLrhF8B4pZtJrKnECyW9r+A8pzzJw6pOBP5d0lbw7M0Adpe0KS0i6W257BsPLCYFaI1n7P0I+LCkPZVufNMnaRtJbx0kuWbl6knAeyTtn9dN0opn/y0gNY4HC7Yg1QuvkfTRnJfXkhrup7b6eU1POJ00r/ejrAi8of3z6fekG7rsIWmVfLwX5y2vRToWFwCrSPo4K+ZJgY+ZMYEbJ8aMEhGxJCKuynMHqvgS8Bvgf0gTszcB3lO4ivUF0tC+O4E/knrHnr3CFRFXkuZjfYfUw/sgaZjLGj38GEcA35D0mKST8rLjgR3yGPTbO0z3GNJNKW4m9fQ+CPyddLXOGNM6V5A6J24mlQMfJN0oYlAi4knSXKLjJD0J/JAOhzEV0lxEmleyDanMWghcTZp43+CbwH65PLk8L/sacBFwkaQngLtI85Laab9sRPoOHiOVJVuQGptExG2k+VxfzOvmAzMZ5Ep4s3I1Im4F3kX6/uaTyu7987rFpNEI5+Ty8YiK9O/L2x8IPJLz/dWI+Ekbn9e0RuOus8XXHnnduaSrO2uQjr8GbZ1PEXEPqa4+GXiUdCOVCwrKGcBNwN2kERnbUBiK72NmbKA8n84YY2pLHuL4GPDWiLhhtPNjjDHGGAO+MmWMqSGS1pX0jjzsZm3Ss2Pmkq7SGWOMMcbUAgdTxpg6Mo405OdR0lDGzYA98y2YjTHGGGNqgYf5GWOMMcYYY0wH+MqUMcYYY4wxxnSAgyljjDHGGGOM6QAHU8YYY4wxxhjTAQ6mjDHGGGOMMaYDHEwZY4wxxhhjTAc4mDLGGGOMMcaYDvhfvTzSS+m0r3IAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1080x72 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_threefold_split()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Size of training set: 84 size of validation set: 28 size of test set: 38\n", "\n", "Best score on validation set: 0.96\n", "Best parameters: {'C': 10, 'gamma': 0.001}\n", "Test set score with best parameters: 0.92\n" ] } ], "source": [ "from sklearn.svm import SVC\n", "# split data into train+validation set and test set\n", "X_trainval, X_test, y_trainval, y_test = train_test_split(\n", " iris.data, iris.target, random_state=0)\n", "# split train+validation set into training and validation sets\n", "X_train, X_valid, y_train, y_valid = train_test_split(\n", " X_trainval, y_trainval, random_state=1)\n", "print(\"Size of training set: {} size of validation set: {} size of test set:\"\n", " \" {}\\n\".format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))\n", "\n", "best_score = 0\n", "\n", "for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " for C in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " # for each combination of parameters, train an SVC\n", " svm = SVC(gamma=gamma, C=C)\n", " svm.fit(X_train, y_train)\n", " # evaluate the SVC on the validation set\n", " score = svm.score(X_valid, y_valid)\n", " # if we got a better score, store the score and parameters\n", " if score > best_score:\n", " best_score = score\n", " best_parameters = {'C': C, 'gamma': gamma}\n", "\n", "# rebuild a model on the combined training and validation set,\n", "# and evaluate it on the test set\n", "svm = SVC(**best_parameters)\n", "svm.fit(X_trainval, y_trainval)\n", "test_score = svm.score(X_test, y_test)\n", "print(\"Best score on validation set: {:.2f}\".format(best_score))\n", "print(\"Best parameters: \", best_parameters)\n", "print(\"Test set score with best parameters: {:.2f}\".format(test_score))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Grid Search with Cross-Validation" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SVC(C=10, gamma=0.1)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " for C in [0.001, 0.01, 0.1, 1, 10, 100]:\n", " # for each combination of parameters,\n", " # train an SVC\n", " svm = SVC(gamma=gamma, C=C)\n", " # perform cross-validation\n", " scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)\n", " # compute mean cross-validation accuracy\n", " score = np.mean(scores)\n", " # if we got a better score, store the score and parameters\n", " if score > best_score:\n", " best_score = score\n", " best_parameters = {'C': C, 'gamma': gamma}\n", "# rebuild a model on the combined training and validation set\n", "svm = SVC(**best_parameters)\n", "svm.fit(X_trainval, y_trainval)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDc4OC4zNzgxMjUgMzE5Ljk4IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nL1bXW/duBF916/QYwvUMsnhZ9+SbhtggQLNrtE+FH1wb7zeBHa2G7sb9N/3UF8cSqMrBRe4D4HtE4o8nMMZDkeUbj81t290+/jSqvYT/n1t/9n+Cz8/tLp9195+9/Dbx9PDD+/etqeXRgF/bkKMHYWojcOfT/xP0qlLEZgqv/7cNJ8b9I+279DlY9NY6sLQXtvUBfTola6hJw6RNl3IXZUHZwi9/wT+ZuD/iAEwhy6yWeRh8T+NT522OnhdRmWI7wx6a96C6dfm7V17+xegqr37CVPR7Y1GF0F3MSUXKHryrcEoQcfg2rvn3i53H5rf/emPGFwp/Yf28f75+X786/ft3af2z3dNz6tJtnPKEWwz8eDIAR4pdMaT0cqYQK3BX5RNskNjwUJDnuiTIjvTqKADPLQxnTc+Wu+SSi1Rh59+l8mSiHWYgPGh8GDIERo2dCkpG01y1rVYI5p2VFlSCArUPSnGgUNHSATqyFmYkHQ0LflpoZ6loRY8kuuSS8lS4cGhIzxS7IIOwTkfdWxJdXZ3jWq14GGM7siQKyuUIwdYGGM7FTUlo6xzZ5boWUcxGMrHYLQvPDh0hAies9YpE61K+twSPecrJphOORWdKUQ4dIRIsF1U0XsbggktITbukFhygNdbbW1MhQOHDnAghV6DIaU1edtm0yQvLo5NTyG4/CJ0V9ARFsZ1jlzKPrrpq9s+QjYuw3gFHWHgFA/kZ3z1jI8QHH4RxivoCI/geSDfXpxnvQTDLQN5BR0gYrHV8kAuLs5zDmLh73UM58gRBsZXMdx3pJK0Ms54iMXQiyheQUdoOMOjuHNddOcFWXKAmy8ieAUd4RACj+DbXrrtIw6OXsdvjhzg4BTx+L3lpmfcw8HLF7G7go6QMJHHbpnEWddwTi/jdgUdIeGIx+0tNc45h4ObLyJ3BR1hERKP3BvrUvSNqsO8C6U4BJnUmTHq4em/3X+5f354ffjSvjy8vn78/PiyWNerjN2q6fkpYZdmUJLknNQhIk0DwkybI2CyCNE5ElXDFHh3rIAtxlnEv775MJ7ZGs+olJdOdjY+HoP3xjMKCauycPG++TCe3RyPYuedycupGq/Au+MRkgnnsIj75sN4fnM8j+OZorzVVeMVeHc8nw8oHhts33wYL26Oh7QkR3HE8Wq8Au+OhwORho8E1TfP4+myXrZOAV3odwxIgK1ktaH//f7p44f714+/fG7vT6f/frk//W/q8Nd2ubxdDpQ+x8D2y0P7j/Zze/uG+hMm7KCTVyEinD8OB2YGNe8WLZpfm0wus5wPm70NizX6KZ6e29u/qva7X+bmCtMySFO0T+jNBrHJfosbTR1Cl48uOWXFJkh/KEYLRgiKpcH75n17zDJ2OnsP9QN+0jYROzmZ7MkIPROYRhCHfAnEkf7Hw4NvyNJU0BlZprN3Du84TCMTMt6HFK1OgzF0bS0lokgbLCXrKJrwDY+tTa8vND0rJSTELwQxJIHPDX4f4T6sDfBTE2X4qgKUqkMfrAUFjGhKs6fAocfWCpgLFeBVFC6BRkY84pWxtZbx64owlVyGiGuQB0fCIc1HCqMKJJpzgd70p+KEjUlhUR1/bi0DXSrDXEQyuT7kVEi9Cjj7jbCbYYhgRfi6Gkwlp5z3G4RO1yFRi9ZFO9nSira0u5uC3d8U7J4g9lJBSkXNRHSAdeb7Qpub4TTBEMSL8HUFmWtvfVonbdluYVifTyxZL2Ws2GK3gaTNqo+lNu5SbUqV0cTQebhvX2DCqXGC0wRDmyTCV9VmKkiGrEjOGDVaIow6pNCjUfyuNn7XcZZ9COL4PXH8heKU2msfEiwhT8kVWT+haUKfGhyuBfS6ykwl2lxL0mIYC3s+8a0NbnL5CEf1gKWp5EFwuoBxnInJIJKUFpcIU4rRJub8I+rUS+P0jKcZhzhWxq8rz1y47s+OcN0uaBzwIpYZDXaJe9ZfNMCaswo5PA5sMYotbtZeEXfliZfKU0r0BjmZ8hppZV+6DzNuZhzyeBm/rjxTTT+Xpq3oPUlMAtJuLEv7sSztxbJ0qSbllQVPAkiZGWa7ffYSAb6qIOz1hpQA6OV5e+0tyyb7LSRp1r2sjo6XHtv5VFkWQCZwC0zbPWkRvq4485ufzaKK1vsCrU7ley2EeLZsojh8iSjl5ZaJsUs+RcqFSnJUSiczDlmsjH+TLjMLar+Os/lhuERR8yHOR/UFuGQ4nlkSBeeHSIbMREE1h6OZxpaZ+vpQTDEgRKEHxN8Y88ExzzQEi7WPVKZMB3mQDhHLrELnwXIXkdeTvNFICVveMU7k2GY8Bc6ClEaupJLyfR8T5RyVEENxQmnZ7EiV2RVbMBRd4OyJoJXf6fHG6M3mM03VMXICFZTHcbNmQSCKtYwVyDmTOD/asAaJtmM9FzMXGpUkhTPXb54eV1pcF6crx4PpDexYzRNOBVouCy1hIQaYZc65TlmWbaQ4fml9ib1lRl7Qpeg06f7tc5zxNOMICF7GryvM/EZ6KPKBq5+yk8kwq5LQSgHazXGWTaSDwbKNpOOl1Sf2Bt4EPAVvcNS/DqEZjzMOkZKMX1Wk+Z39WAQ0fT6sU0ACOu2mcgVqCWuY1FnEAmWT+bYnBY+5tPJU7iIYyjc/0LnuryikuUI4w0+N1SJ8XSWmewtjKVDKa/ZLT8sm+y3ExHO3+qQvLT+xaxo88cRkSw2wZJjWivB1BZovdWyWBvWqdiSEq/0K1Kobwf5edq1LC0/s5kovS1Te9+/IQ6rqfwMOYbyMX1WZ6abLXBgUlFlWjwTH2K1ArTqRtpGwH9wuLUKVmz05cTPBIo3sL/y4uRA4w5AoifB1FZruAY0FQilJi/KK3q1MLVuIqizLV4Iql9ae2F2nKklz2IDmEiBLxpyR8esKM9+NGkqDUpK2qhCtFNgvRC2biEla2k/SLi1GsbtgVZLmnJ9xnow5K+PXFWm6OjYWCIUkzSjRe5awkKQdfXLtMebS4hO7EldlaS7qGef5mAsyPoth2u+HzquPQerPWYRrbesvTNDf6vOUZ/HzFLQ89GlL1W58erPH2zdusNX3re6/b/naT2n8lMaT7vxYhdMIHGTyVZv+umAF5q90sKa0tjn2jyCalHb5fWvMFe8K9X3DU8NBh20e68a4vteCe92ZqBIG4GMBHVtzWgU9VXMo+BNwbG3W9iWlgnuk7X41IkcLP/TN8HEyTzU4z5sPNxpIsG5f0XjbyI48f3J01pk9xJ+5+o4c5UtvWACW2VhPeL4k5UV8JFJ/+jR+7FRdkvO+TMOpqYN8K+702+o2nHSfixEm2+UjSWYbZ9AOYJZMAH8elvGC5xmOlDdP0xN8frhfX9g7W6DkZKGZ0yr/+txbkZDu5FpkwfMsYqCUq2F5KXjK77B8LvfZlF/PGR06S0m5XA/DBoTzhrV+eKVE2uKgiNZlRKO76LAkbY3O4+U+GB467U2mxHvG6gzKZUqcB5YiYmH+9dRw1oRg7Hx+kM+Q2Awr8QqPXPIzPlPlrSGgjfn8W/VMvsPyzUaoeeDBkOuKsWJN4gxpwx4kWo/1zCzNeFS6MNZMRTZDLdpDMx7rVfp135tAWA0d5MX674eX1/Y/y6vU06p93/wfz4e5fgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI3MDgKZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzAgPj4Kc3RyZWFtCnicM7MwUTBQsABiM3MzBXMjS4UUQy4jCzOgQC6XBVggh8vQ0BDKMjYxUjA0NAWyTM2NoWIwjUBZS5BBOVD9OVxpAE9UEi8KZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nEVRSXIEIQy79yv0ganCK/CeTs2p8/9rLDNJThZgazFpgYEteIkh1sDMgS+5fE3oNHw3MtvwOtkecE+4LtyXy4JnwpbAV1SXd70vXdlIfXeHqn5mZHuzSM2QlZU69UI0JtghET0jMslWLHODpCmtUuW+KFuALuqVtk47jZKgIxThb5Qj4ekVSnZNbBqr1DqgoQjLti6IOpkkonZhcWrxliEin3VjNcf4i04idsfj/qww61EkktJnB91xJqNNll0DObl5qrBWKjmIPl7RxoTqdKqBY7zXtvQTaeC59l/hBz59/48Y+rneP8buXCIKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDM2NlcwUDA0BJFGRgYKpkBWiiEXSMDQyEQhlwskCGLlgFkGQBqiOAeuBsICaYSoBrEgqo0tjaGyCBZENg0AR6IWywplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjYgPj4Kc3RyZWFtCnicMza0UDBQMDdX0DU0NFUwMjJQMDQyUUgx5DI0NAczc7lggjlglokBkGEIJMEacrhgWnPAOiCyUK05XGkATTgR9QplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKNTUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iago1NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iago1OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago2MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago2MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjYyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjYzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjY0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iago2NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iago2NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzOCA+PgpzdHJlYW0KeJw9j0EOAzEIA+95hT8QKXZCWN6zVU/b/19Lmt1e0AiMMRZCQ2+oag6bgg3Hi6VLqNbwKYqJSg7ImWAOpaTSHWeRemI4GNwetBvO4rHp+hG7klZ90OZGuiVogkfsU2nclnETxAM1Beop6lyjvBC5n6lX2DSS3bSykms4pt+956nr/9NV3l9f3y6MCmVuZHN0cmVhbQplbmRvYmoKNjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDM2IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ0IC9jb21tYSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MiAvZm91ciA1NCAvc2l4IDU2Ci9laWdodCA1OCAvY29sb24gNjcgL0MgODAgL1AgODYgL1YgOTcgL2EgL2IgL2MgL2QgL2UgMTAzIC9nIDEwNSAvaSAxMDggL2wKL20gL24gL28gL3AgMTE0IC9yIC9zIC90IC91IC92IDEyMSAveSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMzQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMzMgMCBSID4+CmVuZG9iagozNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjMzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjM2IDAgb2JqCjw8IC9DIDM3IDAgUiAvUCAzOCAwIFIgL1YgMzkgMCBSIC9hIDQwIDAgUiAvYiA0MSAwIFIgL2MgNDIgMCBSCi9jb2xvbiA0MyAwIFIgL2NvbW1hIDQ0IDAgUiAvZCA0NSAwIFIgL2UgNDYgMCBSIC9laWdodCA0NyAwIFIgL2ZvdXIgNDggMCBSCi9nIDQ5IDAgUiAvaSA1MCAwIFIgL2wgNTEgMCBSIC9tIDUyIDAgUiAvbiA1MyAwIFIgL28gNTQgMCBSIC9vbmUgNTUgMCBSCi9wIDU2IDAgUiAvcGVyaW9kIDU3IDAgUiAvciA1OCAwIFIgL3MgNTkgMCBSIC9zaXggNjAgMCBSIC9zcGFjZSA2MSAwIFIKL3QgNjIgMCBSIC90d28gNjMgMCBSIC91IDY0IDAgUiAvdiA2NSAwIFIgL3kgNjYgMCBSIC96ZXJvIDY3IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMzUgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMyA8PCAvQ0EgMC41IC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuNSA+PgovQTQgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMCA+PgovQTUgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL00wIDEyIDAgUiAvTTEgMTMgMCBSIC9NMTAgMjIgMCBSIC9NMTEgMjMgMCBSIC9NMTIgMjQgMCBSIC9NMTMgMjUgMCBSCi9NMTQgMjYgMCBSIC9NMTUgMjcgMCBSIC9NMTYgMjggMCBSIC9NMTcgMjkgMCBSIC9NMTggMzAgMCBSIC9NMTkgMzEgMCBSCi9NMiAxNCAwIFIgL00yMCAzMiAwIFIgL00zIDE1IDAgUiAvTTQgMTYgMCBSIC9NNSAxNyAwIFIgL002IDE4IDAgUgovTTcgMTkgMCBSIC9NOCAyMCAwIFIgL005IDIxIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjE2IDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0JCb3ggWyAtMyAtMyAzIDMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM1IC9TdWJ0eXBlIC9Gb3JtCi9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYiM9U4VcLl0QBSZyuJCYGVxcTlwAtO8H9AplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9CQm94IFsgLTMgLTMgMyAzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJwzUMjiMlDwAmIjPVOFXC5dEAUmcriQmBlcXE5cALTvB/QKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvQkJveCBbIC0zIC0zIDMgMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzUgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicM1DI4jJQ8AJiIz1ThVwuXRAFJnK4kJgZXFxOXAC07wf0CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNjggMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDMzNi0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCA2OQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNjk2OCAwMDAwMCBuIAowMDAwMDEzMTEwIDAwMDAwIG4gCjAwMDAwMTMxNDIgMDAwMDAgbiAKMDAwMDAxMzM2NiAwMDAwMCBuIAowMDAwMDEzMzg3IDAwMDAwIG4gCjAwMDAwMTM0MDggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzE3OCAwMDAwMCBuIAowMDAwMDEzNjcxIDAwMDAwIG4gCjAwMDAwMTM4MjggMDAwMDAgbiAKMDAwMDAxMzk4NSAwMDAwMCBuIAowMDAwMDE0MTQyIDAwMDAwIG4gCjAwMDAwMTQyOTkgMDAwMDAgbiAKMDAwMDAxNDQ1NiAwMDAwMCBuIAowMDAwMDE0NjEzIDAwMDAwIG4gCjAwMDAwMTQ3NzAgMDAwMDAgbiAKMDAwMDAxNDkyNyAwMDAwMCBuIAowMDAwMDE1MDg0IDAwMDAwIG4gCjAwMDAwMTUyNDEgMDAwMDAgbiAKMDAwMDAxNTM5OCAwMDAwMCBuIAowMDAwMDE1NTU1IDAwMDAwIG4gCjAwMDAwMTU3MTIgMDAwMDAgbiAKMDAwMDAxNTg2OSAwMDAwMCBuIAowMDAwMDE2MDI2IDAwMDAwIG4gCjAwMDAwMTYxODMgMDAwMDAgbiAKMDAwMDAxNjM0MCAwMDAwMCBuIAowMDAwMDE2NDk3IDAwMDAwIG4gCjAwMDAwMTY2NTQgMDAwMDAgbiAKMDAwMDAxNjgxMSAwMDAwMCBuIAowMDAwMDExNjkyIDAwMDAwIG4gCjAwMDAwMTE0OTIgMDAwMDAgbiAKMDAwMDAxMTAxNyAwMDAwMCBuIAowMDAwMDEyNzQ1IDAwMDAwIG4gCjAwMDAwMDMxOTkgMDAwMDAgbiAKMDAwMDAwMzUwNCAwMDAwMCBuIAowMDAwMDAzNzQyIDAwMDAwIG4gCjAwMDAwMDM4ODQgMDAwMDAgbiAKMDAwMDAwNDI2MSAwMDAwMCBuIAowMDAwMDA0NTcxIDAwMDAwIG4gCjAwMDAwMDQ4NzQgMDAwMDAgbiAKMDAwMDAwNTAxNCAwMDAwMCBuIAowMDAwMDA1MTUyIDAwMDAwIG4gCjAwMDAwMDU0NTIgMDAwMDAgbiAKMDAwMDAwNTc3MCAwMDAwMCBuIAowMDAwMDA2MjM1IDAwMDAwIG4gCjAwMDAwMDYzOTcgMDAwMDAgbiAKMDAwMDAwNjgwOCAwMDAwMCBuIAowMDAwMDA2OTQ4IDAwMDAwIG4gCjAwMDAwMDcwNjUgMDAwMDAgbiAKMDAwMDAwNzM5MyAwMDAwMCBuIAowMDAwMDA3NjI3IDAwMDAwIG4gCjAwMDAwMDc5MTQgMDAwMDAgbiAKMDAwMDAwODA2NiAwMDAwMCBuIAowMDAwMDA4Mzc1IDAwMDAwIG4gCjAwMDAwMDg0OTYgMDAwMDAgbiAKMDAwMDAwODcyNiAwMDAwMCBuIAowMDAwMDA5MTMxIDAwMDAwIG4gCjAwMDAwMDk1MjEgMDAwMDAgbiAKMDAwMDAwOTYxMCAwMDAwMCBuIAowMDAwMDA5ODE0IDAwMDAwIG4gCjAwMDAwMTAxMzUgMDAwMDAgbiAKMDAwMDAxMDM3OSAwMDAwMCBuIAowMDAwMDEwNTIzIDAwMDAwIG4gCjAwMDAwMTA3MzQgMDAwMDAgbiAKMDAwMDAxNzAyOCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDY4IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA2OSA+PgpzdGFydHhyZWYKMTcxODIKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAE+CAYAAAAUK1boAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVzU1f4/8Nd7QHZcIR1NXNkG1JTFBSnXtFzS3DLLJUu7Zf1cutSte+1b3/re1NT79Vq3bLlqadp2ja+a3byhFeUCJhqIuCRiooKyiqxzfn8MowOyDDAzMPB6Ph7zgM/nc+a8z8znzHLmnM85opQCERERERFRfWgauwBERERERGS/2KAgIiIiIqJ6Y4OCiIiIiIjqjQ0KIiIiIiKqNzYoiIiIiIio3hwbuwB15eXlpbp3797YxSAiIiKqVXx8fKZSyruxy0FkTXbXoOjevTvi4uIauxhEREREtRKR1MYuA5G1ccgTERERERHVGxsURERERERUb2xQEBERERFRvbFBQURERERE9cYGBRERERER1RsbFEREREREVG9sUBARWYNSwHffAU8+CYSEAO7ugEZj+BsSYtj/3XeGdERERHZMlJ19mIWGhiquQ0FETdru3cCyZUBycu1pAwKANWuA++6zfrmIyOZEJF4pFdrY5SCyJvZQEBFZSmEhMH8+MG6ceY0JwJDu/vuBxx8HioqsWz4iIiIrYIOCiMgSCguBBx4APvzw1j5PT2DRIuDbb4HMTKCszPD3228N+z09b6X94ANg4kQ2KoiIyO5YrUEhIh+KyBUR+bWa4yIi60TktIgcE5EB1ioLEZHVPf008O9/39qeMQM4exb4+9+BUaOADh0M11B06GDY/vvfDcdnzLh1n3//25APERGRHbFmD8VGAGNrOH4fAN/y2wIA/7BiWcxWUFCAL7/8EtnZ2Y1dFDJRUlKC+Ph4FBYWWi2Grc69LR6LLWLYil2c+927K/ZMvPIK8MkngJdXzTG8vAzp/uu/bu374ANDfvXE+lU3tnjd2+q9xRZxWL+IqCpWa1Aopb4HcK2GJA8A2KwMDgBoKyJaa5XHXImJiTh79ixiYmIauyhkIj09HSkpKUhKSrJaDFude1s8FlvEsJUmf+6VMlyAbTRjBvCXv2BoZCRE5ObN3d0dU6ZMQbt27SrsHxoZCSxfXrGnYtmyes/+xPpVN7Z43dvqvcUWcVi/iKgqjo0YuwuANJPtC+X70isnFJEFMPRiwMfHx2oF0uv1OH78ONzd3XH+/HmcOXMGvXr1slo8Mo9SCqdPn0bbtm2RmpqKbt26oUOHDg3Od+jQoYiNja01XUREBH788ccGxwOs91hsHcNW7OLcx8TcugDb0xNYvx4QQVhYGMLCwrB27Vro9Xps3LgRRUVFKC4uxvjx49GrVy8sWbIEIgKIGO63ezeQl2fIb98+YPjwOj0u1q/a2eJ13xjvLbb4/GL9IqLqNGaDQqrYV+VPckqpDQA2AIZpY61VoAsXLiA/Px8eHh4AgP3796Nbt25wdGzMp4lycnKQm5uLNm3aQCmFhIQEDBs2DBpNwzrYTL/wnT9/Hjt27ICHhweKiorg7OyM2bNn449//KPhC5+FWOux2DqGrdjFuf/001v/z5lzc5hTVFQUgoKCEBUVhZKSktveW5ycnLB582YkJiYa7uvlBcyeDbz1lmF7+/Y6NyhYv2pni9d9Y7y32OLzi/WLiKpj1XUoRKQ7gJ1KqeAqjr0LYJ9S6pPy7ZMAhimlbuuhMGXpdSga45ckqpuEhASkpqaidevWAICsrCzcdddd6NGjR4PyTU9PR1BQEBITExEXF4dz587Bs3zWndzcXHTv3h3z5s1DYmIiOnXq1ODHAVjvsdg6hq3YxbkPCQGOHDH8/+23hguuyy1ZsgQAMGLEiNtixMbGokuXLlizZs2tvPbuBUaPvpVvHd/rWL9qZ4vXva3eW2z9+cX6VT9ch4Jagsb86T0awCIR2QZgIICc2hoT1mD6S9KWLVtw9erVCsc7duyIAwcOWPSXJKqb/Px86PX6mxcaigiuXLnS4A8YrVaLOXPmYOXKlQgNDYVSCrm5uTePv/POO5gzZ06DGxO2/tC31vPVGOzi3JuuN9G/f4VDxl6KXr16VYiRk5OD3bt349SpUxXzMr3/iRNmPRbWr7qxxeveVu8ttvj8Yv0iIrMopaxyA/AJDNdDlMBwfcR8AE8CeLL8uAB4C8AZAMcBhJqTb0hIiLKkixcvqnbt2qmLFy9We7x9+/YqPT3donGpZhEREQqGIXA13iIiIhoUx/T8FxcXq7i4OHXjxg2LnvfFixerxYsX39w2jWOaZsmSJQ2OVVMMe2F3515EKcMl1EqVld122Hj+TWNUe75LS2/lJWJW+Mr16/r16+qLL75QWVlZFdJYsn7ZO1u87qv7bLFmjMqve0vEYv1qOABxykrftXjjrancrDrkyRosPeQJuDUsYe3atSgpKcGxY8cQFBQEFxeXmxdNVhiWQFZnek4A3HZejGkscW6MsZ555hl88803GDBgALZt22ax8246/EGr1eLs2bM34wwcOBDp6ekIDg626NCqyjHsid2de3d3oKDA8H9mpmGdCRPG8x8dHY2DBw+iV69emD9/ftXn++rVW1PNurkB16/XGr5y/Tpw4ABiYmLg6+uLqVOnWqV+VXVO7I21X/emMV5//XXs2bMHI0aMwCuvvGKVGGvXrr3tdW+J1wnrV8NxyBO1BGxQoOIbZklJCWJjY+Hv7w+tVmvxN0oyT+UPsfPnz988LwMGDLDoh5gx1qpVq5Cfn4+SkhL8z//8D5KSkix23o0f+mvWrMGOHTtw/vx5uLu7Y/LkyXjttdca/KHfnK4FsrtzX8M1FEaLFy9GcnIyIiMj8e233yIwMBD/+EcVS+/U8xoKY/1avXo13nnnHeTk5MDBwQFTpkzB+vXrLf6jSOVzYo9s8bo3xtiyZQsSExPRrl07REVFWfQzxRjj119/xcGDB2++twwePBh33323RWKxfjUMGxTUEnDaBNwa77pixYoK09W98sorFhnnSnVnOgZZqYrTCF69ehUrV6602LnRarWYMWMGtm7dCjc3N+zatQt333037rjjDgs8EoOoqChs2rQJycnJuHTpEtzc3FBYWIjdu3dj8+bNiIqKalD+YWFhWLx4MZRSuHbtGt5++21s2LABf//737Fz506UlZVh8eLFCA8Pt9Ajsh67O/dhYbf+/+qrKpMsWLAA33//PTIyMnDo0CGEhIRAr9ffnnDHjlv/h5r//cNYv+Lj45GXlwcnJyfo9Xp88cUXFqlfpqo6J/bIFq97rVaL2bNnY+3atXB3d8dHH32EBx54wKKfKcbXy3//939XeG956aWXMHv2bIvEYv0iotqwQVHO+IZ57tw5uLi44Pr169i6dSuee+65xi5ai2U8JydPnkRubi5cXFzg7OyM7777zuIfYvfffz8OHDiA33//HYcPH8agQYPw22+/WSx/44f+K6+8gtLSUjg6OsLZ2RkbN260yBcM43OVnp6O5OTkCjHOnz+PgwcPWvw5sya7OvfTp9/6f9Mmw7CnSi5duoQBAwZgw4YNCA0NRVZWFs6cOVMxUWYmsHnzrW3The5qYVq/9Ho9NBoNWrVqhejoaIwaNcoiEwsYF+LTaDQYOXIk7r//fjz44IPw8vK6tUjf0KENimNr1n7dA8CsWbMQGxuLS5cuIS4uDn369EFpaalFY0RFRd28KNvR0RE3btzA3r17MaMOdagmrF9EVBs2KMpptVqMGzcOO3bsgIjgq6++wrBhw1BUVNTYRWuxjB9ir732GjQaDUQEbm5u2Lx5MyZNmmTRX/mKiooQFhaGVatWYdCgQXBzc0Oy6ew9FhAVFYWdO3ciOzsbRUVFuHbtGg4cOIARI0Y0OG/TX/V///13KKVQVFSEsrIylJSUYMWKFXbV22ZX5374cCAgwPB/Xh6waNFtq1yfPXsWkZGR6Nq1K4YNG4aSkhJUGLqplOF+eXmG7cBAYNiwOj2OqKgoxMTEIDc3F8XFxbh27RqOHDmCQYMG1Smfqpj2gB09ehRfffUVYmJiEBMTgy+//BJnz561mx4wU7Z43V+6dAnh4eFYvXo1IiIi4ODggEOHDlk0hlarxd133429e/eiqKgIe/bsQVhYmEV/3Wf9IqKasEFhYtq0aYiJicGRI0ewZ88eTJ48GVeuXGnsYrVoUVFRiI6ORmZmJrKzs3H27Fns27cPU6ZMsWgc49AEf39/zJo1Cz4+PvAyXhxrwRjjxo3D4cOH0alTJ8TGxmLkyJHw9fW1SP7GX/VbtWoFHx8fdOrUCZ06dYKHhwdiYmLspnfCyG7OvQiwevWt7e3bgVdfrdCocHV1hVarxdNPPw0vLy94eHjcWqhLKUP67dtv5bF6tSHfOj6O8ePHIzExEf7+/jh+/DhGjRqFIUOG1Cmfqpj2gJlO65mdnQ0RQVJSkl31gBnZ4nWfm5uLESNGoGvXroiMjAQApKWlWTQGADzxxBOIj49HQUEBDh06hNmzZ1v0sbB+EVGNGnuaqbreLD1tbGXPPvusat26tXrmmWesGofMt3jxYvX000+rL774Qv3hD3+w6+kJjdM8fvzxx1aZjrhOU5TaAbs69489pm5O+QooNWOGUhkZNd8nI8OQzvR+8+fXuwjG+nXkyBGL1y/T6UMrT09qz3XMFmw1jfPixYtVu3btrHYuWL/qB5w2lrcWcGv0AtT1Zu0Gxc8//6x0Op3atWuXVeOQ+S5evKg8PT3VokWLlIeHh9XWBLHVh/68efOUm5ubeuihhyyet/ED/9ChQ2rr1q1qz549dr2Oil2d+8JCpe69V1VoHHh6KvX000p9+61SmZmGdSYyMw3bTz9tOG6a/t57Dfk0gLW+VJqueZCamqq2bt2q4uPj7X6tHlu87k2fL2u6ePGiGjNmjFXPBetX3bFBwVtLuHHIkwmlFNLT07FgwQJcvHiRs0s0ER07dkRoaCg++OAD3HXXXbhuxtz89ZGeno6UlBQkJSVZJX/AUMciIiLg4+OD0NBQi9cx4xCOFStWoG3btli/fj2mT59uN9dOVGZX597ZGYiOBubPv7UvLw946y3DVLBeXoCjo+Hv6NGG/cZrJgDD/aKjDfk0QFRUFMLDwy0+PKS5zoZn7de9UrabtUir1WLPnj1WPResX0RUFTYoTGRnZ1eYdu/AgQNVT+1INpWWlobBgwfDx8fn5oWHlp4lxVYf+tnZ2SguLsbSpUvh7OxslTr25JNP4ptvvkFaWhr279+PkSNH2m09trtz7+wMvP8+sGvXrQu1axMQAOzebbhfAxsTgHW/VDa32fBs8brPycmpMFNZQkKC3b4eAdYvIqoaGxQmqppu09JTCFLdHT58GB4eHli4cCHat2+PrKwsHDhwwKIxbPWhb4s6VlRUhOHDh+O5557DmDFj4ODggNTUVIvGsBW7Pff33w8kJQHffQcsXGhYpM7NzXChtZubYXvhQsPxpCTgvvss82CsrLnNhmeL131qamqFmcpycnLs9vVobc2tfhG1JGxQmKhquk1LTyFIdZeRkQEAKC4uRmlpKfR6PVJSUiwaw1Yf+raoY/n5+Zg0aRJ69+6N+++/HyJit7OV2fW5FzFMKfvOO4YVr69fB/R6w9+4OMP+4cPrPJtTY2tOs+HZ4nVf1axF9vp82UJzql9ELYljYxegKdFqtXB0rPiUWHoKQaq7vn373vxiaaTVai0aw/RDH8DND/0ePXpYNI4t6lhERAQiIiLw2GOPWTTfxtCczn1z8cADD+Cxxx7DK6+8gnnz5mHevHmNXaR6s8W5j4iIsFheLUFzql9ELYkopWpP1YSEhoaqCgtCERHRTSUlJTh27BiCgoLg4uJilRiHDx/G448/jlWrVuHee++1SgyqO1uce9avuhOReKVUaGOXg8iaah3yJCLBtigIERE1nC1mLcrLy8Mbb7yB69evcza8JsQWM9WxfhFRVcy5huIdETkkIk+JSFurl4iIiOqFsxa1XLY496xfRFSdWhsUSqmhAGYB6AogTkS2ishoq5eMiIjqhLMWtVy2OPesX0RUHbNmeVJKnQLwZwDPA7gHwDoRSRaRB61ZOCIiMh9nLWq5bHHuWb+IqDq1zvIkIn0BzAMwDsC3ACYopY6ISGcAPwP40rpFJCIic3DWopbLFuee9YuIqlPrLE8i8j2A9wB8rpS6UenYo0qpj6xYvttwliciIiKyF5zliVoCc4Y83Q9gq7ExISIaEXEDAFs3JojIPCUlJYiPj0dhYWFjF4WaIdYvsibWLyL7Y06DYi8AV5Ntt/J9RNRE2WL6SGq5WL/Imli/iOyPOQ0KF6VUvnGj/H83czIXkbEiclJETovIC1Uc9xGRGBH5RUSOicj95hediKpii6kdqeVi/SJrYv0isk/mNCiui8gA44aIhAC4UUN6YzoHAG8BuA+ADsBMEdFVSvZnAJ8qpfoDeAjA2+YWnIiqxnncyZpYv8iaWL+I7JM5DYrFAD4TkR9E5AcA2wEsMuN+4QBOK6XOKqWKAWwD8EClNApA6/L/2wC4aF6xiag6nMedrIn1i6yJ9YvIPtU6baxS6rCIBADwByAAkpVSJWbk3QVAmsn2BQADK6X5LwD/FpFnALgDGFVVRiKyAMACAPDx8TEjNFHLZYupHanlYv0ia2L9IrJPtU4bCwAiEgzDsCUX4z6l1OZa7jMNwBil1OPl248CCFdKPWOSZml5GVaLyGAAHwAIVkpV27/JaWOJiIjIXnDaWGoJzFnY7mUAw2BoUOyG4ZqIHwHU2KCAoUeiq8n2nbh9SNN8AGMBQCn1s4i4APACwGUxiYiIiIjsgDnXUEwFMBLAJaXUPAD9ADibcb/DAHxFpIeIOMFw0XV0pTTny/OGiATC0AOSYWbZiYiIiIiokZnToLhRPgSpVERaw9B70LO2OymlSmG4ePsbACdgmM0pUUReFZGJ5cmWAXhCRBIAfAJgrjJnDBYRERERETUJtQ55AhAnIm0BvAcgHkA+gEPmZK6U2g3DMCnTfctN/k8CEGF2aYmIiIioWvHx8Xc4Ojq+DyAY5v1wTFQbPYBfS0tLHw8JCanysoQaGxQiIgD+qpTKBvCOiOwB0FopdczyZSUiIiKihnB0dHy/U6dOgd7e3lkajYajPqjB9Hq9ZGRk6C5duvQ+gIlVpamx5Vo+/GiHyfY5NiaIiIiImqxgb2/vXDYmyFI0Go3y9vbOgaHXq+o0ZuRzQETCLFcsam5KSkoQHx+PwsLCxi4KERFRS6dhY4IsrbxOVdtuMOcaiuEAFopIKoDrMCxup5RSfS1TRLJ36enpSElJgYhgwIABjV0cIiIiIrIhcxoU91m9FGRXhg4ditjY2FrTRURE4Mcff7RBiYiIiIiosZjToGC3GVUQFhaGsLAwrF27FtnZ2di3bx/atGmDGzduwMXFBcOGDcOyZctguKafiIiIqOnQ6/VQSsHBwaGxi9JsmHMNxS4AO8v//gfAWQBfW7NQ1LRFRUVh06ZNSE9PR2pqKjQaDUQEbm5uyMnJweHDh7F582ZERUU1dlGJiIioFkVFRZqffvrJq6CgwCLfsNevX9/Bz89P5+/vr5s0aVKPq1evOnTp0qVPWVkZACAvL0/TqVOnvkVFRRV+edy6dWubvn37BgQGBuqGDBnil5aW5ggAOTk5mqlTp3b38/PT+fn56TZu3NgWAD7//PPWOp0u0N/fXzd48GA/AFi6dGnn5cuXdzTm6evrG3Ty5EmnkydPOvXs2TPokUce8QkKCtKdOXPGadasWT7BwcGBvXv3DlqyZEln433279/v1r9//wB/f39dnz59ArOysjQhISH+P/30k6sxzYABAwIOHjzoCgJgRg+FUqqP6baIDACw0GoloiZPq9Vizpw5WLlyJaZOnYri4mIkJCRAq9XCyckJf/vb3zBnzhx06tSpsYtKREREtUhLS3M9depUGxFRgwcPvtqQvOLi4lzefPNN7c8//5ys1WpLL1++7NChQ4eygICAgt27d3tOmDAhb9u2bW3uueeeHGdn5wqjYEaPHp3/0EMPJWs0GqxZs8br1Vdf7fTee+9deOGFF7StW7cuS0lJSQKAjIwMh4sXLzouWrSo+759+5IDAgKKL1++XGtj6Ny5cy7vvffeuY8//vg8AKxZs+b3jh07lpWWlmLIkCH+Bw8edO3Xr1/hrFmzem3ZsuXMPffcU3Dt2jWNh4eHfu7cuZnvv/++15AhQ9KOHTvmXFxcLAMHDrzRkOeqOTFnyFMFSqkjnPWJoqKiEBQUhKioKDg5OeHcuXNo1aoVBg4ciPnz5yMxMbGxi0hERES1UErh1KlTrdu0aVN8/vx5z549e+Z37NixqL75ffPNN60nTJiQpdVqSwGgY8eOZQAwbdq0rE8++aTdhAkT8j799NP2Tz31VEbl+/72229OkyZNujMjI6NVcXGxpmvXrkUA8P3337fetm3bWWM6b2/vsq1bt7YJDw/PCwgIKDaNUxOtVls8cuTI68btTZs2td+4caNXaWmpZGRktEpISHAREdxxxx0l99xzTwEAtG/fXg8Ac+fOzVq1apW2qKjowjvvvOP18MMPZ9b3OWqOah3yJCJLTW7PichWALdVAmpZjL0UK1aswC+//ILS0lL89ttvePHFF9k7QUQWwSmpyZpYvwyuXbvmlJeX5+zi4lLm7OxcduTIkQ7GoUn1oZSCiNx2/e3MmTOz9+3b1+by5csOv/76q9uECRNyK6dZtGiRz1NPPXUlJSUlaf369alFRUUakzyrinNbfEdHR6XX629umw6rcnNzu3kgOTnZaf369R3379+fkpKSkjRixIicwsJCTXXl9/T01EdGRuZu3bq1bXR0dPv58+dfM/tJaQHMuYbC0+TmDMO1FA9Ys1BkH6KiorBx40akpqaipKQEmZmZ+Oyzz7B06dLGLhoRNQPGKamTkpIauyjUDLF+GZw5c8ZDo9HoRQSurq5lubm5TqdPn/aob35jx47NjY6Obn/p0iUHADAORWrTpo2+X79+1xcuXOgzcuTIHEfH2wfJ5OXlOfj4+JQAwMaNGzsY9w8bNix3zZo1dxi3MzIyHIYPH3794MGDnsnJyU6mcbp371509OhRdwD48ccf3X7//XfnqsqZlZXl4Orqqm/fvn1ZWlqa4759+9oAQL9+/QovX77stH//frfydJqSkhIAwJNPPpn5/PPPd+3Xr991c3pEWpJaGxRKqVdMbq8rpbYopVp2c54AGHop7r77bsTExMDBwQH79u3DgAEDcP78+cYuGhHZOaUUTp8+jbZt2yI1NRVXrzZoWDdRBaxft+Tn57cqKyvTZGdnO2VnZxu/nLvVN7/Q0NDCZcuWpUdGRgb4+/vrnnrqqa7GY9OnT8/66quv2s+cObPKX/dfeumlizNnzuwVEhLi36FDh1Lj/r/+9a/p2dnZDr6+vkH+/v663bt3e3bu3Ll03bp15yZPntzb399fN3ny5J4AMHv27KysrCyHgIAA3fr16727detW5XfWwYMH3wgODi7w9fUNevTRR7uHhITkA4CLi4vasmXLmWeffdbH399fN2zYML+CggINAERGRha4u7uXzZs3j8OdKhGlap4VVkS+BTBNKZVdvt0OwDal1BgblO82oaGhKi4urjFCUxXefPNNLF++HHPnzsXGjRuxaNEi9O/fHzNnzmzsohGRHatuSmqNxpyOdaKa2bJ+iUi8UirU4hlXIyEh4Vy/fv34hdcKzp0712rYsGH+Z86c+bUlTjmbkJDg1a9fv+5VHTPnleNtbEwAgFIqC8AdNaSnFsTf3x8DBw7E5s2bERkZiTvvvBPdunVr7GIRkZ2rakrq1NTUxi4WNROsX1RX69ev7zBo0KDA5cuX/94SGxO1MadBUSYiPsYNEekGLnZH5XJzczFixAh07doVkZGRAIC0tLRGLhUR2bv8/Hzo9XpkZ2cjOzsbIoIrV640drGomWD9orpatGjR1UuXLh177LHHshq7LE2ROdPGvgTgRxHZX759N4AF1isS2ZNZs2YBAP7yl780ckmIqDmJiIho7CJQM8b6RWRZ5lyUvQfAAADbAXwKIEQp9Y21C0ZETRunXCQiIiLAvHUoJgMoUUrtVEr9H4BSEZlk/aIRUVPGKReJiIgIMO8aipeVUjnGjfILtF+2XpGIqKnjlItERPYrJCTEX0RCaruFhIT4N3ZZyT6Ycw1FVY0Oc+5HRM1UTk4OcnNz0aZNGyilkJCQwCk9iYjsxF133VVw1113FXzwwQfVzqIyf/78rlWtGE1UFXM+/eNEZI2I9BKRniKyFkC8OZmLyFgROSkip0XkhWrSTBeRJBFJFJGtdSk8ETUOTrlIRGS/li9ffunzzz/vkJqa2qqq46mpqa2++OKLDsuXL79k67LZi9LS0toTtSDmNCieAVAMw0XZnwEoBPB0bXcSEQcAbwG4D4AOwEwR0VVK4wvgTwAilFJBABbXqfRE1Cg45SJZw9ChQyEitd6GDh3a2EUlO8T6dUu3bt1Kpk6devXVV1/tVNXxV199tdPUqVMzfXx86vyt+eTJk049evQImjFjRjdfX9+giRMn9tixY4fngAEDArp16xYcExPjBgC5ubmaadOmdQ8ODg4MDAzUffzxx22N9w8JCfHX6XSBOp0u8Ntvv3UHgJ07d3qGh4f7jx07tmePHj2CJk6c2EOv198Wf/Xq1V7BwcGB/v7+ujFjxvTKy8vTAEBaWprj6NGje/n7++v8/f11xnzXr1/fwc/PT+fv76+bNGlSDwCYMmVK93/+85/tjHm6ubn1N5Zh4MCBfhMmTOjh7+8fBACjRo3qFRQUFNi7d++gN99808t4n88//7y1TqcL9Pf31w0ePNivrKwM3bp1C7548aIjAJSVlcHHxyc4PT29WYz6qfVBKKWuA6iyd6EW4QBOK6XOAoCIbAPwAADTKzifAPBW+WJ5UErxGwmRHeCUi2QNYWFhCAsLw9q1a6tNs2TJEoiIDUtFzQXrV0XLly+/1Ldv36Dly5df6tatW4lxv7F34tixY7/WN++0tDSX7du3nw0JCUnt27dv4JYtWzrExfyRZ9QAACAASURBVMUlb926te3rr7+uHT58+JkXX3xRO3z48NzPPvvsXGZmpkNoaGjgxIkTczt37lz6ww8/pLi5uanjx487z5w5s+evv/56AgBOnDjhevTo0bPdu3cvCQkJCfj22289xowZk28ae9asWVnLli3LBIBnn32287p167xeeumlK08++aRPZGRk3vLly8+UlpYiJyfHIS4uzuXNN9/U/vzzz8larbb08uXLta5Yd+zYMfdffvklMSAgoBgAtmzZcq5jx45l+fn50r9/f90jjzySpdfrZdGiRd337duXHBAQUHz58mUHBwcHTJ069er777/ffvny5Ve++uqr1oGBgTe0Wm2z6OowZ5YnbxFZJSK7ReQ7482MvLsAMB2bd6F8nyk/AH4iEisiB0RkbDVlWCAicSISl5GRYUZoIiKyN1FRUdi0aRPS09MBAAUFBfjyyy+RnZ0NwDCz2ObNmxEVFdWYxSQ7xfpVUXW9FA3pnTDq0qVLUXh4+A0HBwf4+fndGDFiRK5Go8GAAQMKLly44AwA+/bta7127VptQECAbujQof5FRUVy+vRpp+LiYnn44Ye7+/n56aZNm9brzJkzLsZ8+/Tpc71Xr14lDg4OCAoKKjhz5oxT5djx8fGuISEh/n5+frovvviiQ2JiogsA/PTTT55//OMfMwDA0dERHTp0KPvmm29aT5gwIcv4pb5jx45ltT22vn37Xjc2JgBgxYoVHf39/XUhISGBly5dapWYmOiyb98+9/Dw8DxjOmO+f/jDHzK3bdvWAQA+/PBDr7lz52bW9zluaswZ8rQFQDKAHgBeAXAOwGEz7ldVE7/yxT2OAHwBDAMwE8D7ItL2tjsptUEpFaqUCvX29jYjNBER2RutVos5c+Zg5cqVAIDExEScPXsWMTExAICVK1dizpw56NSpylEaRDVi/bpd5WspLHXthJOT083vexqNBi4uLgoAHBwcUFZWJoBhtsDPP//8dHJyclJycnJSenr68QEDBhS+/vrrHe+4446SEydOJB0/fjyppKTk5ndVZ2fnm/k6ODigtLT0tu+aCxYs6LF+/frzKSkpSc8///zFoqKiar/rKqVQ1YXnjo6OqqzM0LbQ6/UoKSm5GcfNze3mOKudO3d67t+/3zMuLi755MmTSYGBgTdu3LihKc/3tni9e/cu8fLyKo2Ojvb85Zdf3KdNm5ZzWyI7ZU6DooNS6gMY1qLYr5R6DMAgM+53AUBXk+07AVysIs1XSqkSpdRvAE7C0MAgIqIWyPgr8u+//47jx4/D3d0d58+fx88//9yifj0m62D9qqhyL4UleifMNXz48NzVq1d3NF4HERsb6woAOTk5DlqttsTBwQFvv/12B+MXe3MVFBRofHx8SoqKimTbtm3tjfsjIiLyVq1a5Q0YLqi+du2aZuzYsbnR0dHtL1265AAAxiFP3bp1K46Pj3cDgC1btrStquECANnZ2Q5t2rQp8/T01P/yyy8uCQkJ7uWP7frBgwc9k5OTnUzzBYDHHnss4/HHH+8xceLEa46OzeLyCQDmNSiM4+rSRWSciPSHoXFQm8MAfEWkh4g4AXgIQHSlNDsADAcAEfGCYQjUWbNKTkREzY7xV+SXX34Z+fn5cHZ2hpOTE15++WU8+uijLerXY7I81q/bGXspYmNjXW05s9Mbb7xxsbS0VAICAnS+vr5Bf/7zn7sAwOLFi6988sknHfr16xeQkpLi4urqevuV1zV44YUXLoaHhwdGRkb6+fr6Fhr3/+Mf/zi/f/9+Tz8/P11wcLDuyJEjrqGhoYXLli1Lj4yMDPD399c99dRTXQHgmWeeyfjpp588+/TpE3jgwAH36sowZcqUnNLSUvHz89O9+OKLnfv163cdADp37ly6bt26c5MnT+7t7++vmzx5ck/jfWbOnJlTUFDgsGDBgma1gJMoVfMUwyIyHsAPMPQ2/B1AawCvKKUqNw6quu/9AP4GwAHAh0qp10XkVQBxSqloMfQHrQYwFkAZgNeVUttqyjM0NFTFxcXV/siIiMgupaenw8/PD88//zzuvPNOZGdn46WXXsK2bdswYcKExi4e2Tlb1y8RiVdKhVo842okJCSc69evX81j8/V6YOdOT2zb1g4JCe5FJ0+6tSorQ4mDg3L297+Bfv2u46GHsjB+fB64vpBFff/9925LlizpGh8ff7Kxy1JXCQkJXv369ete1TFzZnnaWf5vDsp7E8yllNoNYHelfctN/lcAlpbfiIiIoNVqMXToUOzduxcPPvggduzYgfDwcBQUFDR20agZaPH1a/v2NvjTn+7Eb7/dvNjZ2fi3rEyQlOSGpCQ3fPKJN3r0KMQbb6Rh+vTcRipts/Liiy922rhxo/c///nP3xq7LJZWaw9FU8MeCqKmoaSkBMeOHUNQUBBcXFxqvwNRHaSnpyMoKAj/+c9/MGrUKCQmJrbI4ShkHbasX02mh6KgQDB3rg8++8yrirvVbPr0TGzceB6urvb1pZEsqqYeCvZjEVG9pKenIyUlBUlJSbUnJqoj41j3kSNHtriZd8j6Wlz9KigQ3Htv7wqNCXd3PWbPvoJ//SsF6elHUVoaj/T0o/jXv1Iwe/YVuLvfum7g00+9MHp0b9y40TIW6aA6Y4OCiOpMKYXTp0+jbdu2SE1NxdWrzeraMmoioqKiEB4e3uJm3iHbaFH1a+5cH8TGtr65PW5cFk6dOo5Nm9IwaVIeOnUqg4MD0KlTGSZNysOmTWk4deo4xo3Lunmf2NjWmDvXpzGKT02fOQvbOYvIwyLyoogsN95sUTgiappycnKQm5sLFxcXODs7IyEhAcap/4gsRavVYs+ePc3/12NqFC2mfm3f3qZCz8SyZRcRHX0Wta3QrNWWIjr6LJYuvTXl/6efemH79jZWKyvZLXMmwP0Khguy4wEUWbc4RNRUDR06FLGxsbWmi4iIwI8//miDElFzV1BQgD179mDEiBFo2/a2NU+JGqRF1C+9HvjTn25N9T9uXBZWrkw3e+YmjQZYtSodJ0+6YteudgAM+U2blsPZn8iUOQ2KO5VSY61eEiJq0sLCwhAWFoa1a9ciNjYWGRkZFY5rtVps27atytVBierDuJKxiGDy5MmNXRxqZlpE/dq50/PmbE7u7nq89975OjcENBrgvffOw9e3Da5f1+C331ywa5cnJkzIqyr5yZMnncaPH+976tSpxIYVfaens7OzfvTo0dcbko8tZWZmOrz//vvtX3jhhYzaU1tG5efpo48+aqvT6QpDQkIKAWDx4sWdhw0bljdp0qQqz5elmNOg+ElE+iiljluzIETUtEVFRSEoKAhRUVGIiIi47Xh6ejo2b96MxMQGfYYQAQD0en2FlYzPnDmDXr16NXaxqJloMfVr27Z2N/+fMiWz1mFO1dFqS/Hgg1fx0UfeAIBPPmlXXYPCUr777jtPDw+PMks3KPR6PZRScHBwqD1xHV29etXhgw8+uKMuDYqGlqfy87Rjx462paWlOcYGxd/+9reLNedgGeY0U4cCiBeRkyJyTESOi8gxaxeMiJoW46woK1euBGCYNjY+Ph6FhYaFSFeuXNkyZkshm7hw4UKFlYz379+P0tL6fRciqqzF1K+EBPeb/0+enN2gvB588NYF2seOudeQEqWlpXjwwQe7+/n56caOHdszLy9PAwA//PCDW1hYmH9QUFDg0KFDfVNTU1sBwGuvvXZHr169gvz8/HTjx4/vefLkSafNmzd7v/POOx0DAgJ0e/bs8TDNf+nSpZ0nTZrUY9CgQX7dunULXr16tRcA5OTkaAYPHuyn0+kC/fz8dB9//HFbwNBr0rNnz6BHHnnEJygoSHfmzBmnWbNm+QQHBwf27t07aMmSJZ2NeXfp0qXPokWLutx1110BwcHBgT/++KPb0KFDfbt27Rq8cuVKb2O6v/zlLx2Dg4MD/fz8dMb7L1u27M60tDTngIAA3cKFC++sLl1V5TF9fE899VQX4/OxYMGCOwHg4sWLjmPGjOkVHBwcGBwcHPjvf//bvfLztGvXLo+9e/e2/fOf/3xnQECALjEx0XnKlCnd//nPf7YzPrYlS5Z0Nj4/v/zyi4sx7yFDhvjqdLrAhx9+uFvnzp37pKenm9PpcJM5ie+rS4ZE1HyZ9lKUlJQgJSUFIgKtVsveCbKohIQEiAg0Gg1cXV2Rm5uLQ4cOYciQIY1dNGoGWkz9Onv21iJBgwY1bOU+0/ufOVPj4kPnzp1zeffdd8/de++916dNm9Z91apV3i+99NKVZ5991mfXrl2nO3fuXPree++1e+6557p89tln59atW9cpNTX1uKurq8rMzHTw8vIqmz17doaHh0fZq6++ermqGCdOnHCNj48/kZeX59C/f3/dlClTcrp06VKya9eu0+3bt9enp6c7Dhw4MODhhx/ONpbpvffeO/fxxx+fB4A1a9b83rFjx7LS0lIMGTLE/+DBg64DBw68AQBdu3YtPnr0aPL8+fO7PvbYY90PHjyYfOPGDU1wcHBQVFRUxpdfftn69OnTLseOHTuhlMKoUaN6f/311x6rV6++MH78eNfk5OQkAKguXc+ePYsrl8fo8uXLDrt372539uzZXzUaDTIzMx0AYOHChV2XLl16ecyYMfmnTp1yGjNmjO/Zs2cTKz9Po0aNyh4/fnzOvHnzslAFLy+v0qSkpBNvvPGG9xtvvNFx+/btqS+88ELne+65J++vf/3rpc8//7z1J598Uue1SsxZKTtVRPoBiCzf9YNSKqGugYjI/hl7KVasWIGJEyfenDZ2w4YN7J0gi8rNzYVSCrm5txboTUtLa8QSUXPSYupXUdGtkSje3mUNysvL69b9TfOtQqdOnYrvvffe6wDw6KOPXl23bt0dx44dyzl16pTriBEj/ADDUB9vb+8SAPD3978xefLkHhMnTsyeNWuWWT0p9913X7aHh4fy8PAoHTx4cO4PP/zgPn369JzFixffeeDAAQ+NRoMrV644XbhwwREAtFpt8ciRI28On9q0aVP7jRs3epWWlkpGRkarhIQEF2ODYvr06dkA0KdPn4Lr169r2rVrp2/Xrp3e2dlZn5mZ6bBnz57W33//fWudTqcDgIKCAk1ycrJLz549i03LWFO6yuUxat++fZmzs7P+oYce6jZu3LicGTNm5ABAbGxs61OnTrka0+Xn5ztkZWXV+cr4hx9+OAsAwsPDC6Kjo9sBwKFDhzx27NhxGgCmTp2a27p16zrXlVobFCLy/wA8AeDL8l0fi8gGpdTf6xqMiOxfVFQUdDod+vbtix49euDq1avYunUrkpOTG7to1IzMmjWrsYtAzViLqV/OznoUFhq+dGZkOKBTp/o3Ksp/Kb+Zbw0qT84hIlBKSe/evW8cPXr0tg+LmJiYU19//bXnjh072q5cubLzqVOnfq2tOFXFePfdd9tfvXrV8fjx4yecnZ1Vly5d+ty4cUMDAG5ubjfLnJyc7LR+/fqO8fHxJ7y9vcumTJnSvdD4PAFwcXFRAKDRaODk5HRzdXCNRoOSkhJRSmHx4sXpf/zjHyusSH7y5MkKQ5dqSmdaHlOtWrXC0aNHT0RHR7fetm1bu3/84x93HDhwIEUphbi4uBMeHh4NWq3c+NgcHR1VaWmpGMvZUOa0bOYDGKiUWq6UWg5gEAwNDCJqgbRaLcaNG4cdO3ZARPDVV19h2LBhKCrirNJERE1Kz56FN/8/cMCtQXmZ3r9Xr8IaUiI9Pd1p79697gCwdevW9kOGDMnv27dv4bVr1xyN+4uKiiQuLs6lrKwMZ86ccZowYULe22+/fSEvL88hJyfHwdPTsywvL6/aK5W//vrrtgUFBXLp0iWHAwcOeA4dOvR6Tk6Og5eXV4mzs7P6v//7P8+LFy86VXXfrKwsB1dXV3379u3L0tLSHPft21entTXuu+++3I8++sgrJydHAwC//fZbq99//92xTZs2ZdevX9fUlq6mvHNycjTXrl1zmDFjRs4777yTduLECTcAGDp0aO6KFSvuMKb76aefXAGg8vPk4eFRlpubW6eei/Dw8PyPPvqoPWAYppWbm1vnK8TNCSgATFu0ZeX7iKiFmjZtGmJiYnDkyBHs2bMHkydPxpUrVxq7WEREZKpfv1tDav71r4YttvHll7dmjOrbt8aZl3r27Fn44YcfdvDz89NlZWU5PvfccxkuLi5q27ZtZ1544YU7/f39dUFBQbr9+/d7lJaWysMPP9zDz89PFxwcrFu4cOFlLy+vsilTpmTv2rWrbVUXZQNA//79r48cOdJ34MCBgc8991x69+7dSx5//PFrCQkJ7sHBwYEff/xx+x49elTZ8Bk8ePCN4ODgAl9f36BHH320e0hISH5dnooHH3wwd9q0adfCwsIC/Pz8dJMnT+6VnZ3t0KlTp7KQkJB8X1/foIULF95ZXbqa8s7OznYYO3asr5+fny4yMtL/tddeSwOADRs2pB05csTdz89P16tXr6D169d7A0Dl52nWrFnX1q1b1ykwMFCXmJjobM7jeeONNy5+9913rXU6XeCuXbvaeHt7l7Rt27ZOvVlSWzeHiCwFMAfAv8p3TQKwUSn1t7oEspTQ0FAVFxfXGKGJyMSSJUuwadMmzJ07F2vWrGns4hARNUkiEq+UCrVVvISEhHP9+vUzDLGJjvbEAw/4ATCsQ3Hq1PF6TR2bnu4IX98+MP76Hh2dYu1pY2uydOnSzjVdsE11c+PGDXF0dFStWrXC3r173RctWtTNeGG5qYSEBK9+/fp1ryoPcy7KXiMi+2CYPlYAzFNK/dLAshORnYuKisKJEycQFRXV2EUhIqKqjB+fhx49CvHbby64fl2DJ57wQXT02TotbqfXA0884XOzMdGzZyHGjWu0xgRZ3unTp52mT5/eS6/Xo1WrVurdd989V9c8qu2hEJHWSqlcEWlf1XGl1LW6BrME9lAQERGRvWjUHgoA2L69DR56qPfN7aVLL2LVqnSzGhV6PfDHP2qxZs3NdRqwffspTJ+eW8O9qJmqqYeiptq0tfxvPIA4k5txm4iIiIiaFr1er791reuMGTmYNu1WA2PNms6YOLEnalu4LD3dERMn9qzQmJg+PZONiZapvE5VO7tXtZVJKTW+/G8PK5SLiOxcSUkJjh07hqCgILi41LjGERER2c6vGRkZOm9v7xyNRmMYhrJp03lcvOiE2NjWAIBdu9rB17cNHnzwKh58MAuDBhXAy6sMmZkOOHDADV9+2Q5fftkBJjMWISIiFxs3nq8yIjVrer1eMjIy2gCodjpfcy7K/o9SamRt+2yFQ56Imobz588jNjYW/v7+GDBgQGMXh4ioSbL1kKf4+Pg7HB0d3wcQDJORKFJUhK6vvNKh3e7dt82YVJus++/PT3v55avK2axJg6j50QP4tbS09PGQkJAqp3SstodCRFwAuAHwEpF2uDVVbGsAnau7HxE1f0opnD59+uZK2d26dUOHDh0au1hERC1e+Re+iVUe3LULELkfwGoAAWZklwxgabtdu75uV2tSaslquoZiIQzXSwSU/zXevgLwlvWLRkRNVU5ODnJzc+Hi4gJnZ2ckJCRAr69x4VQiImoKlNoNQAdgBIB3YfhuVwBAlf+NL98/AoAOSn3dSCUlO1Jtg0Ip9b/l1088p5TqqZTqUX7rp5Rab07mIjJWRE6KyGkReaGGdFNFRImIzboEG1tJSQni4+NRWFjjYpNNPga1TKmpqdBoNBARuLm5IScnB6mpqY1dLCIiModSCkrFQKknoVQolHKHUpryv6Hl+2NQ27h4onLmrEPxdxEJhqE162Kyf3NN9xMRBxh6MkYDuADgsIhEK6WSKqXzBPAsgIN1L779Sk9PR0pKCkTEauPPbRGDWqb8/Hzo9XpkZ2cDAEQEV65cQY8enMOBiIiopam1QSEiLwMYBkODYjeA+wD8CKDGBgWAcACnlVJny/PZBuABAJVX3vtvACsBPFeXgtszW4w/5xh3sqaIiAjO8kREREQAzGhQAJgKoB+AX5RS80SkI4D3zbhfFwBpJtsXAAw0TSAi/QF0VUrtFJFqGxQisgDAAgDw8fExI3TTM3ToUMTGxtaaLiIiAj/++GOTjUFkxB4wIiIiAsxrUNxQSulFpFREWgO4AqCnGfeTKvbdHIsnIhoAawHMrS0jpdQGABsAw7SxZsRucsLCwhAWFoa1a9ciISEBqampaN3aMB10VlYW7rrrLqxbtw4iVT1tTScGEcAeMCIiIrrFnAZFnIi0BfAeDFf+5wM4ZMb9LgDoarJ9J4CLJtueMMyRvK/8C24nANEiMlEp1ewWmoiKikJQUBCioqKqHH+elJSEzZs3IzExsUnHIAJuzfLUpk0bKKWQkJCAYcOGQaOpaeI4IiIiao5qXdiuQmKR7gBaK6WOmZHWEUAKgJEAfgdwGMDDSqkqv82KyD4YZpSqsTFhzwvbLVmyBACwdu1aFBQUYM+ePRgxYgTatm2LJUuWQESwZs2aJh+DqLoeMF6UTURUka0XtiNqDDUtbFftoGgRGaCUOlJTxkqpUhFZBOAbAA4APlRKJYrIqwDilFLR9S20vTLtQbhw4QLOnj0LEcGgQYMs1nNgixhEnOWJiIiIjKrtoRCRmPJ/XQCEAkiA4bqIvgAOKqWG2qSEldhzDwVg6EFQSqFv374oKipCcXExjh49inbt2lms58AWMYiIiKh27KGglqDaHgql1HDg5nSvC5RSx8u3g9GCpni1tKioKAQGBmLJkiVwdXVFSUkJPvvsMyQnJ9tVDCIiIiIioIaVsk0EGBsTAKCU+hXAXdYrUvOm1Wpxzz33YO/evSgqKsKePXsQFhaG8+fP21UMIiIiIiLAvAbFCRF5X0SGicg9IvIegBPWLlhzNnr0aMTHxyM9PR3x8fGIjIxEWlpa7XdsYjGIiIiIiMxpUMwDkAjg/wFYDMNK1/OsWajmbuLEiQgPD8emTZswePBgdO/eHVOmTLG7GEREREREtTYolFKFSqm1SqnJ5be1SqlCWxSuuUpISMCoUaPQs2dPTJw4Efn5+Th0yJylPZpWDCIiIiKimqaN/VQpNV1EjsNkhWsjpVRfq5asGcvNzUXr1q3xxBNP3Nxn6eFItohBRERERFTTtLFapVS6iHSr6rhSKtWqJauGvU8bS0RERC0Hp42llqCmaWPTy/82SsOBiIiIiIiavpqGPOWhiqFOMCxup5RSra1WKiIiIiIisgs19VB42rIgRERERERkf6ptUFQmIncAcDFuK6W4ShoRERERUQtX67SxIjJRRE4B+A3AfgDnAHxt5XIREREREZEdMGdhu/8GMAhAilKqB4CRAGKtWioiIiIiIrIL5jQoSpRSVwFoRESjlIoBcJeVy0VERERERHbAnGsoskXEA8D3ALaIyBUApdYtFhERERER2QNzeigeAHADwBIAewCcATDBmoUiIiIiIiL7UNM6FOsBbFVK/WSye5P1i0RERERERPaiph6KUwBWi8g5EVkhIrxugoiIiIiIKqi2QaGU+l+l1GAA9wC4BuCfInJCRJaLiJ/NSkhERERERE1WrddQKKVSlVIrlFL9ATwMYDKAE1YvGRERERERNXnmLGzXSkQmiMgWGBa0SwEwxeolIyIiIiKiJq/aBoWIjBaRDwFcALAAwG4AvZRSM5RSO8zJXETGishJETktIi9UcXypiCSJyDER+Y+IdKvvAyEiIiIiIturqYfiRQA/AwhUSk1QSm1RSl03N2MRcQDwFoD7AOgAzBQRXaVkvwAIVUr1BfA5gJV1Kj0RERERETWqaqeNVUoNb2De4QBOK6XOAoCIbINhTYskkxgxJukPAHikgTGJiIiIiMiGzFnYrr66AEgz2b5Qvq8682G4RuM2IrJAROJEJC4jI8OCRSQiIiIiooawZoNCqtinqkwo8giAUACrqjqulNqglApVSoV6e3tbsIhERERERNQQ1Q55soALALqabN8J4GLlRCIyCsBLAO5RShVZsTxERERERGRh1uyhOAzAV0R6iIgTgIcARJsmEJH+AN4FMFEpdcWKZSEiIiIiIiuwWoNCKVUKYBGAb2BYCO9TpVSiiLwqIhPLk60C4AHgMxE5KiLR1WRHRERERERNkDWHPEEptRuG9StM9y03+X+UNeMTEREREZF1WXPIExERERERNXNsUBARERERUb2xQUFERERERPXGBgUREREREdUbGxRERERERFRvbFAQEREREVG9sUFBRERERET1xgYFERERERHVGxsURERERERUb2xQEBERERFRvbFBQURERERE9cYGBRERERER1RsbFEREREREVG9sUBARERERUb2xQUFERERERPXGBgUREREREdUbGxRERERERFRvbFAQEREREVG9sUFBRERERET1xgYFERERERHVm1UbFCIyVkROishpEXmhiuPOIrK9/PhBEeluzfIQEREREZFlWa1BISIOAN4CcB8AHYCZIqKrlGw+gCylVG8AawGssFZ5iIiIiIjI8qzZQxEO4LRS6qxSqhjANgAPVErzAIBN5f9/DmCkiIgVy0RERERERBbkaMW8uwBIM9m+AGBgdWmUUqUikgOgA4BM00QisgDAgvLNfBE5aZUS3+JVuQx2HIePpenFsFWc5hLDVnGaSwxbxeFjaXoxbBWnucSwVZxuVs6fqNFZs0FRVU+DqkcaKKU2ANhgiUKZQ0TilFKhzSEOH0vTi2GrOM0lhq3iNJcYtorDx9L0YtgqTnOJYcs4RM2dNYc8XQDQ1WT7TgAXq0sjIo4A2gC4ZsUyERERERGRBVmzQXEYgK+I9BARJwAPAYiulCYawJzy/6cC+E4pdVsPBRERERERNU1WG/JUfk3EIgDfAHAA8KFSKlFEXgUQp5SKBvABgI9E5DQMPRMPWas8dWSr4VW2iMPH0vRi2CpOc4lhqzjNJYat4vCxNL0YtorTXGLYMg5RsybsECAiIiIiE19fFwAAIABJREFUovriStlERERERFRvbFAQEREREVG9sUFBRERERET1Zs11KKiJEBEPpVR+Y5ejPkSkPQCllMqyQt4Cw4ruXWBY/+QigEPNaaYxez73zYU163AtcXnu64DPV8vFc0/UcOyhqIaILLdRnNE2CJNkgxgWe85ExEdEtolIBoCDAA6LyJXyfd0tFONeAKcA/BeA+wGMA/AKgFPlx6yuuZx7Efna2jHK41jk+RIRRxFZKCJ7ROSYiCSIyNci8qSItLJQDKvXYTM0p3Nvi/djiz1fIhIgIs+LyDoR+d/y/wMtlX95DKvX41riW/2c2Og9ErDRZyRRc8ZZnqohIueVUj72EkdEllZ3CMBLSqn2DY1hRhks9Vh+BvA3AJ8rpcrK9zkAmAZgsVJqkAVinABwn1LqXKX9PQDsVkpZ9MO/mjLYzbkXkQE1xNiplNI2NIYZZbDU8/UJgGwAm2BYXBMwLLw5B0B7pdQMC8Sweh0uz5Pnvm752OL5eh7ATADbULF+PQRgm1LqjYbGKI9j9XpcS3yrf0ZaMkZT+Iwkas5adINCRHKrOwTAVSllkSFhIlJ5QT/TOCOUUu4WiFEIYBWA0ioOL1FKtW1ojPI4Vn/OROSUUsq3rsfqGgNAoFKqtNJ+JwBJSqneDY1Rnl+zOPciUgZgPwzlrmyQUsq1oTHK49ji+TqplPKv5liKUsrPAjGsXofL82pO594W7y22eL5SAAQppUoq7XcCkGjBc2+LemyLc2L113x5HJt8RhK1VC39GopsAGFKqcuVD4hImgXjRAJ4BEDlMZrGMfyWcATADqVUfOUDIvK4hWIAtnnO4kXkbRh+eTPm2RWGX95+sVCMD2EYhrKtUoyHYFhw0VKay7k/AWChUupUFTHs7bWSJSLTAHyhlNIDgIhoYOg9sNR1Draow0DzOve2eG+xxfOlB9AZQGql/dryY5Zii3psi3Nii9c8YLvPSKIWqaU3KDYD6AbgtjdLAFstGOcAgAKl1P7KB0TkpIVizANwtZpjoRaKAdjmOZsNYD4M1zR0geGDJQ3A/8FCX/aVUn8Vka8ATAQwuDzGBQCzlFKWHE9rq3N/rZpjljr3/4Xqr7l6xkIxANs8Xw8BWAHgbRExfvFqCyCm/JglVFWHLwCIhmUbrM3p3NvivcUW75OLAfynvBfU+KXbB0BvAIssFAO4vR4LDPX4O1iuHtvinNjiNQ/Y7jOSqEVq0UOeiIDGm4WHGp+IdIDhfTCzsctCzUd5T4FxBjljY/Kw8XoaK8RjPSaiRtXiGxQi0gbAWFScOvQbpVS2FWJ1NI1TVTeyNYjIAqXUBlvEsjYRWa6UetUC+fgAWAlgBICc8t1tYPh174XKF2tbIJ7Vzn15Hf4TgEkAvMt3XwHw/9s79zDJijJPvz8Bh5uC6Mqq3BzRQUREphtR0QVZYVDR1UFBHBUUZxQFxN0FRldpcMbbrOMdL8ilxQvqg6KgYjsKKuNwv3Q3iIK6Igo6ArK40OrAt39EZHdWVmZ1dWfEl5Vxvvd5+unKU1XxZVVEZZzI8ztvfAV4V42xPFB/dzO7qmYNLyQ928y+VaCdDUlXKP4bM19bvgKcNpivH6OOS99L2p8hP4uZXVCi/a6gwnpSSTsBL2B2v9xQsIbLHDmp+THXbmaODIJJ0WltrKRXkHKVewObApsB+5Dyz68oWOfJki4BLiKdxP4T8F1Jl8xhUCnJsJspp5VSWdfPA18GHmFmj803Sj4COJdkZymCU99/gZSZ3tvMHmpmDyWN4zuBLxaqMRevc6jhRak40lnAbqTIU7+W+EnApwvVAIe+l/R+4BjSjdmrxzBwtKQPlKgxj+fQxIKVsmra40mvVQIuAy7PH58t6YRCNarPkQtgfoS25sggmAidvkKR85lPGXynRdJDgEtLWDJye9eQbmq8dOD4nsDHzexJJeq0QismqdxW9b5fi+1l5Oe6SismqXnUKdL3o56vJAE/LvW30gpeelIPm5THHBnzYxC0Qddvyhbp8uog91P2HYvNBl8sAczsEklFlHjQVCyhFZMU+PT9zyUdByzt/c5yfOAw1vxsY+MZD6xMKyYp8On7VZL2MLPLBo4vBlYVqrEar+iLpOeZ2fmjHo/BOxitJy2ZCvCwSXnMkS7zIzQ1RwbBgqPrC4p/BK6StIyZNo5nA28vWOcbkr5GMmb0n7y+AijyQpZjCY/LNfo3OTpa0gFmdkyJOgM1zzez5416PAZNmKQy1fseOBg4gRQTeHg+9muSUeglJQrkeMOJwDLgl/nwPsA7JJ1kZp8qUWeg5hIzWzLq8Ri0YpKCmX2/dT52GwX7nrQ4+aikB7HmtWVb4P/mzxVB0m7Ax0j3MvXG2DaSfgccWeE+ncXA+XM8Xl+89KQeNimPOdLjNXIic2QQdIlOR55g9aXb/Zlp4/hmaeOPpANYc/PcaoWkmX29UPvusQRJjzCzW0c9DhK1+94Dr3jgQNsHmtl5ox5PC60YeCT9Z/rGsJndVrj9JqIvkv4CuH1Yf0vaurCQobpNymOO9HiNjOheENSl8wsKmKxdohSSlgNHDMYSJO1Bsso8cTLPbPpQIZPUQkCFDEw5r73YzO4aOL4FcEVMxvNHhUxSfe01EeNYy31NN1mh3ev72twF2BnYuHesxpW2SaDyNqmYI4MgmJNOLygGLrHfQnpnZBtShr/GJfZhz6GIri7bMD4KDIslHDns8vuY9R4LvJPZE/Kfl6wzCSTdbGbbFWqrp/V8AdCLI3kqXU81s9cUaOeVwNtIkadZ0QczO3PcGgP1NiZF0p7AzPH1qpJ1JkHh8TUqxvEK4MbaMQ5JV5lZEROPpA8Cj2F49OVnZlZsUzhJJ5LMRTsDXwcOAC42s4NK1ZgkpcbYpOfIUvNjbst1jgyCrtH1BcXEL7FL+jsz+3jB9qrGEvrqXEzK1L8POJC0C6nM7MQa9UojB5NUrvNN0t4WS3t9kfvoMGBfM3t2iToeeMUDc60vAjcAhwInAy8DfjgtOWc5mKRynaZiHF7xQEkrSArfq83sSfkd+E+a2YEl69TEwyY16Tmy9PyY23SZI4Oga3R9QeF6ib0lJF1pZn8paUXvUrGk75vZMyb93OaDpJuZwyRlZtsWquOidG3IwASApKvN7MmSlpvZrpI2Iv08z5r0c5sP+UbsUSapz5vZ1rO/a73quMU4Woi99JB0mZntIelKklzgbmClmT1hwk9t3khaxWib1LFmtmWBGjFHBkEwL7pueXKxS0A7Oec+VuUbAm+U9AaSleXha/medWbKTVLgoPWchIHJgZ5b/3c5634bsEPpIoPmqMHHY+BhkgIHA9ME7EseXCFpS+BU4ErSwm9Qizs2qqemBR+blJeBqbX5MQg6R6evUICbXWKiOecaSFoM/JCkwnw76WTjPWZ2SeE6U22SyjGhE5h5D0VP6fpuM7ujQA13A1Nt8gnROcCuwBnA5sDbzOxjheu0YpKqFuOYdOylNpJ2AB5sZssrtH1Sfwx08PGYbbvYpGrPkS3Oj0HQRTq/oPCgtZxzsLAIA1NQk1ZjL5J2JV31Wn2l3sy+NLEn1FFifgyCNuh65GkkJe0S+O80Wysm1F9jEfAWUmyof0LetWCNZk1SQDGlK34bNAJVY0L9NbYkvUO5AzPH19EFazRrkoKiBia3aGiPylEhJJ1Ouvp1HWt2lTag6IJCbatpS82RrvMj+MyRQdA1YkExGhVs6zAcdprtY1ATOrY2dAifAf4nsII1E3JpzmCNSWofskmqUq1J8DoK9I2ZLc1WoX4D00XA39cwMJEy53M9LsHXSfch1BxfZ5FMUvvTZ5KqVMudUjpXMzt6ROzlI6XtS33U2sW6x55mtnPB9mahEWpa0sKsBUq9Fh+G7/wIPnNkEHSKiDw50pKuTtLFZrZX5RpTbZIK1p+C767PVWOqTVL9tGRg8kDSacB7zez6ijWmXk3rSUvzYxB0kc5fofC0S+QXyKovko4xoRMlfRL4NvCHvjolIwPTbpLqtdeM0tUxJnSWpNeQ3pXuH19j38Tex7SbpFo1MHlEhZYC/ybpNtL4UipRLrIJ3Gtm90v6D0kPJm1oWSWuWTMi5jVHesyP0H6UNggmRacXFHPYJY6WdMCU2iW8YkKHAzsBG1Evg/xGYFPgaNK9AM8CXlmw/R7VLn83qHT1ign9keTYfwtpXJH/LznpfyKbsN5Ksm5tTtoNvDQ1I2JnMtrAdAbpHfKpwikqdDrwcupG6lzUtJkqEbGYI4MgmC+djjy1aJfwign1tx+MpjWlq1dMSNJPSL+3WUrMYA0tGpg8okKSvuMZbauppq1JzJFBEMyXTl+hYAJ2CQdcYkLAJZJ2rpxBbsEkJda8w97P/VR4V8zBwOQSEyLZd+6p0O5qGjFJuRqYatuXMh5RoRskfRY4j3qRzVlqWkk71lDTVoyIxRwZBMG86PqC4jCc7RIOujqvmNBewCsl/Yx6GeQWTFKuSlfqG5i8YkL3AddIupCZJ3zFTvZpwCQ1AQNTbfsS+ESFNiGNq/36jhWNbDqqaWtGxA7DcY500rl6zZFB0Ck6HXnq4WmX0JTv/NxD0vbDjpvZzwvWaMIklU/A+5Wut5BiQjWUrk0gaegEb2ZLC9YIk9QCZ1qjQgCSrq+tps11PCJiLnNkK/NjEHSRrl+hAPzsErnWrXM9HhePmFBu7+f5RHlbZo6jYgsKGjFJ5YXD2SXbHIaHgckjJpTbK7ZwmINmTFJeONiXenWqRoUkPRo4itnj+PmlapAsUlVjoZnqETGvObL2/Ah+c2QQdI1YUDjipKvziAkh6e2kS94/YaaFp+Q7ry2ZpDzwMDB5xISQ9DxSf/Qm/V6k7sEFy7RkkqqOk33JKyp0LnAa6R6KWuPYQ00LvjapajjqXF3myCDoGhF5ckTSxazJ6x9Izuub2Ykla9SOCeU6PwKeaGZ/rFgjTFLrgEe8xiMmlOvcBLwIWGGVXqTCJLVueERrcp3qUSFJl5rZUyrXuAl4EwMnriVjoUNq7sD0RsSqz4+9Oh5zZBB0jbhC4csmZvZtScqTyhJJ3ye9iJbCIyYEsBLYknR5vRZNmKQc8YjXeMSEIN3AvrLWYiLThEmqr1ZtA5PXRm0eUaEP5Csuy5g5jktuBHizmX21YHsj8bJJVcZjfgS/OTIIOkUsKDJOdgkPXZ1HTAjSpemrJa1k5otyyQxyKyYpwEXp6hGv8YgJARwHfF3Sd5k5vv65YI1WTFI9ahuYvKI1HlGhJ5I2tnsWM18nS0Y2vdS0Xjap2nOkl87Va44Mgk4RkaeMh11C0mJSpn1LUj58C+A9ZnZJwRouMSFJ1wEfZ/bl/O8WrNGESaqv1oFmdt6ox9OAV0woa3Z/z+zxdVLBGk2YpCZBzWiNR1RI0g3ArpUjm2cMOWwlJQm5jpdNquoc6TE/5joRpQ2CCsSCojEknQq8r7ZZRNJ3zey/1KyR68wySZWMJUjaF3gpDVz+9ojXSPoqcIiZ1Y4KXWFmi2rW8EDSsaSFUe2ImIuBaTBak2uUfie8+i7Wkj4PHGVmNSObLkg6DXivg02qCbzmyCDoGhF5ws8u4ZTX94gJAVwp6Z2kaE2VDHJDJikXpSs+8RqPmBDAv0jaz8yWFW53NQ2ZpFwMTF7RGnyiQlvnOpdTKbLppKYFh4iYxxzpeD+b1xwZBJ0irlDgapf4EUPy+oUv5VePCeU6Fw4vU9Qo1IxJStIXSUrXQ+lTuprZMQVreGzUVj0mlOvcDWxGmvD/RIWT/ZZMUh4GJsdoTfWokKShV1cLRzavJalpq8VCcx2PiJiHobD6/JjruMyRQdA14gpFwssu8e+1rR/ms+EcZrZPyfZG0IRJKrOjmb1Y0gvMbGl+B/abhWtUNzCVXjjMUedBDmWaMEllPAxMLhu1mdnhNdvPNYqe1I9glZl90KGOh03KY46sPj+C3xwZBF0jFhQJL7tEdV2dU0yoV+u5zI7wnFywRCsmKfBRulaP1zjFhHq1HgI8lpnj63sFS7RikgIfA5PLRm0eUSFJewIfAh4PPBDYAPh/hcexh5oWfCJiHnOki87Vc44Mgi4RC4qE127JHnn9lwCPqRkTApD0MdLvbB/gk8BB1DmBeTd17wn4q0rtDuKhdH0T6UpIzXjN+6kcEwKQdARwDLANcA2wJ/BvlJ30/5F04r0x6aSyBufmf1UxsyPzhx+TdAF1DEynk1SrtRW4HrtYfxg4BPgisIgkM3hs4RoealqATUgn4Pv1HSs9r3jMkV46V5c5Mgi6RtxD4YhHXl/SOcDrattLtGY35t7/mwNfMrP91vrN86/RhEnKCw8DU36nfV8zq71nxwrSPgqXmNluknYCTjKzgwvWaMIk1aO2gcnDvpTreOxifYWZLeq9fuVjPzCzpxWsUV1N2xKO97O5zJFB0DXiCgWudgmPvL5HTAjg3vz/PZIeCdwOPLpwjVZMUl47JnvEazxiQpDy56skIenPzOwGSX9RuEYrJikvA5PLRm34RIXukfRA0t/Le4BbSRKAklxL/XvAvCJiHnOk1/1sXnNkEHSKWFAkvHZL9sjre8SEAM7PJ8n/BFxFOnn5ZOEaT87/79l3rPTJvtflbw+lq0e8xiMmBHBLHl/nAt+SdCfwq8I1Xg8cJ6maSQqniBiwp4OBySNaAz5RoZeT7pt4A3As6QrlXxdsHxzUtBmPiJjHHOl1P5vXHBkEnSIiT/jtluyhq/OKCQ3U/DNgYzO7y7NuCRwjYk3smDyJmFBWfG4BXDBt8RHHiFgzm5u1EhXyUNPmOh4RsepzpJfOdRJzZBB0gVhQ4Ltbcu28vqR/Jv0M1WJCuc6Lhhy+i/RObLGT89omqXwp/yskRW21dxHlsGOyR7xG0ruA79SMCeU6Ww05fLeZ/WnI8XHqVDVJSVpM6pOqETFJzyS9Q11zczOXjdrksIt1vkdncPK7C7gC+Aczu71W7dJIOpQ0hqtFxLzmSI/72bzmyCDoGhF5SnjtluyR1/eICUHa9fmpQG+Du71JkZ7HSTrZzM4at0BDJinw2THZI17jEROCFKPbFrgz19gSuFXSb4DXmNmV4xZoyCQFPgYmj2gN+ESFvkG65+iz+fEhpHF2F3AmafO2sXBS04JPRKz6HOmoc/WaI4OgU8QVClztEtV3fvZC0nnAEWb26/x4a+CjwBHA98xslwI1WjJJVd8x2Ste40FeTH7ZzL6ZH+9HUvx+AfhAiYhHSyYpDwOTR7Qm1/HYxfpfzezpw46Vmg8kXcEQNa2ZvXnctgfqVI+IORkKm5kfg6CLxBWKhJddwmPnZ48N5wB26C0mMr8BHmdmd0gqFUtpwiSV8dgx2cXAVDsmlFlkZq/ta3+ZpHeY2ZvyPTslaMIklfEwMLls1Fb6HoMRbC7pKWZ2KYCkPUh7wwD8R6kiZnaTpA3M7D7gDEk/KNV2Hx42KY850mV+BLc5Mgg6RSwoEl52ieq6OqeYEMD3JZ1PevcNkiHle5I2A35XqEYrJinwUbpWj9c4xYQA7pB0PHB2fnwwcKekDSgXt2nFJAU+BiaXjdqcokJHAKfnq54AdwOvzq9f7yxUw0NNCz4RMY850kXn6jhHBkGniMgTrnaJ64CPM5BzLnwpv3pMKNcRKa+/F2lyuRg4p1Z2f5pNUgCShu4qa2ZLC9aoHq/xiAnlOg8DTiSNL0jj62RSxn07M7upcL2pNUl54WVf8ooK5VpbkObBUm+C9Le9Pend9o1IatotgFMqjd1ZFJ5XPAyF1efHXMdljgyCrhFXKEgvisPsEkDRBQXwWzP7YOE2B/GICZEXDufkf1UYZpKSNHUmqdxesYXDHHjEazxiQuR7TY4a8ekiJ2QDJqkVvdIl2h6oUz0i5mRgctmoDdyiQtR8g6LvZPte4KSKdapHxJzmSI/5EZzmyCDoGrGgwNUu4ZHX94gJedGKScprx2SPeI1HTMiLVkxS4GNg8tqozSsqVBU5qWk9ImJOc6TX/WwtzZFBsGCIyBN+domcnx/EatlZGogJNWGSynVuwmfHZDemPSakRkxSuY7H5mZeG7W5RIVqkxdDo9S0e5nZ2GraXKd6RMxjjvSeH3PNqZ4jg2AhEVcoEi52CTPbp2b74BcTcqIVkxTAL4CVtRcTteM1XjEhJ1oxSYGDgcnJvuQWFepHaYPLW83slwWbfbrNVNOu0Bo17d8UrOMREas+R3rMj9DcHBkEC4ZYUCRc7BLgktevHhMahqSlJC3qR8xsZaFmWzFJgYPS1SleUz0mNAxJR5IWe+eYWSmtZysmKXAwMDnZlya1i/VRwK6Sflzw6pGLmhafiJiXgclD5zqROTIIWiciT7jaJYbm9c3s1QVrVI8Jjai7GNgO2MPMji/UZjMmKUnLSErXwTFW7B1Yj3iNR0xoRN3Xk3bq3b7USYwaMknJZ3Mzr43aXKJCI2o/yMzuLtTWYtIO5jPUtMD1wHPN7AuF6lSPiHnMkR7zY64zkTkyCFonFhTguVuyx87PM3Y0zSflK8xsF0lXm9mT5/j2zjHs8jfpxKW0ScpD6Xq5mS2WdA1pV+4/SLrGzHYrWGPWz9E7VrpWCwxExHrcbWalInu9Op8HjqoZ2ejr5+WW9x+Q9AMze1rhOtV3sR5Rdyczu6FCu9XUtF54zJGO97PFHBkEFYjIU8LLLuGR1/eICQ1F0ifM7G9r1qiA1+VvD6WrR7zGIyY0FEmHm9kZNWtUwCsi5mFg8rIveUWFBllGuspalNo3/DpFxDzmSK/72SY2RwZBy8QVCvzsEpLeSsog7wt8hJzXN7O3FqxRNSY04h1Xcq1rzWybEnW88Lr8Lelu0slX7R2Te/WqxGu8Y0IDtW82s+InfDXxiojJb3Mzj43aqkWFJI3a50DAK2v9PdbEIyLmMUd6zI+5jmuUNgi6QiwoJkTNvH5NJN1H2sxIfYctP36UmT1wIk9sPWnp8rdXvKYmkpaP+hTJ8FXKvuRCRMTWnxpRobyw/+/0vcvex3vN7GGlankxqYhYTaZ1fgyCLhORp4yHXWJYXl/Tp6v7KbCvmd08+AlJv6hZWNNrkgLqK12ZkIGpMFsD+5N+hn4EVNkteXWB6TVJuRiYnKI1q6l0Mnk5Sd88ayxJWlKhXn/7NdS04BQRqz1HNjI/BkFniQUFo+0SFUq1oKt7P/AQYNaCAnhP5dofJmWcXw4UMUmRdpfuv/z9KdZc/i7mRZeP0vUCRsdrTgGqbnxWiPOBzc3smsFPSLqocm2RxsHLgFL3HhxKioidmx9fnI9tALykUA1IfxuzDEwF2wf4BqOjNWcC1exLBTkIWDXsE2ZWI6/fTw01LaR45un5JmbIEbH8psg7SxRwmiNbmB+DoLNE5AlXu0To6jqKfJSuEa/pKB4GphajNZNABdW0A+1Ws0l5zJExPwbBdPOAST+BBcKgXeJP1LFLjNz5OdcsjqSlkj4qqdiLsaSdJB0v6YOSPpA/fnyp9tdS+xMedSqwysxWQcoHZz1l6R2T78h9sX3+dxyVDUySjpR0sKRiVzuVeIqkF0l6Yf5Ya//OIrUP96hTgRkGJknHUt7AtLmk1Ve5akVrBpG0SNKjarXfV2eJQ42daiwmIEXEKqppPeZI9/kR6syRQdBFIvKU8NoteRK6uqIxoZwHfykpE9675L0N8DlJZ5vZuwrUmMsk9Zxx258QHkpXr3hNP0VjQjmmdQpwI9DLmm8D7CjpyMraXYCTgGlT00L6+94AeAPJwLQt6fWlJNWjNSOoFRUaxOMeoypqWgc85shJ6VxrRGmDoHNE5GmAmnaJ/C7rVOvqJP0YeMKgOSi/O3qdmY2d21ZjJqlBVHHH5GlH0g+BA8zs/wwcfzTwdTMb+0qYGjNJeVMzWrOWulWiQqVRg2rafmrNkS3Mj0HQZWJBwXC7BBV2S54UKrjhnKQbgP3N7OcDx7cHlpnZ2DEeSTcyh0nKzLYdt8YctWuYpJpQuo5CBTecy33/+EHLUl6wXm9mOxao8WvmMEmZ2SPHrTFH7RomKXcDkzcqtIt1jua9Gngh8EjS7+xXwFeA00r8PWrCalpVsEnFHBkEwdqIyFNi6u0SjjGhNwLfzid+PU3sdsCOpLhFCVozSUEbStdRlIwJnQ5cLuls1oyvbUlGodMK1WjNJAVtGJjmolRU6CxSfGYJcEs+tg3wSuDTJK3vuExMTZupERGLOTIIgjmJKxS0YZfwjAlJegCwB/Co3P4twOVmdl+pGq0hpx2Ta+EZE8o3+L+AmePrq2Z2fakardGCgckjKiTpR6OuouYT8McVqLEVScJwz7htjfk8ikXEYo4MgmBtxBWKxEi7hKRpiaR4bjhnff/u7/u/GEpa1d5JZS+W8FUz+2HJOiNq17j8vcjMXtt7YGbLJL3DzN6UM8nFKRyvcdtwLvdx1X7Oee3eorg3vi7zyGuXjIj14bK5WT8VojWHMzoq9NJCNe6U9GLS38T9sPoNkhcze2yvF9lKNFFKRcT6iDkyCII5iQVFYiJ2icJ5fZeYkIeFp1GTlMuOyQOUjNdMMibUq7PEzJYUaKdFk9QkDEylozUeUaFDgHcDp2TTGqT44YX5c1UpNYbnQWmblPscWeF+tklGaYOgeSLyxOTsEpIWk1709zCzqdDVOVl4mjNJSXoYSem6Vz50MXAyKeO+nZndVLJei0g60MzOK9BOsyapSRiYSkVrvKNCkh5K+l391qNerllkDOe23GxSk5gjp3F+DIIuEwuKhvCICTlZeJo2SXlS2MA0sZhQSVo3SXlSIVoTzJNJ26SCIAj6icjThCmV1/eICWU8LDytm6Q8KRKv8YoJeWg9ad8k5YnLRm2OUaGxcRrDMHmbVHVC5xoE00NcoXBgLXn9a81smwI1qseE+tqsbuEJk9T88YjXeMSEcnufI2WylzJb67lVKQ1mmKTmj2e0Zo7nUCwqVBvHMbwgbFLj4jE/BkFQn7hC4cO/Mzo92jihAAANG0lEQVSv//BCNe4nvRv284Hjj6DwTb8eFh4aN0kVxsPAtCFrTo76+SWwUaEaALsPibTdAlySF81F6IBJqqSBycO+NCfTspjIeI3hidukCuExPwZBUJlYUAyhgl3CQ1fnEROak2my8DhGxEbVL6l09YjXeMSEwEHrORfTNIbXQkkDk0u0xjEq1Kt3lZntPurxGEx0DOd6VSNihedId51rxb4Pgs4SkachlLZLSHo9cLGZXTvkc0eZ2YfGrZHbmmhMaMosPG4RsRH1Xw/sBGxvZiV3TK6GU9RtB5LW81msOfnqaT1PMLOflao1ov7UjOF5Po+xDUxe0RqvqFBtJj2G83OoGhErOUd6zY9BENQlFhQNERaedapR3STlSSt9388ktJ6l8BjD83gOU2Vgks8u1jsCW5vZvw4cfwbwKzP7ybg1Btqd2jHcGt59HwRdIyJPIyhtl6id1w8LzzqzECJiRZSuk47X1IpXmNntpduEpsbw2qhuYCrc9x5RofcDbx5y/N78uQML1QHqjWHwj4gNqT9tBibXvg+CrtHpKxRedomBvH7/pfxDgFI7P4eFZ91rTDoidrOZjX3CN+l4zTQZeKC5MTxRA1PJvveICklaaWa7jPjcCjN74rg1vPAYxy0ZmFrq+yBYiHR9QeGyW7JHXt8rYuERS/DCIyYkH6XrxOM100RjY7jJzc1qRYUk3TTq72Guzy1EnCJiLnOkBy31fRAsRLoeefKyS3goXcPCs27teMWEPJSu1ft+0vGKwjQxhjPVDUyT6PuKUaHLJb3GzE7tPyjp1cCVlWrWwmMcuxuYKtJS3wfBgqPrVyi87Et/BXyYdPI6K69vZhcUqhMWnvm34xUROw04w8wuHvK5z5rZoYXqVO37SRh4VEnt2MoYzm1VNzC1Yl8CkLQ18GXgj6w5iVwEPBB4oZndVrheNT2pU0TM1cBU+ffl2vdB0DU6vaDwZNJ5/RpMs8EkYkLrRksxoX6meQx70WLfS9oH6OXprzOz70zy+YxLjOP501rfB8FCoeuRp+r2pT6q7/w8irDwDMXNwuNxr8YctUv1vUtMSM5qxykfw2t7DlPV956Y2YWkd/KL4z2Goa5NqjYT+Juv1vdB0GUeMOknMEmyfels0hWDy0h5ZJF2Sz6hYJ39SHGnJcBzgOcCJwE35s/VZtryoWcBuzH79/Uk4NMlCpjZO4FDSf39VOBp+eOX5c8VoaG+PwQ4CPi1pB9n0cBtwIvy50rxfmDYRmw9teO0UH0Mz4Np6/vVSLpqrscLnFbGsBfx+wqCBuh05MnDvpTbWxC75k4LLUUsWuz7mvGKVtSOLY3hfiJas3ZaGcNexO8rCNqg01coWGNfGqSkfQlStOyWIcd/CWxUooCkDSX9naQLJC2XdK2kb0h6raQiNRy5U9KLc6wCSBELSQfjZOEp2FxzfW9mt1c8odx4js9tUqlmDVzGcEt9L2lHSU8fcvwZkh5To2YlWhnDXsTvKwgaoOv3UHjtluyR1z+LZGJZwmwTy6eBqbHwkH4v7wZOkTRoL6kSsRigZESsyb6viKvasYEx3FLft7KTsbuetKYdyaFG6FyDoAE6HXkCP/uS6ms9I2KxQIm+nz8tqh0rR8Ra6vsmoi8tjuGaxO8rCNqg61cowMm+lK1Rpc1R/YSFZx3wtPC00vcemNmvgadpptrxayXVjq2M4UwzfU8j0RePMQw+49ijhtfvKwiCunT6HooFYOApmdcPC8+6MXELzxT2PeBj4DGzC83sQ/lf6ROLVsYwtNX3l0t6zZCaUxl9qTyGwWccu/2tOPy+giCoSKcjTwvBwKOCu+b2tRkWnrWwEKIi09b3rdDKGB5k2vs+oi/rhsc4bvVvJQiC8nQ98lTdwLM2Sp9Q5jZrRiyaiCWwAKIi09T33jGhyrQyhmcw7X0f0Zd1xmMcN/m3EgRBeTodeWKNged4SYfmf8cDl1Jwt2RvtWNlXGMJFSMWLlGRhvq+pZhQK2PYC9e+j+jLvPEYx03F0IIgqEenI09Q38CTa3yOpHZcymy141ZmNjVqxxZjCZUjYk30fUvRhxbHcE1a6vuW8BjH8bcSBMF86fyCwoOFkNcvzUAs4bpptvDUpJW+l3STme24rp9byMQYnh8t9n1L1BzHnjWCIJhuuh55GklBAw847/wcFp4FRSt931z0obUxHH3fTTwiYhFDC4JgbcQVihGUNPBI2oG0a+6zWHMS2ds19wQz+1mJOq3QUsSilb6P6MO60dgYjr4PgiAI5iQWFM7UyutHxGLh00LfR/RhfniN4ej7IAiCYCHQ6cjTJAw8ZnZ7JU98SzGhJi08LfR9RB/mjdcYjr4PgiAIJk6nr1C0YuCBiFh0mZb6vhW8xnD0fRAEQbAQ6PrGdrsPMfDcAlyS9yWYJprZgMhjg6uWImI01Pet4LhJW/R9EARBMHE6HXnC2cBTmeZMLK1ZeCrSXN+3gkNMKPo+CIIgmDhdjzztgLOBR9JVZrb7qMdjtBsxoXVgElGR6PugNNH3QRAEwUKg0wuKfmruluxJmFjmR4smqej77hJ9HwRBEEySWFA40FhevwnyDfnfMbNTB46/Gtiv1A350fdBEARBELRO1++h8KKlvH4rvBE4XNJFkt6b/30XOAI4pmCd6PsgCIIgCJomrlA4EGrHhUvtqEj0fRAEQRAErdN1bawXoXZcoJjZhaSb8GsRfR8EQRAEQdNE5ClTebfkUDt2l+j7IAiCIAiaJiJPDoTasbtE3wdBEARB0DqdXlB4G3hC7dhdou+DIAiCIGiVri8ozgfebGbLB44vAk40swMn88yCIAiCIAiCYDro+j0UOwwuJgDM7ApgB/+nEwRBEARBEATTRdcXFGHgCYIgCIIgCIIx6PqCIgw8QRAEQRAEQTAGXb+HIgw8QRAEQRAEQTAGnV5Q9AgDTxAEQRAEQRCsH7GgCIIgCIIgCIJgven6PRRBEARBEARBEIxBLCiCIAiCIAiCIFhvYkERBEExJN0n6RpJKyV9UdKmk35OAJLe7FxvN0nP6Xu8t6Sn9T1+raRXeD6nIAiCIKhFLCiCICjJvWa2m5ntQrKnvXa+3yhpg3pPi3VeUIz5fHYDntP3eG9g9YLCzD5mZp8ao/0gCIIgWDDEgiIIglp8H9gRQNK5kq6UdJ2kv+19gaTfSzpZ0qXAUyW9TdLl+QrHJyQpf91Fkt4n6XuSfihpsaQvSbpR0j/0tfc3ki7LV0k+LmkDSe8CNsnHPjPq64Y9n/4fRtLRkq6XtFzS2fnYZpJOz8/5akkvkPRA4GTg4Nz+8aSF1bH58TMkLZH0P/p+tnfn5/NjSc/IxzeV9IVc7/OSLpW0KP9MZ+bf0QpJx9bpviAIgiCYHxtO+gkEQdAekjYEDgAuyIdeZWZ3SNqEtKHkOWZ2O7AZsNLM3pa/73ozOzl/fBbwPOC83MYfzeyZko4BvgL8JXAH8BNJ7wMeDhwMPN3M/iTpFOBlZnaCpDeY2W653ccP+zrgU4PPZ4ATgEeb2R8kbZmPvQX4jpm9Kh+7DPgX4G3AIjN7Q665CfB7M/vf+fG+A21vaGZ75JjUicB/BY4E7jSzXSXtAlyTv3Y34FH5KhB9zyUIgiAIJkIsKIIgKMkmknonvt8HTssfHy3phfnjbYHHArcD9wHn9H3/PpKOAzYFtgKuY82C4qv5/xWk/WJuBZD009zmXqRFxuX5wsYmwG+GPMd95/i6wefTz3LgM5LOBc7Nx/YDnt+72gBsDGw34vvn4kv5/yuBHfLHewEfADCzlZKW5+M/Bf5c0oeArwHL1qNeEARBEBQjFhRBEJTk3t6VgB6S9ia94/5UM7tH0kWkE2+AVWZ2X/66jYFTSO/s/0LSkr6vA/hD/v/+vo97jzcEBCw1s79fy3Oc6+tWP58hPBd4JvB84K2SnpDb+msz+9HAz/yUtTyHQXo/z32seV3WsC80szslPQnYH3g98BLgVetYLwiCIAiKEfdQBEFQmy1I0Z17JO0E7Dni63qLh99K2hw4aB3rfBs4SNLDASRtJWn7/Lk/SdpoHl83FEkPALY1swuB44Atgc2BbwJH9d3r8eT8LXcDD+prYvDxfLiYtFhA0s7AE/PHDwMeYGbnAG8Fdl/HdoMgCIKgKLGgCIKgNhcAG+bIztuBS4Z9kZn9DjiVFGk6F7h8XYqY2fXA/wKW5VrfAh6RP/0JYLmkz6zl60axAfBpSSuAq4H35ef7dmCj3PbK/BjgQmDnfBP2waTY1gt7N2XP80c6BfhP+TkeT4pc3QU8CrgoR8vOBNZ2RSYIgiAIqiIzm/RzCIIgCAbI5qmNzGyVpMeQrqw8zsz+OOGnFgRBEAQziHsogiAIFiabAhfmqJaA18ViIgiCIFiIxBWKIAiCIAiCIAjWm7iHIgiCIAiCIAiC9SYWFEEQBEEQBEEQrDexoAiCIAiCIAiCYL2JBUUQBEEQBEEQBOtNLCiCIAiCIAiCIFhv/j/E2uXQYoRwaQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x216 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_cross_val_selection()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDY2Ny4yOTg0Mzc1IDQyNC4wNzk2ODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nO2YPXPcNhCGe/4KlEkRGthdfJXxJPGMy0RdJoVyOivSnOSMpDh/Py8oEViQOFu14+JGw0f45oPFgs7cTm9+dOb60Vhzi9+/5nfzB/5eGWfemTc/HT/dHI6/vntrDo+TBb+bQogz5SQc8XjSj0Iy25hDiuC2f/xrmu7RE5WenHmP3y1+rTdr3k0+0RyjZcfGWbSKznboy+AwTb+h99LF9TKpNqHrafLWzyLkUjLZzZ6WimVSdrZlFhqXyckehxAq5BGMKzxMCjsX5lSWIy0NN0525ao7R9SoHdCDnoriJ3A34JJzo3ZE2/gOk+JtOqcO16mr/toiDdf5UDR4i5dzvbz/9u6vp7cX5s0vzpA1Fx/azKLHS3VziMEH8ubiavruw8395ckcP12e/rl8uvl4/725uDU/X0xFql5XiagpYkWqTpKwlGgs0QuSlGbHKFVB9nMiDiRaJ7eMGPpIivXfzj23ua1x6kpZ3qGl4mldi/da0mliSzNnz446QSXw7GSD0Sx23w5LyBXyCCpBFe4E1Vzp0rrTarWxdYKqqXSCIlwMOOXQqB1RLajiWlCN69RVf22Rhuv8WkFb5b2gD8enh8ub++OVuft4dTyd95MQH6GHJ1f9JIkzo7EUXhBFO5PPLq7RjXIJdzFXg3s/KUn994ufuxqnrtSLn7uK5/yUPOdla3Z6kvOzfz4FtJ7k8h4TuQp5BJWeCnd6aq5kad1psdrYOj3bTDo7xQ+wcIN2ALvYWXEXOhtte9Lv13K0vq/VstbdW/nn8fHJ/H35cHl3fDo+PJ63cnL8cqDChJRnS5aC4BVrjjCQbJByaigqYc7Bc+4ghVlyyHEjKoJuLcLyUqTvpNY8TY7SvvRp3Mg5cT3XsuvKLtsDtu/5aTF6z8nFRnlI40phb+O0GhKXthtfdYpG9UireYW6AT2o6ShcTugBllF3Mhob7B1N5dThOu/WmVqi4Tq/+uRfK3uA3uDDw8fHxx9w7t9cfeHgn3DWsrUIrYaLwQkRrbhlLbZHiJQML7YIL2mZzN6yZcQgZAcUsnNll0e4nLLHwIqH1ouErcKE7WYzDnVD7EsaESmXfoZ1i8SEYzLZXMrjxMxIO2Tho3bOaVwiOGuBncfpJrYsE2uBXaABd0gxK+UhVQIrLlpgzZtRqkdp8qnxiRZ4yba0utwDtzza7lGL6paFUIo+gzon7hdqs26vFXIZ5cbEGkbN9cPN1Wc8JI/xcsYWhlt4ydA6F0OWk58wETgXkIBaqFI2S8STBUMg9VaYyuLlObAvQhDBDWcppq2HaMI7m5kW33AIBpQpYozqPr88G7kIz2W1g32mo1bOWYhDZuaySbWJjCCBIBZ6jhfr3YAz9nqlPKTKRMVZm6h5k0X1yM0oNT7WJq6TYW0jIS5sIDl6QXaHtJkrJG1ng+rYkO0iDtb1tabWWWxsXbLRm/trg7B5+TlZi4AetdMiK7H44iojp0LIyhn9IGp6wSUVrwmKUhSCzg5R02VkCQirES8jSS4pABxy0UbZHvy6TIl2DtfHpZ9hXbxg3JQRIZcsmbEoKOcKHjbzTdf/ja7quw8taaoklv6LUfFVcJmCOvorEXxFp4I7lqZLtpkSb3T1KdQiS9JQivTfpWrN0+Rj2pc+jRs5n6ciud7adzcFZBWhXGI2tgZsij0PSDAq5SFVtire2ap5k0j1qGxT4+M+T12n0/nq0fQO40JdoR1AbW3Dnbca13m3zkjnqYN1fn2eWme19bdctL7gLrKhNS9gnRdwrHkBr3kBS80LuOUFbOvZzufyAnb1RGedF4zrIja5NS9glReMWzn79aocIjG5Pum8w/UBif0uRZUYd1RiXhkPmLK20i41bVRfdeLK1J2Id+ygx9/npikOOCffqB1RbaziXd7a8XaytB7V6ozX99WfrdTsNtoWY83j8elz1iKRjwicTnprBa0KomCgZq0n7DjHiUhb673HTUcSbkBnrfU4C8slLXulIQLusCr2Ow5JS8hPuNdz2Mw3a79ya6f/ACpca48KZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxNTE4CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nEVRSXIEIQy79yv0ganCK/CeTs2p8/9rLDNJThZgazFpgYEteIkh1sDMgS+5fE3oNHw3MtvwOtkecE+4LtyXy4JnwpbAV1SXd70vXdlIfXeHqn5mZHuzSM2QlZU69UI0JtghET0jMslWLHODpCmtUuW+KFuALuqVtk47jZKgIxThb5Qj4ekVSnZNbBqr1DqgoQjLti6IOpkkonZhcWrxliEin3VjNcf4i04idsfj/qww61EkktJnB91xJqNNll0DObl5qrBWKjmIPl7RxoTqdKqBY7zXtvQTaeC59l/hBz59/48Y+rneP8buXCIKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTIgPj4Kc3RyZWFtCnicMzYzVDBQMLFUMDI2UTA2NAJiE4UUQy6gCIiVywUTywGzQKpyuKDKc2CqcrjSAOkJDcAKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM2ID4+CnN0cmVhbQp4nE1QS25EIQzbc4pc4EkkIQHOQ9VV5/7bscNU7SqGGH9ID+myVR7rU2J1iezypU2XyjJ5FajlT9v/UQwCbv/QyEG0t4ydYuYS1sXCJDzlNCMbJ9csH487TxtmhcbEjeOdLhlgnxYBNVuVzYE5bTo3QLqQGreqs95kUAwi6kLNB5MunKfRl4g5nqhgSncmtZAbXD7VoQNxWr0KuWOLk2/EHFmhwGHQTHHWXwHWqMmyWcggSYYhzn2je5QKjajKeSsVwg+ToRH1htWgBpW5haKp5ZL8HdoCMAW2jHXpDEqBqgDB3yqnfb8BJI1dUwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJw1jLERwDAIA3um0Ag2WGDvk0tF9m9DfE4DLx0Pl6LBWg26giNwdan80SNduSlFl2POguFxql9IMUY9qCPj3sdPuV9wFhJ9CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDUgL2h5cGhlbiA5NyAvYSAvYiAvYyAvZCAvZSAvZiAvZyAxMDUgL2kgMTA4IC9sIC9tIC9uIC9vIC9wCjExNCAvciAvcyAvdCAvdSAvdiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9hIDE2IDAgUiAvYiAxNyAwIFIgL2MgMTggMCBSIC9kIDE5IDAgUiAvZSAyMCAwIFIgL2YgMjEgMCBSIC9nIDIyIDAgUgovaHlwaGVuIDIzIDAgUiAvaSAyNCAwIFIgL2wgMjUgMCBSIC9tIDI2IDAgUiAvbiAyNyAwIFIgL28gMjggMCBSIC9wIDI5IDAgUgovciAzMCAwIFIgL3MgMzEgMCBSIC9zcGFjZSAzMiAwIFIgL3QgMzMgMCBSIC91IDM0IDAgUiAvdiAzNSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzYgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDMzNy0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCAzNwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwOTE1NiAwMDAwMCBuIAowMDAwMDA4OTYyIDAwMDAwIG4gCjAwMDAwMDg5OTQgMDAwMDAgbiAKMDAwMDAwOTA5MyAwMDAwMCBuIAowMDAwMDA5MTE0IDAwMDAwIG4gCjAwMDAwMDkxMzUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDAxIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTk5NCAwMDAwMCBuIAowMDAwMDA3Njc4IDAwMDAwIG4gCjAwMDAwMDc0NzggMDAwMDAgbiAKMDAwMDAwNzA5NSAwMDAwMCBuIAowMDAwMDA4NzMxIDAwMDAwIG4gCjAwMDAwMDIwMTUgMDAwMDAgbiAKMDAwMDAwMjM5MiAwMDAwMCBuIAowMDAwMDAyNzAyIDAwMDAwIG4gCjAwMDAwMDMwMDUgMDAwMDAgbiAKMDAwMDAwMzMwNSAwMDAwMCBuIAowMDAwMDAzNjIzIDAwMDAwIG4gCjAwMDAwMDM4MjkgMDAwMDAgbiAKMDAwMDAwNDI0MCAwMDAwMCBuIAowMDAwMDA0MzY0IDAwMDAwIG4gCjAwMDAwMDQ1MDQgMDAwMDAgbiAKMDAwMDAwNDYyMSAwMDAwMCBuIAowMDAwMDA0OTQ5IDAwMDAwIG4gCjAwMDAwMDUxODMgMDAwMDAgbiAKMDAwMDAwNTQ3MCAwMDAwMCBuIAowMDAwMDA1Nzc5IDAwMDAwIG4gCjAwMDAwMDYwMDkgMDAwMDAgbiAKMDAwMDAwNjQxNCAwMDAwMCBuIAowMDAwMDA2NTAzIDAwMDAwIG4gCjAwMDAwMDY3MDcgMDAwMDAgbiAKMDAwMDAwNjk1MSAwMDAwMCBuIAowMDAwMDA5MjE2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzYgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM3ID4+CnN0YXJ0eHJlZgo5MzcwCiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAApYAAAGnCAYAAAANPBefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAKwwAACsMBNCkkqwAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXRTdfo/8PcnadMkpPsilKUFLMuwCbLK0oLsmyAMKIsty08FhRlnwNEZFRhBBEVxB/UIRVFQ5MuqIEhDZRQEiyxaqqxiWQvd23TL5/cHJjYkpWlpe7O8X+fc4/Fzb+59ktDbp8997ucKKSUshBDBAEaFhoZOklI2llL6gahmmNVqdWZeXt6XJpPpYynlT0oHRER/EkJ0UKlUzwQHBw80m806ACqlY3JjUq1WlxYWFqbl5+cvB5Aoy/+yJfJgwvJvXQgxRKfTbRgyZIh5woQJhubNm0On0ykcHnmK0tJSZGRk4MsvvyxevXp1cWFh4bacnJxJUsoypWMj8nYajWaNRqOZfP/992P8+PFo3Lgx/PxYV6iusrIyZGVl4euvv8aqVatw7dq17JycnKZSykylYyOqbUJKCSFEXGBg4LakpKR6HTt2VDom8nAmkwlDhgzJP3z48OdZWVnxSsdD5M38/PzeDg4OnrF//35ER0crHY7HMZvNiI+Px5YtW7JzcnKCWbkkTyeklAgLC9u3YsWKnmPHjlU6HvISJpMJ4eHhhXl5ec2klJeUjofIGwkhRGBgYMnu3bvVnTt3Vjocj2U2m9G8eXOcPXs2QUqZqHQ8RLVJJYQIKSwsvHvYsGFKx0JeRKvVYtSoUVIIMUbpWIi82H16vV599913Kx2HR1OpVJgyZQr0ev0TSsdCVNtUADq0b9/exH5KqmuDBw/Wh4SE9FM6DiIvNqJ///4QQigdh8e79957odfrWyodB1FtUwEICg0N5VmF6lxwcDCEECFKx0HkxULDwsKUjsErBAcHo6yszEfpOIhqmwqAUKvVTCzplhISEiCEwNmzZ53a/uzZsxBCICEhocJt1Go1hBDqmomQiKpB+PhUL9dx5mec/qRWqwGAv2vJ43GeshrEEy0RUdUIIRAXF6d0GNViNBohhMD8+fOVDoXIZTCxJKcsXrwYqampaNiwodKhEBERkYtivwc5pUGDBmjQoIHSYRAREZELq7RiWb7Un5ycjNjYWBgMBoSEhGDChAn4/fff7V6TlJSEqVOnomXLljAYDDAYDOjcuTPeffddh8ewXApJT09HQkIC6tevD5VKBaPReNv7mzBhAsLCwuDv749hw4bh9OnTAIC0tDSMHj0aISEh8Pf3x1//+ldcuXLF4f6OHj2KBx54AA0aNIBGo0FUVBRmzZqFa9euWbdZvXo1mjZtCgBITEyEEMK6WN4HAEgp8cEHH6Bnz54ICAiAXq9H586d8cEHH9gdd/78+dbXJyYm4u6774Zer3fqslFpaSkWL16M5s2bQ6vV4s4778TixYtx+vRph5fro6OjER0djaysLMyePRuNGzeGj48PVq9eDaDiHsuysjIsWbIEd955p81xzGZzpTESkeur6s+4s+dry+8WANi7d6/NOdNy3snOzsaSJUsQGxuLyMhIaDQaREZG4qGHHsKpU6ecfg9msxnvv/8+unbtipCQEOj1ekRHR2PUqFFITk622z45ORkjRoxAWFgY/Pz8EBMTg2eeeQYFBQXWbebPn4++ffsCABYsWGATv7O96ESeyOmK5f79+7F48WIMGzYMs2fPRkpKCj755BPs27cPBw8exB133GHddsmSJTh58iS6d++O0aNHIysrCzt27MAjjzyCtLQ0LFu2zG7/165dQ48ePRASEoLx48ejuLgYAQEB1d5fZmYmevXqhfr16yM+Ph6//PILtm3bhhMnTmDLli3o3bs3OnXqhKlTp+KHH37Ahg0bkJWVhV27dtnsZ8uWLRg3bhzUajVGjhyJxo0b4+eff8abb76JnTt34sCBAwgODsZdd92Fv/3tb3jttdfQoUMHjBo1yroPy9MspJSYNGkSPv74Y7Ro0QITJkyARqPBrl27MG3aNPz88894+eWX7d7LSy+9hKSkJIwcORIDBgyAM832U6dOxYcffojmzZvjscceQ1FREZYvX47vvvuuwtcUFRWhX79+yM3NxYgRI6DRaGy+V0cefvhhfPDBB2jatCkee+wxmEwmvPLKK/j2228rjZGIXF9Vf8adPV9HR0dj3rx5WLBgAaKiomz+2L3rrrsAAKmpqXjuuefQt29fjB49GvXq1cOJEyfw8ccfY/v27UhJSUFUVFSl7+Hpp5/G0qVL0bx5c0yYMAH+/v5IT0/HN998gz179qBPnz7WbVesWIGZM2ciODgYI0aMQHh4OA4ePIhFixYhKSkJSUlJ0Gg0iIuLw9mzZ5GYmIjY2FibP/iDgoKq8UkTeY77R44cmS0rkJSUJAFIAPL999+3WbdgwQIJQE6dOtVm/PTp03b7KSkpkQMGDJBqtVqeO3fOZp1l/1OmTJGlpaV2r63u/p544gmb8UcffVQCkEFBQXL58uXWcbPZLIcOHSoByJSUFOt4RkaGDAgIkI0aNbI7xscffywByMcff9w6dubMGQlAxsfH28UrpZTvvvuuBCCnTZsmS0pKrONFRUVyxIgREoA8dOiQdXzevHkSgKxXr548evSow306snv3bglAdu7cWRYUFFjHL168KOvXr+8wxqioKAlADhw40OY1FvHx8RKAPHPmjHXM8m+jQ4cOMi8vzzr++++/y7CwsFt+FlJKuWPHDhkeHp4spQQXLlzqfgGwee7cubIi1fkZr875OjY21uHxs7Ky5LVr1+zG9+zZI1UqlZw+fXqFsZcXEhIiGzZsKPPz823GzWazzf5/+ukn6ePjIzt27Gh33MWLF0sA8uWXX7aOWT6fefPmVRrDiRMnZHBwcKl0ge+dC5faXJy+eadly5aYOnWqzdjcuXMRHh6OTz75BMXFxdZxyyXh8nx8fPDoo4+irKwMSUlJdus1Gg2WLl1qmZLBRnX2ZzAY8Pzzz9uMTZgwAQAQGhqK2bNnW8eFEHjggQcAAEeOHLGOr1mzBjk5OVi8eDGaNGlis68HH3wQnTp1wrp16+yOXZE333wT9erVw5tvvmlTddRoNFi0aBEA4JNPPrF73cMPP4x27do5fZyPPvoIAPDss8+i/MT39evXx9/+9rdbvvall16Cs5Plr1mzBgDw3HPPoV69etbxhg0bVnocInJ91fkZr875uiKBgYEICbGf6rZv375o06YNdu/e7fS+NBqN3dUeIYTN/leuXInS0lK8/vrrdsd98sknrb/viKhiTl8K79mzp93TGXQ6He6++27s2LEDv/zyC9q2bQsAyM3Nxcsvv4xNmzbh1KlTyM/Pt3ndhQsX7PbftGlTVDRRb3X2FxMTY3MiBGC9+aR9+/Z278WyLj093Tq2f/9+639PnjxpdwyTyYSMjAxkZGRUGLtFQUEBjh07hsjISLz44ot260tKSgAAJ06csFvXtWvXW+77Zpbk+J577rFb52jMQqvVVimBtRynd+/eduscjRGRe6nOz3h1zte3YjQasXz5chw4cAAZGRkoLS21rtNoNE7tY9y4cVixYgXatm2L8ePHIzY2Fj169LD7HWE55+/YscNh0urr6+vwHE1Ef3I6sYyIiHA4bunBy87OBgAUFxcjLi4OKSkp6NixIyZPnozQ0FD4+PhY+1GKiooq3M/Nqrs/S3+mzZv946/VW62zJHgAcP36dQDAW2+95TA2i/z8/EoTy8zMTEgpkZ6ejgULFtxyXzerrM/xZjk5OVCpVAgNDa3SviIiIqr0aLfs7GyoVCqH772qMROR66nqz3h1z9cV+eyzzzB+/HgYDAYMGjQI0dHR0Ov11ht8zp0759R+Xn/9dTRr1gyrV6/GwoULsXDhQmi1WowbNw7Lli2zvj/LOd9yBYmIqs7pxLKiO6YvX74M4MYlCwDYvHkzUlJSMH36dLz33ns2265btw6JiYkO91NRQlPd/dUESwJ67NgxazX2dvd1991349ChQ1V6bVWf4xsQEACz2Yxr167Z/UKwfF81cZzAwECYzWZkZGQgPDzc6eMQkXuo6s94TZ+v58+fD61Wix9++AExMTF2+3OWr68v5s6di7lz5+LChQvYu3cvVq1ahTVr1uDSpUvYuXMngD/P0zk5OfD3969SrER0g9M9lv/73/8gpbQZKywsxA8//ACdTocWLVoAgHUKiJEjR9rt45tvvqlygDW9v6ro1q0bANzyTuryLP2hZWVlduv8/f3RunVrpKamIisrq+aCdKBDhw4A4PCuzZq8W9tyHEffQ21/N0RU+6r6M16d87VKpXJ4zrTsr3Xr1nZJ5YULF6o03VB5kZGRePDBB7Fjxw7ExMRg9+7dKCwsBPDnOd9ySbwytzrnE3krpxPLtLQ0u7kWX3rpJVy9ehUPPvigtdfFMvXDvn37bLbdu3ev3V+wzqjp/VXFlClT4O/vj//85z/46aef7NYXFBTYnICCg4MhhHA4tycAzJ49GwUFBfh//+//ObzkfebMmRqZ/2zixIkAgOeffx4mk8k6funSJbz22mu3vX+Lhx56CADw3//+1+b9pKen1+hxiEgZVf0Zr875OiQkpMJzZlRUFE6ePGlTHTWZTJgxY4ZNr+WtFBUVYc+ePXaFkfz8fOTm5sLX19eaIM6cORM+Pj6YNWsWzp8/b7evrKwsHD582CZ2ABXGT+SNnL4UPnDgQMycORPbt29Hq1atkJKSgp07d6Jx48Z44YUXrNuNGDEC0dHRWLp0KY4fP462bdsiLS0N27Ztw6hRo/D5559XKcCa3l9VWO4A/Otf/4oOHTpg8ODBaNWqFUwmE86dO4e9e/finnvuwY4dOwDcuBO9S5cuSE5OxpQpUxATEwOVSoUJEyagSZMmeOSRR7B//34kJibif//7H/r374/IyEhcvnwZJ06cwIEDB/Dxxx9b572srv79+2PixIlYu3Yt2rVrh/vuuw9FRUX49NNP0a1bN2zduhUq1e0/zTMuLg5TpkzBqlWr0K5dO4wePRpFRUVYv349unfvjm3btt32MYhIOVX9Ga/O+bpfv3749NNPMXbsWHTs2BFqtRrDhg1Du3btMGvWLMyaNQsdO3bE2LFjUVpail27dkFKiQ4dOtjM4lGRwsJC3HvvvWjWrBm6deuGJk2aIC8vD9u2bcOlS5fwr3/9y1oYadu2Ld5++23MmDEDLVu2xNChQ9G8eXPk5OTg9OnT2Lt3LxISErBixQoAQKtWrRAZGYl169ZBr9ejUaNGEEJgxowZ1vYwIm/k1DyW8+bNk3v37pW9e/eWer1eBgUFyQceeED+9ttvdq85ffq0HDNmjAwPD5d6vV526dJFrlu3rsI5v3CLecxqcn+3mmfyVvORnThxQk6bNk1GRUVJjUYjg4ODZbt27eTs2bPl999/b7NtWlqaHDp0qAwKCpJCCAlAJiUl2Wyzfv162b9/fxkcHCx9fX1lw4YNZVxcnFy2bJm8evWqdTvLPJY3v94ZJSUl8vnnn5dNmzaVGo1GNmvWTL7wwgvywIEDEoD829/+ZrN9VFSUjIqKqnB/juaxlFLK0tJSuXjxYtmsWTOb45w8eZLzWHLh4uILKpnHUsqq/4xX9Xx98eJFOW7cOBkWFiZVKpUEIFetWiWlvDHP5IoVK2SbNm2kVquV9evXl9OmTZOXL1+WsbGxEsAtY5dSyuLiYrlkyRI5cOBA2ahRI6nRaOQdd9whY2Nj5bp16xy+5vvvv5cPPPCAjIyMlL6+vjIsLEx26tRJPvXUUzI1NdVm2/3798vY2Fjp7+9vnUP55vOklJzHkov3LFVKLMn9vffeexKAfPvtt5UOhYklFy4KL84kllQzmFhy8Zbl9q+Hkku6dOkSpLTtKUpPT8fChQuhVqsxfPhwhSIjIiIiT+V0jyW5lxdffBHbt29H7969ERERgd9++w3btm1Dbm4u5s+fj8aNGysdIhEREXkYHwCyrKxMVroluZXBgwfj559/xvbt25GZmQmtVov27dtj5syZ1kdbKq2srAxSSs7TQaQc6ezd1XR7/piSiL9ryeP5AMi6du1ahf/Y4+Li7C6pkusbPHgwBg8erHQYt/TH04iuKx0HkRe7lpGRoXQMXiEzMxNqtZpZPHk8FYAfjx49qrVMEEtUV3bs2FFw/fr1PUrHQeTFtu7evZvFgzrw9ddfo6CgIE3pOIhqm0pKmanT6X7Yvn270rGQFzGZTNi0aZOQUtbeRKREVJnNBQUFZT/88IPScXg0s9mMVatWoaCg4FWlYyGqbSoAuHbt2jPTp0/PL/9EAaLaYjKZMGTIkHy1Wv2ZlPKS0vEQeSsppSwsLHx3+PDhNfLUL7JnNpsRHx+P69evZwNYo3Q8RLVNWC6BCCGG6HS6DYMHDzZPnDjR0KxZM+h0OgghFA6RPEFpaSkyMjLwxRdfFCcmJhYXFhZuy8nJmcSbd4iUp9Fo1mg0msmjR4/G+PHj0bhxY2i1WqXDcltlZWXIzMzE119/jVWrVuH69evZOTk5TaWUmUrHRlTbRPneGiFEMID7QkNDJ0spG0sp/ZQLjTxMmVqtzsrLy/vCZDJ9IqW0f/g6ESlGCNFBCPHvkJCQwVJKnZSS8xxXn1Sr1aUFBQVpf1z+XiPZyEpeQvDfOhER1QQhRGsAnaSUa5WO5XYJIdoAaA9gHZNCIufxL9IaJoToJIT4f0rHQURUV4QQaiHEkwCSABQpHU8NyQbwNwDbhBANlQ6GyF0wsax5ZgCPKR0EEVFd+KNK+T8AsQDullJuUDikGiGl/B1ALwB7AfwghJgieNMBUaV4KbyGCSFUAK4AaMHJv4nIUwkh1AD+CeAfAJ4CkOipl4z/SJ5XA8gA8LCUMl3ZiIhcFyuWNUxKaQawD0AfpWMhIqoNDqqUqz01qQQAKWUqgJ5g9ZKoUkwsa4cRQJzCMRAR1aibeilXABjuLdU7KWWplHIpgL4AHgV7L4kcYmJZO4xgYklEHsTbqpQVYfWS6NbYY1kL2GdJRJ7Cm3opq4q9l0T2WLGsBeyzJCJPwCrlrbF6SWSPiWXtMYKXw4nIDXlzL2VVsfeSyBYTy9pjBBNLInIzrFJWD6uXRDewx7KWsM+SiNwJeylrDnsvyZuxYllL2GdJRO6CVcqaxeoleTMmlrXLCF4OJyIXxV7K2sPeS/JWTCxrlxFMLInIBbFKWTdYvSRvwx7LWsQ+SyJyNeylVA57L8kbsGJZi9hnSUSuhFVKZbF6Sd6AiWXtM4KXw4lIQeyldB3svSRPx8Sy9hnBxJKIFMIqpWti9ZI8FXssaxn7LIlICeyldB/svSRPwoplLWOfJRHVNVYp3Qurl+RJmFjWDSN4OZyIahl7Kd0Xey/JUzCxrBt7wcSSiGoRq5SegdVLcnfssawDf/Q6XQEQwz5LIqpJ7KX0XOy9JHfEimUdkFKWgX2WRFTDWKX0bKxekjtiYll3jODlcCKqAeyl9B7svSR3w8Sy7hjBxJKIbhOrlN6J1UtyF+yxrCPssySi28FeSrJg7yW5MlYs6wj7LImoulilpPJYvSRXxsSybhnBy+FE5CT2UlJF2HtJroqJZd0ygoklETmBVUpyBquX5GrYY1mH2GdJRJVhLyVVF3svyRWwYlmH2GdJRLfCKiXdDlYvyRUwsax7RvByOBGVI4TwYS8l1QT2XpLSmFjWPSOYWBLRH26qUnZmlZJqAquXpBT2WNYx9lkSEXCjSokbvZRPgL2UVIvYe0l1iRXLOsY+SyIqV6XsA/ZSUi1j9ZLqEhNLZRjBy+FEXuePXsp/4UYv5TtgLyXVEfZeUl1hYqkMI5hYEnkVVinJFbB6SbWNPZYKYJ8lkfdgLyW5KvZeUm1gxVIB7LMk8g6sUpIrY/WSagMTS+UYwcvhRB6JvZTkLth7STWNiaVyjGBiSeRxWKUkd8TqJdUU9lgqhH2WRJ6FvZTkKdh7SbeDFUuFsM+SyHOwSkmehNVLuh1MLJVlBC+HE7kt9lKSp2LvJVUXE0tlGcHEksgtsUpJ3oDVS6oq9lgqiH2WRO6HvZTkrdh7Sc5gxVJB7LMkci+sUpI3Y/WSnMHEUnlG8HI4kUtjLyXRDey9pMowsVSeEUwsiVwWq5RE9li9pIqwx1Jh7LMkck3spSRyDnsvqTxWLBXGPksi18MqJZHzWL2k8phYugYjeDmcSHHspSSqHvZekgUTS9dgBBNLIkWxSkl0+1i9JPZYugD2WRIph72URLWDvZfeiRVLF8A+SyJlsEpJVHtYvfROTCxdhxG8HE5UJ9hLSVQ32HvpfZhYug4jmFgS1QghRLhKpXqwgnWsUhLVMWerl0KINmq1un+dB0g1hj2WLoJ9lkQ1Jygo6JPc3NzxZrO5r5RyL8BeSiJXUVHvpRBC6+/vn1ZWVhZcUFAQJaXMVDJOqh5WLF0E+yyJaoYQopNarR65YcMGYTAY1gkh6rFKSeQ6KqpeGgyGxYMHDw576KGHfP39/RcpHCZVEyuWLkQI8QSAKCnl35WOhcgdCSFEYGDgoddff73TQw89hISEhMLPPvvsaEFBQTRYpSRyOeWqlyXBwcGdTp48qQOApk2bFuTk5HSUUv6iaIBUZaxYuhYj2GdJVG0qler+hg0btpg0aRIA4PXXX9fVq1evM4CZrFISuZ4/qpf9DAZDm9WrV+tCQkIQEhKC559/XhsUFLRC6fio6phYupajABoLIUKUDoTI3QghtHq9/u13333XoFLdOLUFBARg7dq1aoPB8JYQop7CIRKRAwaDYeGQIUM0I0eOtI7NmDFDFRgY2EUIMUDB0KgamFi6EPZZElWfTqeb079/f/+ePXvajA8YMABjxowJDAgIeEWh0IioAkKIrr6+vg+vWLFCX37c19cXK1asMPj7+7/3x4135CbYY+li2GdJVHVCiIZarfbs2rVrfaSUOHv2LH799dfCtLS0ojNnzohLly7phRCXTSZTlJTSrHS8RHSDXq9/sbS09B9BQUFFTZo0KY2JifFp2bKlvmnTpqro6Gg8/vjj5rS0tOeKi4t5M4+bYGLpYoQQHQGsklLepXQsRO5CCLFSq9VO1ev151Qq1S/5+fmphYWFvwI4C+AMgN+klIXKRklEjvwx3V4DANEAon18fJr5+/u3VqvVLYqKilqUlpYWFxQUhCobJTmLiaWL4XyWRERE5K7Yt+BipJRlQghLn+UmpeOh6hFCRAN4NjQ0dLSU0iClZD+z95EqlaokPz8/xWQyLZVSblE6IKLaJoQIADAyNDR0EoCmZrNZq3RMHqxMpVJdz8vL21pUVPSJq0zNxIqlC2KfpXsTQjyr0+n+O2TIEEyYMAHNmzeHTqdTOiyqY6WlpcjIyMAXX3yBxMREFBQUnMvNzY2RUpYoHRtRbRBC9NHpdNv79esnJ02a5N+yZUvodDo4eHIj1YCSkhJcuXIFW7duLfrwww9Li4uL1+Tm5j6m9LRqTCxdEPss3ZcQ4u+BgYGvJiUloWPHjkqHQy7CZDJhyJAhSElJOZWdnX2n0vEQ1TQhRGd/f/+kL774wtCrVy+lw/E6eXl5iIuLy//111/fz87OVrQoxcTSBbHP0n2FhoZmr1y5MmDs2LFKh0IuxmQyITw8HHl5ee2llMeUjoeoJoWEhGxZunTpiOnTpysditfKzs5GgwYNTIWFhXdIKXOUioN9Xy6I81m6JyFEM5PJFDBs2DClQyEXpNVqMWrUKAghnlE6FqKaJITQmUyme8eMGaN0KF4tMDAQffv2LQEwQsk4mFi6LiP4eEd3c1/79u0l+ympIoMHD0ZwcDCvE5KnaRUVFVUcHBysdBxeb+jQof7+/v6KFqWYWLouI5hYups7QkL4NE6qWHBwMFQqlb7yLYncSlBQUJDSMRBunGN8fX0VnfOTiaXr4nPD3Y9Qq9VKx2A1f/58CCFgNBpvaz9xcXFuc1dnTb3n2vLHvw/3+DCJnOdS577alJCQACEEzp49q3QoDqnVast9GophYumi2GfpeYxGI4QQmD9/vtKh0C2sXr0aQgisXr1a6VCIPIJS5z5X/UPTVeOqKUwsXZsRvBxO1fT4448jNTUVXbt2va39rFmzBqmpqTUUFREReTI+ece1GQGsUjoIck9hYWEICwu77f00adKkBqIhIiJvwIqla2OfpYeYP38++vbtCwBYsGABhBDWxdKrY+ndOX36NF599VW0adMGfn5+SEhIAABcuHAB8+bNQ/fu3REREQE/Pz9ER0dj5syZuHLlisNj3ny55ezZsxBCICEhAadPn8bYsWMRHByMevXqoX///jhy5Ijdfhz1WJa/XPz111+jV69eqFevHkJDQxEfH49r1645/BxWrlyJNm3aQKvVonHjxnjyySdhMpkghEBcXJzTn+f58+fx4IMPIiQkBAaDAbGxsUhOTna4bXFxMd544w0MGjQIjRs3hp+fHyIiInD//ffj8OHDNtsmJCRgypQpAIApU6bYfE8WP/zwAx5//HG0bdsWgYGB0Ol0aNeuHV588UWUlPChOkTlOXPuA278nL7yyivo1KkT6tWrB39/f/Tu3Rtbttg/CTU7OxvPPfcc/vKXv8BgMCAwMBCtWrXClClTcP78eQA3zlsLFiwAAPTt29d6zOjoaKfi/umnnzB8+HD4+/sjMDAQQ4cOxfHjxx1um52djSVLliA2NhaRkZHQaDSIjIzEQw89hFOnTtls60xcSUlJmDp1Klq2bAmDwQCDwYDOnTvj3XffdSp2pbFi6cL43HDPERcXh7NnzyIxMRGxsbE2SdTNd1POmjUL+/fvx7BhwzB8+HDccccdAIDk5GQsW7YM9957L7p16wZfX18cPnwY77zzDnbu3ImUlBQEBgY6Fc/Zs2fRrVs3/OUvf8HUqVNx6tQpbN68GX379kVqaqr1mJXZunUrtm3bhhEjRmDGjBlITk7GmjVrcOrUKezbt89m2+eeew7PP/88GjRogIcffhg+Pj747LPPcOLECaeOZXHx4kX06NED6enpGDRoEDp16oTU1FQMGDDA+gusvOvXr+Pvf/87evfujaFDhyI4OBinT5/GloL4bOkAACAASURBVC1b8OWXXyI5ORldunQBAIwaNQpZWVnYvHkz7rvvPtx1l/3Dr9577z1s3boVffr0wdChQ1FQUACj0Yinn34aBw8exOeff16l90PkyZw59xUVFWHw4MEwGo3o2LEjpk2bhpKSEmzfvh333Xcf3njjDTz++OMAACklBg0ahAMHDqBnz54YPHgwVCoVzp49i//7v/9DfHw8GjdubP2DfO/evYiPj7cmbs7cvX78+HH07NkTeXl5uP/++xETE4Pvv/8ePXv2RIcOHey2T01NxXPPPYe+ffti9OjRqFevHk6cOIGPP/4Y27dvR0pKCqKiogDAqbiWLFmCkydPonv37hg9ejSysrKwY8cOPPLII0hLS8OyZcuq8hXUPSklFxdeADwBYLnScXBx6rtaMmLECLOsQFJSkgQg582b53B9fHy8BCAbNWokz507Z7f+8uXLMjc31248MTFRApALFy60GZ83b54EIJOSkqxjZ86ckQAkAPniiy/abP/MM89IAHLx4sU247GxsfLGqeJPq1atkgCkj4+P3Ldvn3W8tLRUxsXFSQDyu+++s46npaVJtVotmzRpIjMyMqzjubm5sk2bNhKAjI2Ndfi53MzyOd38fleuXGl9b+Xfs8lkkr///rvdfo4fPy4NBoPs37+/w/e2atUqh8c/e/asLC0ttRkzm81y6tSpEoDN53GzHTt2yLCwsCzpAv9euXCpqQVAv549e2bKClR27vv3v/8tAcj58+dLs/nPU2hOTo7s3Lmz1Gg0Mj09XUop5dGjRyUAOXr0aLv9mEwmm3Oko3OgMyznvI8++shm/Omnn7aeY86cOWMdz8rKkteuXbPbz549e6RKpZLTp0+3Ga8srtOnT9uNlZSUyAEDBki1Wu3w94PFunXrZGho6P9JBf898FK46zOCN/B4lblz5zrsa4yIiIDBYLAbnzx5MgICArB7926nj9G0aVPMnTvXZmzatGkAgIMHDzq9nwkTJqBnz57W/1er1YiPj7fbzyeffIKysjL885//RGjon1OsGQwGPPOM8w+iKS4uxvr16xEREYF//vOfNuumT5+OFi1a2L3Gz88PDRs2tBtv06YN+vbti+Tk5Cpdwo6KisLNU6sIIfDYY48BQJW+ByJvZzab8c477+DOO+/Ec889Z9N24u/vj+eeew7FxcXYuHGjzescPYjCz8/P4TmyKn777Tfs3bsX7du3x8SJE23W/fvf/3ZY8QwMDISjOYz79u2LNm3aVPmc0LRpU7sxHx8fPProoygrK0NSUlKV9lfXeCnc9Vn6LEOllI4b18ij3Oou7o0bN2LlypVISUlBZmYmysrKrOsuXLjg9DE6dOgAlcr278pGjRoBALKyspzeT6dOnezGHO3H0rt5zz332G3vaKwiaWlpMJlM6NevH7Rarc06lUqFe+65B7/88ovd63788UcsXboU+/btw6VLl+wSyYyMDDRo0MCpGIqLi/Hmm29i3bp1OHHiBPLy8ixVGwBV+x6IvF1aWhoyMzMRGRlp7T0s7+rVqwBgbZlp3bo12rVrh48//hjnz5/HqFGj0Lt3b3Tq1MnuD77qsJyrevWyf0CWwWDAXXfd5XCaIKPRiOXLl+PAgQPIyMhAaWmpdZ1Go6lSDLm5uXj55ZexadMmnDp1Cvn5+TbrXf0cw8TSxck/+yx7g32WXqGi/sZly5Zhzpw5CA8Px8CBA9GoUSPrX+3Lly9HUVGR08dw1Ivp43PjdFA+Wa2p/eTk5AAAwsPD7bZ3tp8TuNEkD9yo3jriaF/ffvst+vXrBwAYOHAgYmJiYDAYIITApk2bcOTIkSp9dmPHjsXWrVvRokULjB8/HhEREfD19UVWVhZee+21Ku2LyNtdv34dwI2bZX766acKt7MkVz4+PtizZw/mz5+PjRs3Wq9chIWFYdasWfjPf/5zWwlmdc4xn332GcaPHw+DwYBBgwYhOjoaer3eeoPjuXPnnD5+cXEx4uLikJKSgo4dO2Ly5MkIDQ2Fj4+PtVfV1c8xTCzdgxE3LoczsfQCjp5yU1paiueffx6RkZH48ccfbRI0KSWWLl1alyFWWUBAAIAb1QdLE7vF5cuXnd6PJZF1dBd8RftatGgRioqKsG/fPpvL9gCwf/9+h3fCV+TgwYPYunUrBg0ahO3bt9v8Atu/fz9ee+01p/dFRH+eG8aMGYMNGzY49ZqwsDC8+eabeOONN3DixAns2bMHb7zxBubNmwdfX188/fTT1Y6nOueY+fPnQ6vV4ocffkBMTIzNunXr1lXp+Js3b0ZKSgqmT5+O9957z25fiYmJVdqfEthj6R6MYJ+l27MkIVWpCFpkZGQgOzsb3bt3t6v6HTp0CIWFhTUSY22x3En57bff2q1zNFaRli1bQqvV4tChQzCZTDbrzGazw32dOnUKISEhdkllQUEBUlJS7La/1fdkmTpk2LBhdlWRb775xun3QeRNbvUz1bp1awQEBODQoUNVnq5LCIHWrVvjsccew65duwDAZnqi6pxzLeeqm2e1AIC8vDz8+OOPduOnTp1C69at7ZLKCxcu2E03VFlclu1Hjhxpt85dzjFMLN0D57P0AJbm7t9//73Kr42IiIBOp0NKSgoKCgqs45mZmZg1a1aNxVhbHnjgAahUKrzyyis2c1zm5+dj0aJFTu9Ho9Fg3LhxuHLlit2UG++//77D/sqoqChkZmbaXGYrKyvDnDlzrP1b5d3qe7JUW2/+pfPTTz9h8eLFTr8PIm9yq58pHx8fzJgxA+fOncOcOXMcJpfHjx+3VhDPnDmDn3/+2W4bSyWx/E091TnnNmnSBH369MHRo0exdu1am3UvvPCCwx70qKgonDx50qaaaTKZMGPGDJteS2fiqugcs3fvXrsKpqvipXA3IDmfpUdo1aoVIiMjsW7dOuj1ejRq1AhCCMyYMaPS+SdVKhVmzpyJZcuWoUOHDhgxYgRycnLw5ZdfIioqCpGRkXX0LqqnZcuWeOqpp/DCCy+gXbt2+Otf/wofHx9s3LgR7dq1w/Hjx+1uJqrIiy++iK+//hrPPPMM9u3bh44dOyI1NRVffPEFBg4ciK+++spm+1mzZuGrr75Cr169MG7cOGi1WhiNRqSnpyMuLs6uEb9Hjx7Q6XRYvnw5cnJyrBXip556Cl27dkXXrl3x6aef4uLFi+jevTt+++03bNmyBcOGDXP6Uh6RN6ns3LdgwQKkpKTg9ddfx/bt2xEbG4vw8HCkp6fj2LFjOHLkCL777jtERETgyJEjGD16NLp06YK2bduifv36SE9Px6ZNm6BWq21mi7BMQP6f//wHJ06cQGBgIAIDAzFjxoxbxvvWW2+hZ8+eeOihh7Bp0ybExMTg4MGD+P7779G7d2+7yuGsWbMwa9YsdOzYEWPHjkVpaSl27doFKSU6dOhg125zq7hGjBiB6OhoLF26FMePH0fbtm2RlpaGbdu2YdSoUe4xT66Scx1xcX4B57N0+QWVzGMppZT79++XsbGx0t/f324+NMv8jOXnRyuvuLhYLlq0SMbExEg/Pz/ZpEkT+Y9//EPm5ubKqKgoGRUVZbP9reaxjI+Pd3gMOJhP8lbzWDqa6/FWc9a9/fbbsnXr1lKj0chGjRrJOXPmyPPnz0sA8r777nMYkyPnzp2T48ePl0FBQVKv18vevXvLvXv3Vjg/3IYNG2SnTp2kXq+XYWFhcty4cfLUqVMVfubbt2+XXbp0kTqdzvo9WVy5ckVOnTpVRkZGSq1WK9u1ayffeustefr06Vt+tlJyHksunrmgknkspbz1uU/KG3Pgrly5Uvbs2VMGBARYz3GDBw+W77zzjszLy5NSSnn+/Hn51FNPye7du8uIiAip0WhkkyZN5NixY+WBAwfsjrt69WrZrl076efnJwHYnScrcuzYMTl06FBpMBikv7+/HDJkiDx27JjDc4bZbJYrVqyQbdq0kVqtVtavX19OmzZNXr582eH5s7K4Tp8+LceMGSPDw8OlXq+XXbp0kevWrat0PlApXWMeSyHln9NkkOsSQnQEsEpKaf8oEHIJQoglI0aMmLtlyxb7u2+oQrt378aAAQPw5JNPYsmSJUqHU6t27tyJSZMmZV+9erXyx38QuQkhRL+ePXt+vm/fPv67Vtj69evx2GOPbcrIyBitVAzssXQf7LMkt3b16lW7ZvWsrCzrHZyjRo1SIiwiIqpB7LF0E5J9luTm1q5di5dffhn9+vVDZGQkLl68iB07duDKlStISEhAjx49lA6RiIhuExNL92IE57N0ZbI6Uwl5i3vuuQd33303du/ejevXr0OtVqN169Z49tlnMXPmTKXDqxN//Ptg/xF5Gp77XERZWRmklIp+GUws3YsRwCqlg6AKXbY8RYLsde3aFZs3b1Y6DEVlZmbCbDYXVL4lkVvJqsqjYKn2ZGZmoqSkRNHHP7PH0r2wz9K1/d/Ro0eFq09WTsrZsWMHMjMz7WdeJnJvJ86dO6fJzMxUOg6v98UXX+Tm5uYmKxkDE0s38kd529JnSS5GSnlWq9XmbN++XelQyAWZTCZs2rQJUsqFSsdCVJOklIVarfZrt5hj0YNlZ2cjKSnJF8BWJeNgYul+jODjHV3W9evX502fPh2HDx9WOhRyISaTCUOGDIFKpTolpTymdDxENS0zM/O///jHP/IcPQqRal9eXh7uvffefF9f35VSyhwlY+E8lm6G81m6PiHEszqd7r+DBg3CpEmT0KxZM+h0OgjB6S29SWlpKTIyMrB9+3asWbMGBQUF53Jzc2OklFV7IDKRmxBC9NHpdNv79u0rJ0+e7N+iRQvo9Xqe+2pJSUkJrly5gi1bthR99NFHpcXFxWtyc3Mfkwondkws3YwQQg3gCoAYKSXvFHFRQohoAM+EhobeL6U0SCl5dcD7SJVKVZKfn59iMpmWSim3KB0QUW0TQgQAGBESEjJZCBFtNpt1lb6IqqtMrVZfz8nJ2VJcXLxOSvmL0gEBTCzdkhBiM25ULTntEFWLEKI1gE5SyrVKx0JERJ6DVRT3ZAT7LKkahBBqIcSTAJIAFCkdDwAIIXb8UeUgIlKMEGKuECJY6TjcHRNL92QEE0uqoj+qlP8DEAvgbinlBoVDsvgdwCylgyAirzceQEOlg3B3TCzdE+ezJKfdVKVcAWC4lDJd4bDKewHAbFYtiYjcHxNLN8T5LMlZDqqUq5W+Y/BmUsrTuDHvGquWRERujoml+zKCl8OpAm5QpbwZq5ZERB6AiaX7MoKJJTngDlXKm7FqSUTkGZhYui/2WZINN6xS3oxVSyIiN8fE0k2xz5LKc8cq5c1YtSQicn9MLN2bEbwc7tU8oEp5M1YtiYjcGBNL92YEE0uv5QlVypuxaklE5N6YWLo39ll6IQ+sUt6MVUsiIjfFxNKNsc/S+3hilfJmrFoSEbkvJpbuzwheDvd4XlClvBmrlkREboiJpfszgomlR/OGKuXNWLUkInJPTCzdH/ssPZQXVilvxqolEZGbYWLp5thn6Zm8sUp5M1YtiYjcDxNLz2AEL4d7BFYp7bBqSUTkRphYegYjmFi6PVYp7bFqSUTkXphYegb2WboxVikrxaolEZGbYGLpAdhn6b5Ypawcq5ZERO6DiaXnMIKXw90Gq5RVxqolEZEbYGLpOYxgYukWWKWsOlYtiYjcAxNLz8E+SxfHKuVtY9WSiMjFMbH0EOyzdG2sUt4+Vi2JiFwfE0vPYgQvh7sUVilrHKuWREQujImlZzGCiaXLYJWy5rFqSUTk2phYehb2WboAVilrHauWREQuiomlB2GfpfJYpax9rFoSEbkuJpaexwheDq9zrFLWOVYtiYhcEBNLz2MEE8s6xSpl3WPVkojINTGx9Dzss6wjrFIqjlVLIiIXw8TSw7DPsm6wSqk8Vi2JiFwPE0vPZAQvh9cKIYQPq5QuhVVLIiIXwsTSMxnBxLLG3VSl7MwqpfJYtSQici1MLD0T+yxr0B9Vyn/hRpXyHdyoUv6ucFj0J1YtiYhcBBNLD8Q+y5pTrkrZB+yldEmsWhIRuQ4mlp7LCF4Or7YKqpTspXRdrFoSEbkAJpaeywgmltXCKqX7YdWSiMg1MLH0XOyzrCJWKd0eq5ZERApjYumh2GdZNaxSuj9WLYmIlMfE0rMZwcvht8Qqpcdh1ZKISEFMLD2bEUwsK8Qqpedh1ZKISFlMLD0b+ywdYJXS47FqSUSkECaWHox9lvZYpfR8rFoSESmHiaXnSwIvh7NK6X1YtSQiUgATS89nhJcnlqxSeh9WLYmIlMHE0vMdBdDIG/ssWaX0eqxaEhHVMSaWHk5KaYYX9lmySkmsWhIR1T0mlt7BCC+5HM4qJd2EVUsiojrExNI7GOEFiSWrlHQzVi2JiOoWE0vv4NF9lqxSUiVYtSQiqiNMLL2AJ/dZskpJlWHVkoio7jCx9B5GeNDlcFYpqYpYtSQiqgNMLL2HER6SWLJKSVXFqiURUd1gYuk93L7PklVKuk2sWhIR1TImll6iXJ9lrBCinVqtnh0cHLxNCNFR6dicwSol3S5WLYmIah8TSw8nhFBZEsmgoKDWOp1ufVRU1L7p06cvATAAgI/SMd4Kq5RUw1i1JCKqRYJFH88lhPDXaDRnw8LCNMOHD/cZMGCAtk+fPoiIiEBhYSGCgoKKiouLA6SUxQrGGC6E6G82mz9xsK41gNUAMgA8zISSaoIQ4n0AZ6SUi5SOhYhchxDiEIAEKeVxpWNxZ6xYejApZa6fn9/6Fi1aiLfeeks7duxYREREAAB++OEH+Pv7/6pkUgkAgYGBrwsh1gohYi1jrFJSLWPVkoioljCx9HC5ubmzUlJSvpsxY4apfHX622+/lSaTaY+CoUEI0UmtVo/csGGDMBgM64QQ9dhLSbWNvZZERLWHiaWHk1KW5eTkjFq/fv25V155pcwyvmfPntz8/Py9SsUlhBCBgYHvvfrqq/rRo0djzJgxgXq9/muwSkl1g1VLIqJawB5LLyGEiDQYDEc+/PDDsPvuuw/BwcEF2dnZd0opLyoRj1qtHtOqVavVx44dM6hUKuTk5ODOO+8su3r16jgp5UYlYiLvwl5LIiqPPZY1gxVLLyGlvJCXl3fv5MmT8zZu3IiysjKTUkmlEEKr1+vffvfddw0q1Y1/ggEBAVi7dq3aYDC8JYSop0Rc5HVYtSQiqmFMLL2IlPJoQUHBuAceeAA+Pj6nlYpDp9PN6d+/v3/Pnj1txgcMGIAxY8YEBgQEvKJQaORF2GtJRFTzeCncC/n5+b1UUlJyyWw2L6vrYwshGmq12rNr1671kVLi7Nmz+PXXXwvT0tKKzpw5Iy5duqQXQlw2mUxRf0zqTlRrhBDNAHwHIEZKmaN0PESkHF4KrxlMLKlOCSFWarXaqXq9/pxKpfolPz8/tbCw8FcAZwGcAfCblLJQ2SjJm7DXkogAJpY1hYklEXk1Vi2JCGBiWVNc+nF+zhJCCAB36fX6CXq9fkBZWVkg2D9KdUClUhWYzeYTmZmZawDsYLXV/UgpTwshLL2WrFoSEd0Gt69YCiF8AwICNgUEBPRJSEjQDho0yCckJARqtVrp0MjDSSmRn5+Po0ePIjExMefgwYMlBQUFfaSUPysdG1UNq5ZExIplzXD7xDIoKGhrbGxsvw0bNuh9fX2VDoe82IYNG2RCQkJWfn5+JynlWaXjoaphryWRd2NiWTPc+nKxEKKlRqPpy6SSXMHYsWPFrFmz/HU63UylY6Fq4byWRES3ya0TSz8/vwcmTpzoy6SSXMXEiRN9fHx8Jv/R90tuhPNaEhHdPrdOLP39/fsOGDBAo3QcRBZt2rSBlDIIQJDSsVC1sGpJRHQb3DqxBBAcFMTf3+Q6hBDw9/cvARCodCxUdaxaEhHdHndPLAXv/q5d8+fPhxACRqPRZlwIgbi4uNveT01KSEiAEAJnz56ttWM4Q6VSSbj/z5Y3Y9WSiKia+MuP3Mbq1ashhMDq1auVDoU8GKuWRETVx8SSqiU1NRVr1qxROgwbixcvRmpqKho2bKh0KOT+WLUkIqoGj3jyDtW9Vq1aKR2CnQYNGqBBgwZKh0EegE/jISKqHq+oWH7zzTcYPXo07rjjDvj5+aFx48a4//77sW/fPgC2/X+JiYm4++67odfrbXoIS0tL8eqrr6JDhw7Q6XQIDAxE3759sX37drvjmc1mvP/+++jatStCQkKg1+sRHR2NUaNGITk52Wbbzz//HLGxsYiIiIBWq0Xjxo0xePBgbNq0qdL3VVBQAH9/f9x5550VbtOiRQv4+/ujoKAAAHDhwgXMmzcP3bt3R0REBPz8/BAdHY2ZM2fiypUrznycACrusTx//jwefPBBhISEwGAwIDY21u49WxQXF+ONN97AoEGD0LhxY/j5+SEiIgL3338/Dh8+bLNtQkICpkyZAgCYMmUKhBDWpfw2FfVYJiYmonv37jAYDDAYDOjevTsSExPttjMajRBCYP78+UhJScGgQYPg7++PwMBAjB49WvH+TapTrFoSEVWRx1cs33rrLcyaNQs6nQ6jR49GkyZNkJ6ejn379mHDhg3o1auXdduXXnoJSUlJGDlyJAYMGAAfnxsfj5QS48ePx8aNG9GiRQs89thjyM/Px6efforhw4fjtddew+zZs637efrpp7F06VI0b94cEyZMgL+/P9LT0/HNN99gz5496NOnDwDgnXfewcyZM9GgQQOMHj0aoaGhuHjxIr7//nts2rQJo0aNuuV70+v1uP/++7FmzRp899136NGjh836AwcO4Ndff0V8fDz0ej0AIDk5GcuWLcO9996Lbt26wdfXF4cPH8Y777yDnTt3IiUlBYGB1buh+eLFi+jRowfS09MxaNAgdOrUCampqRgwYAD69u1rt/3169fx97//Hb1798bQoUMRHByM06dPY8uWLfjyyy+RnJyMLl26AABGjRqFrKwsbN68Gffddx/uuusup+N64oknsHz5cjRs2BDTpk2DEAKff/45EhIScOTIEbzyyit2rzl06BBeeuklxMXF4ZFHHsHhw4exadMmHDt2DMePH4dWq63WZ0Tug1VLIqJqkFK67RIWFnZ0//79siJHjx6VarVaRkZGyjNnztisM5vNMj09XUop5bx58yQAWa9ePXn06FG7/axZs0YCkLGxsbKoqMg6fv78eRkRESF9fX3l6dOnreMhISGyYcOGMj8/3+6Y165ds/5/p06dpEajkVeuXLE7ZkZGRoXvq7xdu3ZJAHLmzJl26x5//HEJQO7evds6dvnyZZmbm2u3bWJiogQgFy5caDNu+WySkpJsxi2fR3nx8fEO97Fy5UoJwG4/JpNJ/v7773axHD9+XBoMBtm/f3+b8VWrVkkActWqVXavKX/88t91cnKyBCBbt24ts7KyrONZWVmyVatWEoD85ptvrONJSUnWWNetW2ez/8mTJ0sA8pNPPnF4fIuGDRtmA2gmXeBnhMvtLQCaAbgMIEDpWLhw4VK7C4BDANoqHYe7Lx59KXzFihUoKyvDwoULER0dbbNOCIHIyEibsYcffhjt2rWz24/lLuSlS5dCo/lzPvZGjRrhiSeeQElJCdauXWvzGo1GY614lj9mSEiIzZivry8cPTkoNDS00vcHAP369UNkZCQ+/fRTlJSUWMdLS0uxfv16NGzY0KZaGBERAYPBYLefyZMnIyAgALt373bquDcrLi7G+vXrERERgX/+858266ZPn44WLVrYvcbPz8/hjTZt2rRB3759kZycbPOeqsPy3c2fP9+mEhsYGIh58+bZbFNenz59MH78eJuxqVOnAgAOHjx4WzGR+5C8Q5yIqEo8OrH8/vvvAQADBw50avuuXbs6HD98+DB0Op3D9ZY+wx9//NE6Nm7cOJw5cwZt27bFs88+i927dyM/P9/utePGjUN+fj7atm2LOXPmYNu2bcjKyrLbbvny5Zg/f77NYun1U6lUmDBhAjIyMrBjxw7ra3bs2IGrV69iwoQJUKlsv+aNGzdi0KBBCA8Ph4+PD4QQUKlUyMnJwYULFyr9nBxJS0uDyWRC586d7S4Tq1Qq3HPPPQ5f9+OPP2LChAlo0qQJNBqNtW9y69atKC4uRkZGRrXisbD0ajrqB3X03Vl06tTJbqxRo0YA4PA7Io+2COy1JCJyikf3WGZlZUEI4fSdwnfccYfD8ZycHDRu3Njhuvr16wMAsrOzrWOvv/46mjVrhtWrV2PhwoVYuHAhtFotxo0bh2XLliEsLAwA8OSTTyI0NBQrVqzAK6+8gmXLlsHHxwdDhw7F8uXL0bRpUwA3Estz587ZHDcuLs5ahZ08eTJefvllrF27FiNGjAAAfPTRR9Z15S1btgxz5sxBeHg4Bg4ciEaNGkGn01mPU1RU5NRndTPL+4+IiHC43tFn++2336Jfv34AbiT/MTExMBgMEEJg06ZNOHLkSLXjscjJyYFKpUJ4eLjDmFQqlc13Z+Goz9RSgS4rK7utmMi9SCnPsNeSiMg5Hp1YBgUFQUqJixcvOjW3Yfk7jMsLCAjA5cuXHa6zjAcE/FnM8PX1xdy5czF37lxcuHABe/fuxapVq7BmzRpcunQJO3futB5v+vTpmD59Oq5du4ZvvvkGn3zyCT799FP8+uuvOHbsGNRqdaV3Irdv3x7t27fHli1bkJubCwDYsmULOnToYHNpv7S0FM8//zwiIyPx448/2iRbUkosXbq00s+oIpZErKI7yx19fosWLUJRURH27duHnj172qzbv38/jhw5Uu14LAICAmA2m3H16lW7pPfKlSswm8023x1RBV4A8J0Q4g0pZY7SwRARuSqPvhRuuXT91Vdf3dZ+OnbsiMLCQuul9fL27t0LABXepRwZGYkHH3wQO3bsQExMDHbv3o3CwkK77UJDQzFq1CisX78e/fr1Q2pqKk6ePOl0jJMmTUJhYSE+//xzfP755ygsLMSkSZNsd+rJzwAAIABJREFUtsnIyEB2dja6d+9uV8E7dOiQw7ic1bJlS2i1Whw6dAgmk8lmndlsxrfffmv3mlOnTiEkJMQuqSwoKEBKSord9pbHd1alYtixY0cAcPgoycq+OyIL9loSETnHoxPLRx99FGq1Gs8884zdpWRLJdMZ8fHxAG5MI1T+ZpL09HS88sor8PHxwcSJEwEARUVF2LNnj+UOM6v8/Hzk5ubC19fXmiDt3LkTpaWlNtuVlJTg+vXrAGC9RO2MiRMnQqVS4aOPPsKHH35o7b0sLyIiAjqdDikpKdZ5LQEgMzMTs2bd3u9LjUaDcePG4cqVK1i2bJnNuvfffx+//PKL3WuioqKQmZmJn376yTpWVlaGOXPm4OrVq3bbW258+v33352Oy/LdLViwADk5fxaacnJysGDBApttiCrBeS2JiCrh0ZfC27Vrh+XLl2P27Nlo06YNRo0ahaioKFy6dAnJyckYNmwYli9fXul+Jk+ejI0bN2Lz5s1o3749hg8fbp3H8tq1a1i2bBmaNWsGACgsLMS9996LZs2aoVu3bmjSpAny8vKwbds2XLp0Cf/617+sd5aPHz8eer0evXr1QlRUFEpKSrBr1y78/PPPGD9+PJo0aeL0e42MjES/fv2wZ88eAMC9995rd9e7SqXCzJkzsWzZMnTo0AEjRoxATk4OvvzyS0RFRdltX1Uvvvgivv76azzzzDPYt28fOnbsiNTUVHzxxRcYOHCgXeV41qxZ+Oqrr9CrVy+MGzcOWq0WRqMR6enpiIuLs6sy9ujRAzqdDsuXL0dOTo616vrUU09VGFOfPn0wa9YsvPHGG2jbti3GjBkDKSU2btyI8+fPY/bs2dZ5RYluRXJeSyKiyik939HtLJXNY2mRlJQkhw8fLkNCQqRGo5GNGjWSY8aMkf/73/+klBXP1VheSUmJfPnll2W7du2kn5+f9Pf3l7GxsXLz5s022xUXF8slS5bIgQMHykaNGkmNRiPvuOMOGRsbazcv4ttvvy1Hjhwpo6KipFarlaGhobJbt25y5cqVsqSkpNL3dTPLXJQAZGJiosNtiouL5aJFi2RMTIz08/OTTZo0kf/4xz9kbm6ujIqKklFRUTbbV2UeSymlPHfunBw/frwMCgqSer1e9u7dW+7du7fC/WzYsEF26tRJ6vV6GRYWJseNGydPnTrlcE5KKaXcvn277NKli9TpdNb3alHRa6SU8oMPPpBdunSRer1e6vV62aVLF/nBBx/YbWeZx3LevHl2686cOSMByPj4eLt15XEeS89dwHktuXDx2AWcx7JGFvHHh+mWwsPDj27btq1dt27dlA6FyKpRo0Y56enpHeWNvjzyMEKI9wGckVKyaknkQYQQhwAkSCmPKx2LO/PoHksiolrAXksiogowsSQiqgLJO8SJiCrk7oml5GTV5GrMZrMAYFY6DqpVrFoSETng7ollJh+vR65ESonc3FxfAPaP8yGPwaolEZFjbp1Y5ubmJu3atatY6TiILH766ScIIbIA8C8ez8eqJRHRTdw6sSwqKlq3du3akvKTlhMpae3ataWlpaUfSneeboGcwqolEZE9t04spZRpxcXFSWPHji1gcklK27Bhg3zjjTdyCwsL31Y6FqozrFoSEZXj1vNYAoAQwjcgIGBTQEBA7/j4eN2gQYN8QkNDrY9NJKotUkrk5eXh2LFjWL16dfahQ4dKCwoK+kgpf1Y6Nqo7nNeSyDNwHsua4faJJQAIIQSADjqdbqJerx9gNpsD4ebVWHIPKpUq32w2n8jMzFwDYKeUslDpmKhuCSGaAfgOQIyUMqey7YnINTGxrBke8azwP/rZfvxjISKqM5LPECcismJVjwAAQog5QohgpeMgclPstSQiAhNL+tMDABoqHQSRO+Id4kRENzCxJCKqGaxaEpHXY2JJRFQDWLUkImJiSURUk1i1JCKvxsSSiKiGsGpJRN6OiSURUc1i1ZKIvBYTSyKiGsSqJRF5MyaWREQ1j1VLIvJKTCyJiGoYq5ZE5K2YWBIR1Q5WLYnI6zCxJCKqBaxaEpE3YmJJRFR7WLUkIq/CxJKIqJawaklE3oaJJRFR7WLVkoi8BhNLIqJaxKolEXkTJpZERLWPVUsi+v/t3Xl0FFW+B/Dv7e7s6SUQkGUgIATQYUcFCYEEfIQlgEYhiCJhGT3ikHnIkcc8HREdVFwYZUbHBYSRLYyALIKoQBJAVkEWHVlkSSA8DNn3kKR/7w/sNk13QhIKOh2+n3M4mqpK1e2qulXf3Lp1+7bAYElEdJOx1ZKIbhcMlkREtwZbLYmowWOwJCK6BdhqSUS3AwZLIqJbh62WRNSgMVgSEd0ibLUkooaOwZKI6NZiqyURNVgMlkREtxBbLYmoIWOwJCK69dhqSUQNEoMlEdEtxlZLImqoGCyJiNyDrZZE1OAwWBIRuQFbLYmoIWKwJCJyH7ZaElGDwmBJROQmbLUkooaGwZKIyL3YaklEDQaDJRGRG7HVkogaEgZLIiL3Y6slETUIDJZERG7GVksiaigYLImI6ge2WhKRx2OwJCKqB9hqSUQNAYMlEVH9wVZLIvJoDJZERPUEWy2JyNMxWBIR1S9stSQij8VgSURUj7DVkog8GYMlEVH9w1ZLIvJIDJZERPUMWy2JyFMxWBIR1U9stSQij8NgSURUD7HVkog8EYMlEVH9xVZLIvIoDJZERPUUWy2JyNMwWBIR1W9stSQij8FgSURUj7HVkog8CYMlEVH9x1ZLIvIIDJZERPUcWy2JyFMwWBIReQa2WhJRvcdgSUTkAdhqSUSegMGSiMhzsNWSiOo1BksiIg/BVksiqu8YLImIPAtbLYmo3jK4uwDkHkqpAABNKk3yBtBCKVXw689FIpJ+60tGRNURkTNKKVur5VyllE4p9XBAQEB4fn5+vLvLR+Qpfr0PNq00yRtAS6VU4a8/F4nIL7e+ZJ5NiYi7y0Bu4Ovr+4FSalKjRo2KAUBEAgEUK6UqSktLDTk5OaqioiJAeIIQ1TtKqTsB7FFKPWc0Gl9u1apV8Llz58oLCgos7i4bkafw9fX9QKfT2e+DVqs1UClVpJSylpSU8D5YR3wUfpsqLS39Z0BAwJUzZ86Y0tLSTBcvXtRdvHgxIC0tzfTEE08Y/P39F7EyEdU/v7ZQ9jIajf7du3f/aN26dSFJSUkB7i4XkacpLS39p7+//5XTp0+bLly4YLp48aIuLS0t8MKFC7wP3gAGy9uUiBypqKj4dtGiRQ6VJj09HR9++GF5fn7+X91VNiJyTa/XP2gymc707Nlz0fr16wMPHjzoExkZCaWUu4tG5HFs98GFCxfyPqghBsvbWE5OzswXX3yxqLS01D7t9ddfv6LX6z9hvxKi+kUppXx9fV+7++67W+zcudPIQEl043JycmbOnj2b90ENMVjexq5tteRfaUT1l4hIUVHRPT/99NO6bt26FZ48edLdRSLyeNe2WvI+eOMYLG9zlVstX3vttTL+lUZUf4lIYU5OzpiUlJT4Xr16FSYkJLi7SEQer3KrJe+DN47B8jZn+2vt1VdfxUcffVTBv9KI6r/S0tJPCgoKej/55JOpkydPLi0pKQEAPhcnqgPbfXDu3Lm8D2qAww0RlFLdABwOCAhYWVBQMM7d5SGimlFKBZjN5sUmkykmKyurvKCgwNfdZSLyRLwPaofBkgAAer1+mdVqfUFEzrm7LERUO97e3jMNBsNzRUVFTa6/NBG5otfrl/56H0xxd1k8GYMlEREREWmCfSyJiIiISBMe+13hSikTgJGNGzd+HEBbq9XKvkXkbhU6nS6roKBgY2lp6UoR4XgwGlFKeQGINJvNTxgMhh5WqzXQ3WWi24tS6opOp7uYmZm5XEQ+F5HL7i6TK0opHYC+RqPxcW9v7zCr1WoEX+yim0Cn05UAOJuZmbkMwAYRyQM89FG4Uqq/n5/fpoEDB8rjjz9u7NixI/z8/DhYMLlVWVkZ0tPTsXHjxtKlS5eWX7ly5dP8/Pxn+JVgN0Yp1TwwMHBPx44dLXFxcabevXsro9HI+k63VElJCc6dO4eEhITCDRs26EpLSyeWl5evcne5KlNKGU0mU3KzZs3aTZ48ObB///46s9kMnY4PJ0lbIoLi4mKcOHECy5Yty9++fbsqLi4eLiI7PC5YKqXuMRqNiZs3bw7s16+fu4tD5FJBQQEiIiIKT506tTA3N/e/3V0eT6WUsgQGBh57+eWXm02fPt1jn7BQw3L8+HGEhYUV5uTkjK2oqPjC3eUBAKWUwWQyHXjiiSc6LViwwJd/eNGttGvXLgwbNqwgPz8/0uP+jAkKCnpx/vz5DJVUrwUGBmLbtm0BZWVlT/3abYPqQCk1ZsiQIUEMlVSfdOrUCatWrQqwWCyvu7sslQy8884772SoJHfo168f5s+fHxgUFPQXjwqWSim/kpKSQQ8//LC7i0J0XWazGZGRkWUARri7LJ4qKChoSlxcXIC7y0F0rcjISJSXl9+plGrl7rIAgNlsjps8ebKRoZLcJSYmBiUlJQ94VLAE0CkkJORKUFCQu8tBVCPDhg0zGo3G/u4uh6cqKCjoEhkZ6e5iEDnR6/Xo169fGYB73F0WANDpdH0HDhzIVElu06hRI7Ru3brM04KlxWKxuLsMRDUWFBQELy+vxu4uhydSSukqKiq8/P393V0UIpeCg4P1AMzuLgcAlJWVBfL+SO4WFBQknhYslV6vr3JmUlISlFJ46aWXbl2JiKqh1+uhlKr6pKVqKaU86+3CWliyZAmUUliyZIm7i2IXFxcHpRTOnTvn7qLUmVb3gTZt2qBNmzbVLvPr/ai+3EervT9euXIFL7zwAtq1awdvb28opZCUlOS2+6Ynn2v1sez15Xqi1+vrTYVocCIiIjgcyk1Wkws/UU2dO3cOSinExcW5uyhEmnvrrbcwd+5ctG7dGjNnzsTs2bN5/fQgnnR94puWRERu8NBDD6FPnz5o3ry5u4tCt4HNmzcjMDAQX3/9Nby8vOzTmzZtip9++gnBwcFuLB3dqPp0PWGwJCJyA7PZDLO5XnTPo9vAxYsX0bhxY4dQCQD+/v7o1KmTm0pFWqlP15MG+yh8x44dGDBgAAIDA9GoUSOMGzcOFy5ccLlseno6pk+fjvbt28PHxwfBwcF4+OGH8cMPPzgte+rUKUycOBFt27aFr68vgoOD0bNnT8yYMcO+jFIKycnJ9v+3/atJE7ZSChERETh//jxiY2PRuHFjBAQEICIiArt373Za/uTJk5g5cyZ69uyJxo0bw9fXFx06dMCsWbNQUFDgtLztEX1paSlefPFFtG/fHl5eXvb+NTeyvv/93/9F69at4efnh169emHr1q0AgPz8fMTHx6Nly5bw9fXF/fffj++++67Ox8L2SCAlJQUpKSkO+/jafkI7duzAiBEjEBwcDB8fH4SGhuKFF15AUVGRw3KV+xnt2bMHUVFRsFgsDt0ZEhMTMXToULRo0QI+Pj5o0aIFIiIisHDhQtcHk5wopUxKqb5Kg34iNTlmAHD06FGMHTsWzZs3h7e3N0JCQjBt2jRkZmbal1myZAnatm0LAPjXv/7lcE4lJSUBAF566SX7z//617/Qq1cv+Pv7IyIiAgCQm5uLefPmYcCAAWjRogW8vb3RokULPPHEEzh9+rRT+avqE2W7Bly+fBmTJk1C06ZN4efnhz59+tjLcq38/HzMnj0bv//97+Hn5weLxYIhQ4Zg165dLpf/8ccfER0dDaPRCLPZjGHDhrm83lWn8v7fvXs3IiMjYTQa0aRJE0ydOhXFxcUAgC1btiAsLAwBAQG444478D//8z+oqKhwWl95eTn+9re/oVu3bvDz87MN14VNmza53H5xcTFmzZqFVq1awdfXF507d8bHH39cbZnPnj2LKVOmoHXr1vDx8UHz5s0RFxeHlJSUWn32W0EpZVBKDfz1KxrrzHbenj171uF6aTtvq+pjaetqVFhYiGeffRYtW7aEj48PunbtitWrVzttp7b3jrqoSV1OSUmBTqfDoEGDXK6jpKQEZrMZ7du317Ts1fVxrGoff/7553j00UfRvn17+Pv7w2w2Izw8HGvWrHFa9/WuT9Vtf/fu3Rg+fDgaNWoEX19fdOrUCS+99JLTfRCo2/XnWg2yxXLv3r147bXXMHz4cMTHx+PQoUNYuXIldu3ahQMHDuCOO+6wL3v69GlEREQgLS0NgwcPxoMPPoj09HSsWbMGX331FbZt24bevXsDuPoX33333YfCwkIMHz4csbGxKCgowKlTp/D3v/8db7/9NgBg9uzZWLJkCVJSUjB79mz7trp3716j8mdnZyMsLAzNmzfHk08+ibS0NKxatQqRkZH46quv7BcEAFi7di0WLVqEyMhIREREwGq1Yu/evZg3bx6Sk5OxY8cOp79QgavjTR05cgRRUVFo1KgR7rzzzhtaX2xsLI4dO4aRI0eiuLgYy5cvR3R0NHbv3o2nnnoKJSUleOSRR3D58mWsWrUKUVFROHv2LEym38YOr+mxsFgsmD17Nt555x0AwH//929fbFN533zwwQeYOnUqgoKCMGLECDRp0gQHDhzA3LlzkZiYiMTERHh7ezt8jt27d+PVV19FZGQknnzySaSmpgIANm3ahBEjRsBisWDUqFFo3rw5Ll++jMOHD2P58uWYMmVKjY4t4QGl1Bqz2XxUKTUDwLYb/crLqo4ZAGzYsAFjxoyBXq/HyJEj0apVK/znP//BP/7xD3z11VfYt28fgoKC0L17d/zpT3/Cu+++i27duuHBBx+0r+PafmhvvvkmEhMTMXLkSPzXf/0XDIarl9GffvoJL774IiIjI/HQQw8hICAAx48fx4oVK7Bp0yYcOnQIISEhNfpMOTk5CAsLg8lkwmOPPYb09HR7vTl48CA6d+5sXzYrKwv9+/fHjz/+iPDwcERFRSE3Nxfr169HZGQkPvvsM4fP88MPPyAsLAwFBQWIiYlBaGgo9u/fj7CwMHTr1q3W+3/fvn2YN28eoqKi8NRTTyExMRH//Oc/kZeXh1GjRmHChAkYOXIkevfujU2bNuGNN96AyWTC888/b1+HiCA2NhZr165Fhw4d8Mwzz6CwsBD//ve/ER0djXfffRfx8fH25a1WK0aOHImtW7eiS5cuGDduHDIzMzF9+nRUNTzVvn37EBUVhcLCQowYMQLt27fHuXPnsHz5cnz55ZfYs2eP/TpYT3RWSm0zGo0pOp3uORFZIyLW2q7Edk289npZk/6VZWVlGDx4MLKyshATE4OioiIkJCRgzJgx2LJlCwYPHmxftq73jpqqaV0OCQlBeHg4kpKSkJaWhpYtWzqsZ/369cjLy8P06dNvWdmr8uc//xne3t7o16+f/Z6yYcMGPPLII1iwYAGmTZsGALW6Pl1rzZo1GDt2LLy9vREbG4umTZti69atmDNnDr7++mskJibCx8fH4Xdqc/1xSUQ85h+AgWFhYdlShcTERAEgAGThwoUO8+bMmSMAZNKkSQ7T+/btKwaDQb7++muH6SdOnBCj0ShdunSxT1uwYIEAkHfffddp25cvX3b4ecCAAXJ199aOrfzjx48Xq9Vqn56UlCRKKWnfvr1UVFTYp1+4cEFKS0ud1mP7vMuWLXNZru7du0tmZqbT79V1fWFhYVJQUGCfnpCQIADEYrHI6NGjpayszD5v3rx5AkDmz5/vsK7aHAsRkZCQEAkJCXEqq4jIjz/+KAaDQXr06OH0OV977TUBIG+99ZZ9WuVzZ9GiRU7ri4mJEQBy5MgRp3kZGRkuyyBydT80btz4c6kH9ac+/AMQEx0dnbtmzRpp165dnsViOQLgAQDKxbI6g8Hw24lzjesds4yMDDGZTPK73/1OUlJSHOatWLFCAMgf//hH+7SzZ88KAJkwYYLL7c2ePVsASEBAgBw9etRpfk5Ojss6tX37dtHpdDJlyhSH6YsXLxYAsnjxYofpts80depUh7q+cOFCASBPPfWUw/Ljxo0TAPLJJ584TL906ZK0atVKmjRpIsXFxfbptjp7bV3+85//bN/22bNnXe6Dyirv/3Xr1tmnX7lyRbp27SpKKQkODpb9+/fb5+Xl5UnTpk2lcePGDteETz/9VADIgAEDHK4/58+fl6ZNm4qXl5ecOXPGad8NGTJEysvL7dOPHj0q3t7eAkBmz57tUKY2bdqI0WiUw4cPO3yOnTt3il6vl+joaIfp1V1fbCZOnFgAYJLcnLrSvVOnTtnbt2+XXr165ZlMpnNKqdEAdK6WDwwMzLx06VKVZa3q89iOY+X9ZVsegIwaNcrhmGzdulUASFRUlMPytb13TJgwocbnWm3r8scffywA5I033nBaV3R0tACQU6dOaVr2quqzSNX7+PTp007L5ufnS5cuXcRsNkthYaF9+vWuT662n5eXJxaLRXx8fBzuXVar1X7deOWVVxzWU9vrz7XCwsKy3X6jqc2/mgbLjh07OoQyEZGioiJp0qSJ+Pn52U+gQ4cOCQCZPHmyy/U9++yzAkCOHTsmIr8Fy48++qjaHStyY8FSr9dLamqq07zhw4cLANm5c+d115OZmSkAJC4uzmW51q9fX6tyXW99SUlJDtPLy8vFy8tLADhdCFJTU50qSG2PhUj1F/74+Pgq91VFRYU0adJEevXqZZ9mO3d69Ojhcn22YHny5EmX86vCYOlUh2NGjhyZK3L1OFQXMGsaLKs6ZvPnzxcAsnTpUpfze/bsKcHBwfafaxosp0+fXlWRqtSlSxdp06aNw7TqgmVAQIDk5+c7TC8rKxODwSA9e/a0T7t8+bLo9XoZNGiQy+3arlkbN24UEZGUlBQBIF27dnVaNj8/XywWS62DZUREhNO8l19+WQDIxIkTneZNmjTJaRsDBw4UALJv3z6n5W1/CFa+AUZGRgoAOXjwoNPykydPdrqJr1271uVN1CYmJkZ0Op3k5ubap9WHYHnXXXdli1wNAtcLmDcrWFYO9JXnNWrUqNp9Y1PVvaM2wbK2dTknJ0d8fHyczvPLly+Ll5eX9OnTR/Oy1yVYVuXtt992uq/WJVja/mB7+umnnZZPTU0Vg8Eg7dq1c5hem+uPK2FhYdkN8lF4WFiYUz8rW7+/LVu24OTJk+jcuTP27t0LALh06ZLLMbyOHz9u/2/nzp0RHR2NWbNm4ZlnnsE333yDIUOGoF+/fujQoYOm5Q8JCUGrVs7fEhYeHo5Nmzbh8OHDsH1Xuohg8eLFWLJkCX744Qfk5ubCav3tacnFixddbuO+++5zOb2u6+vRo4fDz3q9Hk2bNkVhYSFat27tMM/21lpaWpp9Wm2PxfXY1rdlyxZ7X8/KvLy87OusrKr9MmbMGKxduxa9e/fGo48+ioEDByI8PBxNmza9bllslFKPAWhb419omO6uqKjwAQCdToeYmBg8+OCDxnXr1nV97rnnNmVkZGQppcaKSHJNV1jVMbOdA3v37sXPP//sNL+kpAQZGRnIyMio1RuxVW0PuNqX6p133sG+ffuQkZGB8vJy+7xru11UJzQ0FIGBgQ7TDAYD7rjjDuTk5NinHThwABUVFSgpKXFZb06dOgXgar2Jjo7GkSNHAMB+/agsMDAQ3bt3r3E/Kptr6z7wWx131f2ncv23Pcb7/vvv4efn53Lf2h7lHj582D7tyJEj8Pf3R8+ePZ2WDw8Px6JFixym2c6F48ePu9xPly5dgtVqxcmTJ3HPPbX/Ih2llDeAeAC+tf7lqjWzWq2+v64fkZGROHDggDEpKck4Y8aMZT///PNHer1+WkVFxTINt+nAYrHY+/ZV9rvf/Q579uxxmFbXe0dN1LYum81mjBgxAqtXr8axY8fQpUsXAEBCQgLKysowfvz4W1b26qSnp+P111/Hl19+iZSUFHu/ZK22+/333wNw7CJm06pVK7Rr1w4nTpxAfn4+jEajfV5Nrz9VaZDBsqqbva1vZW5uLoCrfZOAq/3nquogDgCFhYUAgLZt22LPnj2YM2cOvvzyS3z22WcAgI4dO+KVV17B6NGjb2n5ASA+Ph7/+Mc/0KpVK4wcORLNmze395eYM2cOSktLq13Xteq6vsp9JW0MBoPLt9RsfdLKysrs02p7LK7Htr65c+fWaHmbqvZLbGwsvLy88M477+DDDz/E+++/b+/kPH/+/Br3nyXX5LdWmlqr6pjZzoH33nuv2t8vLCysVbCsanufffYZYmNjERgYiKioKLRp0wb+/v72DvW1eUGkqrc7DQaDw4svts/47bff4ttvv61yfbZ6Y7t2XO8aUxtV1f3rzatc//Py8lz+MQ0AzZo1A+B43cvNza1yeVefwbafli9f7vJ3bGp6fXGnX+uJrbLc1C8QqO48rBy8gLrfO2qiLnV5/PjxWL16NZYvX47XX38dALBs2TJ4eXkhNjb2lpW9KllZWbj33nuRmpqKsLAwPPDAA7BYLNDr9Th8+DDWr19/w9vNy8sDUHW9btasGU6cOIG8vDyHYFnT609VGmSwTE9Pdzn9l19+AfDbTrNd9P7+97/jj3/8Y43W3bVrV6xZswZlZWU4ePAgvvzySyxYsACxsbFo0aIFwsLCbln509PT8d5776Fr167Ys2cPKn/13aVLlzBnzpwqt+HqpdwbWd+NqsuxqMn6rq0w11Pdy8oxMTGIiYlBXl4edu/ebe/wHRUVhRMnTuB6X6cmItXf1W4DSqkYvV4/HICP1WrF559/jpkzZxZkZWWdycnJqdPLPFUdM9s5cOzYsRq1ct/o9l566SX4+vri4MGDCA0NdZiXkJCg2fYrs33GGTNm4K233rru8pWvHa7YrjG3mslkqnLbtumVQ6rZbK7VZ7D97saNGxEdHX2jxXUiIlcAXP8A1IJSqrtOp3sMgK+IIDExETNnzsw/depUZkFBwXNWq3Wt1OFlnpvhZt876lKXhw4diuDgYKxYsQKvvfYaTp8+jX379mHQLaQ+AAAO0ElEQVTUqFFo3Pi3b9nVquw63dWX9ys/pbCp/EeRzaJFi5Camoq//vWvDi+yAcDrr7+O9evX12i71bHtt9rULS00yOGGvv32W6fWj+LiYhw8eBB+fn72R9e2t72vbdKvCS8vL/Tp0wdz5szBggULICL44osv7PNtX61Vk3R/rZSUFJw/f95p+s6dOwH89njpzJkzEBE88MADuPb7lG3L1obW66uNuhwLvV5f5f61rc/2CEVLJpMJQ4YMwUcffYS4uDikp6dj3759mm+nobJarVizZg1CQ0MLpkyZcvTMmTMP5eTkdBeRrbUNldWp7Tl1I3UWuDqqwV133eUUKi9evOhyuCEt3HvvvVBK1fgz2t76djUMUUFBgcPj5lupR48eKC4uxv79+53m2YZuq/xUoFu3bigqKsKhQ4eclnd1rbqRa707iQi2b9+Oe++9N/+hhx469/3330/Ky8trV1FRsbq+hErg5t876nL8vLy8MGbMGJw/fx7JyclYtuxqj4HHH3/cYTmtyh4UFATAsYuXje2RdGW2a8LIkSOd5rnabl2uT7ZuKq66t6SlpeH06dO48847a9X4UhMNMlieOHECn3zyicO0N998E5cvX8ajjz5q7+t03333oXfv3li5ciVWrVrltB6r1Wq/qAFX+zO5+ivZlvr9/Pzs0xo1agQAVY6dWZ2Kigo8//zzDuE4OTkZmzdvRvv27dG3b18AsA9dsnv3bofHEhcuXMCsWbNqvV2t11cbtT0WwNV9nJGRgZKSEqflp06dCoPBgGnTprkM6Tk5OS4re1W2bdvmcju286Hysafqbdq0yXQzA6XNxIkTYTQa8fzzz+PHH390ml9UVOTwh0dQUBCUUnWqs8DV+vPzzz87tA6UlJTg6aefdtmKoYVmzZphzJgx2L17N958802X3Qn27dtnH6+udevW6N+/P44ePer0WPjVV1+tUf+pm2HChAkArg6/UvkReVpaGubPnw+DwYDHHnvMPt3WR+755593uNEeO3YMS5cudVr/qFGj0Lp1a8yfPx87duxwml9WVlblmJ/udOLECUt9DpQ2N/veUdu6bGM7T5YtW4bly5fDYrFgxIgRN6XsPXv2hFIKCQkJDveKU6dO4d1333Va3rbda8+7FStWYPPmzU7L1+X6NGrUKJjNZixevNhhv4mIva7djK+IbJCPwgcPHoypU6di06ZN6NSpEw4dOoSvvvoKrVq1wquvvuqw7MqVKxEZGYmxY8finXfeQa9eveDr64vU1FTs2bMHly9ftp8ky5cvx/vvv4+IiAi0b98eJpMJ//nPf7B582YEBwdj0qRJ9vUOHDgQq1evxujRozFs2DD4+vqiS5cuGD58+HXL37VrVyQlJaFPnz4YOHAgLl68iISEBHh5eeHjjz+2N7k3b94cDz/8MNasWYN77rkHgwYNwi+//IIvvvgCAwcOxJkzZ2q137ReX23V5lgAV/fxd999hxEjRiA8PNw+Hli/fv3QuXNnvP/++3j66afRsWNHDBs2DO3atUNeXh7OnDmD5ORkxMXF4YMPPqhR2WbMmIHU1FRERESgTZs2UEph165d2L9/P/r27atJF4jbxFYRCcvJydlzM8JkZU2aNMHKlSsxevRodOvWDUOGDEGnTp1QUlKClJQUJCcno2/fvtiyZQuAqy+v3HvvvdixYwcmTpyI0NBQ6HQ6jBs3zukFNFemTZuGadOmoUePHnjkkUdQXl6Ob775BiKCbt262V+c0dr777+PEydOYObMmVi6dCnuv/9+mM1mnD9/HgcPHsSpU6fwf//3f/bWmPfeew9hYWF44oknsG7dOoSGhuLAgQPYv38/wsPDb/rTCVfGjx+PtWvXYv369ejatSuio6Pt41hmZmbi7bffdhhjcsKECVixYgW2bNmCHj16YOjQocjKysLKlSsxePBgh6dHAODj44PVq1dj6NChGDBgAAYNGmR/pJqamoqdO3eicePGLl/oc6MfRGRQXl5eUn0Mk5Xd7HtHbeuyTZ8+fRAaGopPP/0UZWVl+MMf/uA0ZqNWZW/ZsiViY2ORkJCAXr16YciQIUhPT8fnn3+OIUOGOA16Pn78eMybNw/Tpk1DYmIiQkJCcPToUWzduhUxMTFYu3atw/J1uT6ZTCZ8/PHHePTRR9G7d2/ExsaiSZMm2LZtG7777jvcd999eO6552r0+WrF1mneE/6hhsMNzZ49W5KTkyU8PFz8/f3FYrHI2LFjXQ7hIyKSlZUlL7zwgnTu3Fn8/PwkMDBQQkNDZdy4cbJ27Vr7cnv37pWnnnpKOnfuLBaLRfz8/CQ0NFTi4+Od1l1WViYzZ86U1q1bi8FgqHaYgMrw61huKSkpMnr0aAkKChI/Pz/p37+/7Nq1y2n5/Px8mTFjhrRp00Z8fHwkNDRUXnnlFbly5Yp9XZVdbxgkLddX3XAdrtYlUvNjYSvrH/7wB2nevLnodDqXwzns379fxo4dKy1atBAvLy8JDg6Wnj17yqxZs+Snn36yL3e94SASEhJkzJgx0q5dO/H39xez2Szdu3eXN954w2H8Tle/x+GG6lzfazTc0PWG8Dh+/LhMnjxZQkJCxNvbW4KCgqRLly4SHx/vMMaiyNUxU4cNGyYWi0WUUgJAEhMTReS34YZsP1/LarXKBx98IL///e/F19dXmjVrJpMnT5ZffvnFZT2pbrghV3VDpOo6VVRUJG+88Yb06tVLAgICxM/PT9q2bSsPPvigfPrppw5jRoqIHDt2TIYNGyaBgYFiNBpl6NChcuzYsVoNAVPd/q9u6JWq9mNZWZm89dZb0qVLF/Hx8RGj0SgDBgyocmi0wsJCmTlzprRs2VJ8fHzk7rvvlg8//LDacl24cEH+9Kc/SWhoqPj4+IjJZJK77rpLpkyZItu2bXNY1t3DDdX2380Ybqiqz+/qfK7tvaM255pNbeqyjW0sSgCSnJzschmtyl5YWCjTpk2TO+64wz7c0fLly6vcx4cPH5bBgwdLUFCQ/XzfunVrlfWnuutTdXVux44dMnToULFYLOLt7S0dOnSQv/zlLy7vXXW5/lQWFhaWra6uxzMopQaGhYWt2bVrV/VvSXgwpRQGDBhQ6yE/qH5atWoVnnnmmXUZGRkPubssnkYppTMYDKVlZWUN8skKeb5JkyYVLl68OF5EPrn+0jeX0WjM/PnnnxvV5c1+Iq3069cvp0H2sSQiIiKiW4/BkoiIiIg04WnBUuo6FAiRO1RUVEBEeNLWkYhUPbAokZv9ej+qLy/W8P5IbldRUeFxb4XnuGs4jFvFk/q80vVlZ2ejrKws093l8EQiYvXx8SkrKirSXzu+HFF9kJGRUQHAefRrN/Dy8irIyclp3KJFC3cXhW5j2dnZytNaLI+npKR4Z2dnu7scRDWyefPm/Pz8fOeB86hGAgMDjyUmJrq7GEROKioqsGvXLi8A37m7LABgtVp3b9++nS0T5DZZWVlISUnx9qhgKSLFvr6+264dD4qoPsrNzUViYqIXgI3uLounys7OXrhkyZL6/wXOdNtJTEyEwWA4IyLO38DgBrm5uUsWLVqUz6de5C5r166Fn5/fNx4VLAEgOzv75WeffbagPn5LApFNQUEBBg0aVOjl5fWhiOS5uzyeSkT+vWXLluy//e1vN+era4jq4Pjx44iNjS3Mycm5uV9JVjvbz5w5cyY+Pr6E4ZJutV27duHZZ58tyM7OfsWjxrG0UUr19/Pz2xQZGSnjx483dujQAf7+/lCK/fzJfcrKypCeno4NGzaULlu2rPzKlSuf5ufnPyOeWMnqEaVU88DAwD0dOnSwxMXFmXr37q1MJhPrO91SxcXFOHfuHBISEgo3btyoKy0tnVheXu78/bNupJQymkym5GbNmrWbOHFiwIABA/QWi8X+bW1EWhERFBUV4eTJk1i6dGl+YmKiKi4uHi4iOzwyWAKAUsoEYESjRo3GK6XaWK1WflkzuVuFXq/PysvL23DlypUEETnp7gI1FEopLwCRZrN5vMFg6GG1Wo3uLhPdXpRSpUqpi5mZmcsBfC4iGe4ukytKKR2A+41G4+Pe3t5hVqvVBIB/hZHmdDpdsYicy8rKWgpgo+3pnMcGSyIiIiKqX9g+TkRERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk0wWBIRERGRJhgsiYiIiEgTDJZEREREpAkGSyIiIiLSBIMlEREREWmCwZKIiIiINMFgSURERESaYLAkIiIiIk38P15l6z13QikBAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 700x210 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_grid_search_overview()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameter grid:\n", "{'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}\n" ] } ], "source": [ "param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}\n", "print(\"Parameter grid:\\n{}\".format(param_grid))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import GridSearchCV\n", "from sklearn.svm import SVC\n", "grid_search = GridSearchCV(SVC(), param_grid, cv=5,\n", " return_train_score=True)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(\n", " iris.data, iris.target, random_state=0)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GridSearchCV(cv=5, estimator=SVC(),\n", " param_grid={'C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]},\n", " return_train_score=True)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "grid_search.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test set score: 0.97\n" ] } ], "source": [ "print(\"Test set score: {:.2f}\".format(grid_search.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best parameters: {'C': 10, 'gamma': 0.1}\n", "Best cross-validation score: 0.97\n" ] } ], "source": [ "print(\"Best parameters: {}\".format(grid_search.best_params_))\n", "print(\"Best cross-validation score: {:.2f}\".format(grid_search.best_score_))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best estimator:\n", "SVC(C=10, gamma=0.1)\n" ] } ], "source": [ "print(\"Best estimator:\\n{}\".format(grid_search.best_estimator_))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Analyzing the result of cross-validation" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>mean_fit_time</th>\n", " <th>std_fit_time</th>\n", " <th>mean_score_time</th>\n", " <th>std_score_time</th>\n", " <th>...</th>\n", " <th>split3_train_score</th>\n", " <th>split4_train_score</th>\n", " <th>mean_train_score</th>\n", " <th>std_train_score</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5.99e-04</td>\n", " <td>4.89e-04</td>\n", " <td>1.99e-04</td>\n", " <td>3.99e-04</td>\n", " <td>...</td>\n", " <td>0.37</td>\n", " <td>0.36</td>\n", " <td>0.37</td>\n", " <td>5.58e-03</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>5.98e-04</td>\n", " <td>4.89e-04</td>\n", " <td>0.00e+00</td>\n", " <td>0.00e+00</td>\n", " <td>...</td>\n", " <td>0.37</td>\n", " <td>0.36</td>\n", " <td>0.37</td>\n", " <td>5.58e-03</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3.99e-04</td>\n", " <td>4.89e-04</td>\n", " <td>3.99e-04</td>\n", " <td>4.89e-04</td>\n", " <td>...</td>\n", " <td>0.37</td>\n", " <td>0.36</td>\n", " <td>0.37</td>\n", " <td>5.58e-03</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>7.98e-04</td>\n", " <td>3.99e-04</td>\n", " <td>0.00e+00</td>\n", " <td>0.00e+00</td>\n", " <td>...</td>\n", " <td>0.37</td>\n", " <td>0.36</td>\n", " <td>0.37</td>\n", " <td>5.58e-03</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>3.99e-04</td>\n", " <td>4.89e-04</td>\n", " <td>2.00e-04</td>\n", " <td>3.99e-04</td>\n", " <td>...</td>\n", " <td>0.37</td>\n", " <td>0.36</td>\n", " <td>0.37</td>\n", " <td>5.58e-03</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 22 columns</p>\n", "</div>" ], "text/plain": [ " mean_fit_time std_fit_time mean_score_time std_score_time ... \\\n", "0 5.99e-04 4.89e-04 1.99e-04 3.99e-04 ... \n", "1 5.98e-04 4.89e-04 0.00e+00 0.00e+00 ... \n", "2 3.99e-04 4.89e-04 3.99e-04 4.89e-04 ... \n", "3 7.98e-04 3.99e-04 0.00e+00 0.00e+00 ... \n", "4 3.99e-04 4.89e-04 2.00e-04 3.99e-04 ... \n", "\n", " split3_train_score split4_train_score mean_train_score std_train_score \n", "0 0.37 0.36 0.37 5.58e-03 \n", "1 0.37 0.36 0.37 5.58e-03 \n", "2 0.37 0.36 0.37 5.58e-03 \n", "3 0.37 0.36 0.37 5.58e-03 \n", "4 0.37 0.36 0.37 5.58e-03 \n", "\n", "[5 rows x 22 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "# convert to Dataframe\n", "results = pd.DataFrame(grid_search.cv_results_)\n", "# show the first 5 rows\n", "display(results.head())" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PolyCollection at 0x20b5caf20c8>" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDI4MS4xMzY4NzUgMjYyLjE4Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK1ZyY7cNhC98yt4TA6hWdx5tLMYyC3JADkEORheJhlYBmwD8e+nKKlHJbGqqcbMwZ7uJ1W9x+p6RS2gH9SLl6Dvv2qrH/DfN/2X/hv/vtOgX+sXP73/79+3739//Uq//aos4pNyBQz4VHLErx/pV5ecgeLx00c8l377R6lPClkw4jUmvlcqJhPqHOWziaGdhqmzN9Xv0Y8UdTGYuubcMlAUmT6oz5pJ7yCbEC5/vrzXf+pP+sVLN6/duJStDfgB/y85KGu8qwGi/nKPgh8eq9IW0J2tydnC0jYQV5NXsdWZ7GWQ1IDJua6VO3/iM4MrpuYrKMnNqlgIuYBJSp6icXAFJdl5ISsnEzEJ2Z0FE+IVlHKyShZOLmKSsuMZqft9CUr7mVWycjIRk5R98wWPUk5WycLJtCbtVwBsc3fsCh4lOtiGP3YsIeRTk54Q4JGdup4lnFL2rSkEeGiqrmspK5+etIUAD33V9S1hldJvjSHAQ2d1nUtZhfRbkwrw0FvH3t3y7Jo3JBzWXfPyKFHCt//MaQ1AjeBw6CebQ2rTPwbroLS94upRxbJNgjLanQI8tOaqOJVSQ5NSUgyhNJXFZRcXxVeOKp5uEsWR3hbgsbtX0dUlsKnJqtn7psoGm2HRLB9UPNskaaPGEODxbFglX7kuGF01sHyTqI74SoDHo6Uz7o5YYCDOFeDxdHm6jziH73xfnIm2cwaPknXwk2PVW2Is0FqulGTbB1tziG6RKx9ULNck6KKeEODhTLsYKAU0djMLFt7NJnEeG251kHxU8XSTKI6YQoDHc+1S5JJcngtZsVtmt9TYPixVlo8qnm+S1FFTCPB4sF1EQ4h5nkbF+zrXEqwPeRUtH1U83ySqI4YS4PFouwyr4AGaGledrc1p0ZcIaR1W8lHF802iOjIcBHg82p7qQW420ImBk8Xk7uaHR+kq+JnzdAdybJOgjDhKgMfz8KK4ejdfAlSbIOamKWDPrk1x5aji6SZR3GYoAT4xFZ93ZlDRvDpiKAE+MRZX0dlbvO5qsjJUaOMBYrKuLqKvHFU83ySq2wwlwCfG4mXLLs7Fpibg9VeZN+WYYbWffFDxbJOojTzy4eETQ/HpHuSmwyQ8eCLO5FGyDn7qHG+OKSefnVpLgIdT7ckX2xzZJEojvhLg8Vx7VtfvRPPqqK8EeDzYntX1VLSkjjhLgMeD7Rldv5MsaOMf9ErDgF/JLPk3/fnx0a5eHuBiTcnD7fkxrr5XOZjUPVYkYDB2zateKdDf1Ks7/eIX0GD13QeV8A5uOe6cqVHfvVPftbs7+F7fPeif79RMqtqtT+keJFL0Ok2tJrtgkzvwHGlCxh7vaAh6nQZ8bdv5YTVHkuKN7x43U3RAUlpPZyg7mgOJg2pi94SZotdJHHi04J7BHihixOvyjoKgA4p2aZpzAbdneaTZrxrPhqwrhswR7dz7N9P0Zi9q2xdQR7rc1GL2AyhImsfGfCKYkuYQoSM3ogq48x2JHkGBKBvn2zJKwZ2A8og0bZJDOPJsKE/kvYl17ntwwfhAqGSmhGeWjukR5ZmCN+Dn83B8lUcekcVZa5I7smyosJ5k1paBmkxxG48ViTCmdJ2woQIRTuPFYlhCmwgP358WR+QPuFniHZfJdS5EwKuFjLtP69ZpfvXXEvx4CXf61+WN4W6s7t8XDl6E0Rmv/mBfXEzSnoDn3/AGcXf2luZadovrg3XrgMNb0fYCc78PeBPKMqDbb2TjXMKlUX1mK05m+tkQ8LFdrt4Wk51x9rYYZ4sJ4caYgHvmjSUgVStt57mtamdDaNVOx5CqnY2hVTsdQ6p2NoZUDQcJDrXbytbH5G32rC/o7bG/aQ37BFXY80gRmaB0CVpcxriKVvT0UmlJTwfRmibAEX5jfWh9u/gahn3JBKVxTfugOOxMJsiPfwha0y5BHNeH1rfm9pppXB9a0z5GKA+taR80NjsTdKKmfRDcVtMuQSy31NThtSrYE/WhNxJnY2hNmSC+PLSmp4NoTZmg22raJ9hq+pv6H0x1bu8KZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxNTI0CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJxFUktyxTAI2+cUXCAz5mfj87xOV+n9t5VwOt089AwICTI9ZUim3DaWZITkHPKlV2SI1ZCfRo5ExBDfKaHArvK5vJbEXMhuiUrxoR0/l6U3Ms2u0Kq3R6c2i0Y1KyPnIEOEelbozO5R22TD63Yh6TpTFodwLP9DBbKUdcoplARtQd/YI+hvFjwR3Aaz5nKzuUxu9b/uWwue1zpbsW0HQAmWc95gBgDEwwnaAMTc2t4WKSgfVbqKScKt8lwnO1C20Kp0vDeAGQcYOWDDkq0O12hvAMM+D/SiRsX2FaCoLCD+ztlmwd4xyUiwJ+YGTj1xOsWRcEk4xgJAiq3iFLrxHdjiLxeuiJrwCXU6ZU28wp7a4sdCkwjvUnEC8CIbbl0dRbVsT+cJtD8qkjNipB7E0QmR1JLOERSXBvXQGvu4iRmvjcTmnr7dP8I5n+v7Fxa4g+AKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1NSA+PgpzdHJlYW0KeJxFkUuSAyAIRPeegiOA/OQ8mZpVcv/tNJhMNnaXqP2ESiOmEiznFHkw/cjyzWS26bUcq52NAooiFMzkKvRYgdWdKeLMtUS19bEyctzpHYPiDeeunFSyuFHGOqo6FTim58r6qu78uCzKviOHMgVs1jkONnDltmGME6PNVneH+0SQp5Opo+J2kGz4g5PGvsrVFbhONvvqJRgHgn6hCUzyTaB1hkDj5il6cgn28XG780Cwt7wJpGwI5MgQjA5Bu06uf3Hr/N7/OsOd59oMV4538TtMa7vjLzHJirmARe4U1PM9F63rDB3vyZljctN9Q+dcsMvdQabP/B/r9w9QimaICmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVG7ccUwDOs1BRfwnfiVNI9zr8rbvw1AOxVhGgRAqrxkSrlc6pJVssLkR4fqFE35PmCm/A71kOPoHtkhulPWlnsYCMvEPKWOWE2We7gFgS8MTYm5hfP3COgrBqMwE4G6xd8/QLMkMGlw8FOQa61aYokOPCwWWLMrzK0aKVTIVXw7NrkHBXJxs9CnHJoUt9yC8GWIZEdqsa/LZSnyu/UJGIQV5ohPFImF54EOZiLxJwNie/bZYldXL6oRGdZJhwdSBNJsbhIwNEWy6oMb2FfHNT9PR9nByUG/isH4NjiZL0l5XwWhEI8X/g7P2cixkkMkFPJ9tcCII2yAEaFP7SMQZSA0RffumVI+JlWK7wBGIRx9qlcyvBeR2WqGzf8ZXdkqCgZVWR+fRnAmg0k482SjCtNStdO/+9zj8wdjY3qACmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILrSAHL4EpEKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgNTEgL3RocmVlIC9mb3VyIC9maXZlIC9zaXggL3NldmVuIC9laWdodCAvbmluZQo2NyAvQyA5NyAvYSAxMDMgL2cgMTA5IC9tIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0MgMTYgMCBSIC9hIDE3IDAgUiAvZWlnaHQgMTggMCBSIC9maXZlIDE5IDAgUiAvZm91ciAyMCAwIFIgL2cgMjEgMCBSCi9tIDIyIDAgUiAvbmluZSAyMyAwIFIgL29uZSAyNCAwIFIgL3BlcmlvZCAyNSAwIFIgL3NldmVuIDI2IDAgUiAvc2l4IDI3IDAgUgovdGhyZWUgMjggMCBSIC96ZXJvIDI5IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzM4LTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDMxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA4MzA5IDAwMDAwIG4gCjAwMDAwMDgxMTUgMDAwMDAgbiAKMDAwMDAwODE0NyAwMDAwMCBuIAowMDAwMDA4MjQ2IDAwMDAwIG4gCjAwMDAwMDgyNjcgMDAwMDAgbiAKMDAwMDAwODI4OCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxOTk3IDAwMDAwIG4gCjAwMDAwMDY4NjcgMDAwMDAgbiAKMDAwMDAwNjY2NyAwMDAwMCBuIAowMDAwMDA2Mjc2IDAwMDAwIG4gCjAwMDAwMDc5MjAgMDAwMDAgbiAKMDAwMDAwMjAxOCAwMDAwMCBuIAowMDAwMDAyMzIzIDAwMDAwIG4gCjAwMDAwMDI3MDAgMDAwMDAgbiAKMDAwMDAwMzE2NSAwMDAwMCBuIAowMDAwMDAzNDg1IDAwMDAwIG4gCjAwMDAwMDM2NDcgMDAwMDAgbiAKMDAwMDAwNDA1OCAwMDAwMCBuIAowMDAwMDA0Mzg2IDAwMDAwIG4gCjAwMDAwMDQ3NzkgMDAwMDAgbiAKMDAwMDAwNDkzMSAwMDAwMCBuIAowMDAwMDA1MDUyIDAwMDAwIG4gCjAwMDAwMDUxOTIgMDAwMDAgbiAKMDAwMDAwNTU4MiAwMDAwMCBuIAowMDAwMDA1OTkzIDAwMDAwIG4gCjAwMDAwMDgzNjkgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzEgPj4Kc3RhcnR4cmVmCjg1MjMKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAARkAAAEGCAYAAABRkOFZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3hUZdrH8e8zM+khCaFkJgESlCZSlaULKNKk7tKxru6LK4vrqqwoCgioYJfiuuuKdVXc1VVAaaKAAqFERcRFIEAIIb2QSsrMPO8fMyZMSGiTYwa8P9fFlZnzPGfOb0655xTmjNJaI4QQRjHVdwAhxOVNiowQwlBSZIQQhpIiI4QwlBQZIYShLPUd4JfQONKsWzT/VbzVi+LEt64w+lqeUqdvrTspmY3rO8IZTmWmZGutm9TU5ltzzyAtmlvYti66vmP4rBJdUd8RPJRoR31H8PBTeUR9R/Aw48Wp9R3hDHuXPnCstjY5XBJCGEqKjBDCUFJkhBCGkiIjhDCUFBkhhKGkyAghDCVFRghhKCkyQghDSZERQhhKiowQwlBSZIQQhpIiI4Qw1K/iC5LnsmFTCX+dnYvDCXdMDmXGvZ5fiEtOsfPHB7LJznHQMMLE8qVNaBbtmnXHU+xMm5FNSqoDpeDjfzUltrnfZZUH4ItNpcyak4/Tqbllcgj3TW/g0X48xc6fHzhJTq6DiAgTf18SSXS0GYCmzU/Qvp0rQ0yMmXffbOR1ns2bynh8bgEOB0yaHMSfpod6tKekOJjxYD65OU4iIhSLl0Rgc+eJa5FOu3au+RUdY+b1Nxp6nWf3liJemZ+J06kZOiGCSfd4vseMExU8/1Aa+bkOGkSYmPlCNE1srnky647j7P/uFB26BbFgeXOvswD0viqWmb8bgMlk4uP4fby+cbdH+6ju7bl/zHVkniwCYMXX3/Nx/D4A/jLqOvpd3RKlYMeBZJ7+aLNXWeq9yCilXgdGAJla6w7uYZHAB0AckARM0FrnKaUUsBi4CSgB7tBaf+vN9B0Ozf2zcvl0RRQxNgvX3ZTK8CHBXNXGv7LPI/NzmTIulFsmhLJ56ynmLsxj+VLXt9r/cF8WD/05goH9gygqdmJS3qTxvTw/Z5r56Ek+fL8x0TYzg27KZOjgQNq2qSpec+fnM3FcEJMmhPDV1jIWLMznlaWRAAQFKjZ/3tT7IKfleeyxAt59ryE2m5mRw3MYNDiQNm2qVucnFhQwdlwQ48cHsW1bGYsWFbJ4iatYBwYq1m2ou9slOByaZXMzWPR2cxpb/bh3TBK9bgwltnVAZZ9Xn8rkxt+FM3hsON9tL+b1Z7OY+YLrzgDj/y+S0lIna947WSd5TEoxa/wN3P3yf8k4Wch7M6awed9hjqTnevTb8O1BFn64yWNY55Y2ulwRzbhF7wDw5l8m0K1VMxISUy4+z0WPWXfeBIZWG/Yw8IXWujXwhfs5wDCgtfvfVOAVbyee8F0ZV8ZZaBnrh7+/YtzoED5dX+LR56eDFQzoGwhA/z6Ble37D5Zjt8PA/kEAhIaYCA72bpb6Wh6Ab78rp2WchbhYC/7+it+ODmbt+lKPPgcO2ennznRdH3/Wbiit6aXqxJ49FcTFmYl15xk5OpAN1aZ36JCDvn1chbl3b38+31BmWJ4D35cSHeuPrYU/fv6K/iPC2P55kUef5MQyuvYOBqBLr2DiN1a1d+0TQnBI3W2KHWKtHM86yYmcfOwOJ+u+PcCAjlee17haQ4CfGT+LCX+LGYvZTE5hyblHPIt6LzJa66+A3GqDRwNvuR+/BYw5bfjb2mUHEKGUsnkz/dR0BzHRVZ+AMTYLqWme9zPp2N6flWtcM3rl2hIKizQ5uQ4OHa4gPNzEpLsy6TkolVnzc3E4vLvhkq/lAUhLd1Ye+gBE28ykpXtmurq9H6vXnALgs7WlFBVpcnNdfUrLNAOHZTJkRCZr1p3yOk96mpNoW1Uem9VMRprTo0/7qyysWeMqPOvWllFUpMnLc/UpK9MMvymb0SNzWL/O+2KYnV5BE1vVMmtis5CT4XmPnivaBbJ1XSEA29YXUVLkpCDPmPvmNI0IJf1kYeXzzJNFRIWHntFvYOfW/GfmLTx35wiiIlzte5PS2H3wOBsXTGXjE1PZvj+JoxnVN88LU+9FphZRWus0APffn/e1Y4Djp/VLcQ87g1JqqlIqQSmVkJ1T+8Ks6WenVLVDjKfmNOTr+FJ6Dkpla3wp0TYzFovC4YDtO0tZOKchW9faOJps550Pis58wQvga3nON9O82eFs31HG9YMz2b6jDJvVhMXi6rRnl5Uv1jblHy9H8ujcfI4m2b3LU8Ow6nkend2AnTvKGTYkmx07yrFaTZjddSl+ZxM+W9OYJcvCmfd4AUle5qlJ9TxTZzVh784S7hlxlL27SmhstVTmqfNp1zCs+u+rbdl3hGHzljP+6X+x80AyT9wyBIDmjcNpaY1k8JzXGDT7n3Rv05xrrqxxEztv9X5O5gLVOP9q6qi1fhV4FeCazgG1fpzH2MycSK1ayU6k2bFZPZd+tNXCiuWuOldU7OSTNSWEh5mIsZnp3MGflrGucxMjhwaz6xvvdst9LQ9AtM1EampVoU5Nc2CN8sxks5p567VGlZlWf3aKsDBTZRtAXKyFPr0C+GFfBS3jLn7Vs9lMHnt3aekOmlo9Py+tVjOvvuY6oVtc7GTtmtLKPFZ3nthYCz17+fPjPjtxXuRpbPUjK61qmWWl2Yls6nmyvVGUH3P/3gyAU8VOtq4rJCTMmCqTcbIIa0TVifmmEaFkFhR79MkvqdqD+2j7D9w3qi8AN3RqxQ9J6Zwqd+2JbdufRKc4G98ePnHReXx1Tybj58Mg999M9/AU4PTT782AVG8mdG2XABKP2klKrqC8XPPhymKGDw726JOd48DpdNWpZ5fmc9vE0MpxT+Y7yXLvKW3eWkq7Nt5dyfG1PABdu/hz5KidY8l2yss1H68sYejgQI8+OblVmRYvLWTKpBAATp50UlamK/vs3F1G2zbefbZ17uzH0aMOkt15Vq8sZdCgAI8+ubnOyjwvLytm4sSgM/Lk5jpJ2F1Bay/ztO0UyImkctKOl1NRrtnyaQG9bvQ8PMnPtVfmWfFKDkPGh3s1zbP5MTmdFk0aEhMZhsVsYug1bdnywxGPPo3DQiofD+h4ReUhUXpeIde2aobZpLCYTFx7ZTOvD5d8dU9mFXA7sMj9d+Vpw6crpVYAPYD8nw+rLpbFonjhyUhGTcnA4YDbJoXSvq0/85/J45rOAYwYEszX8aXMWZiHUtCnRyAvPeX6xDabFU/NjmT4hHS0hq6d/Lnz5gbnmOKllefnTIueiGD8lGycTpgyMYR2bf1Y+GwBXTr7MWxwENu2l7NgYT5KQa+eATzzpOtKzsFDFTz48ElMCpwa7pvewOOq1MXmWbAgjFtvzsPhhIkTg2jb1o/nny2kY2c/Bg8OJH57OU8vKkQp6NHDnwVPhgGQmGjnkZkFmEzgdMK0P4V4XJW6GGaLYvrjUcy6/ThOJwwZH05cmwDeejGLNh0D6XVjA77fUcLrz2ahFHTsHsz0eVGV4z8w4RjHj5RzqtjJlN6JPLDISrd+Z55DOV8Op2bhh1/yyrTfYTIpPtnxI4fTc5h2Uy9+TM5gy74jTOnfhQEdrsTudFJQUsrsf60H4PM9h+jepjkfPnwrGti+P4kt+46cfYLnoOr7t7CVUu8DA4DGQAYwF/gE+DfQAkgGxmutc92XsJfhuhpVAvxea51wrmlc0zlAy43Eayc3Ej87uZH4ue1d+sA3WutuNbXV+56M1npyLU0Da+irgT8Zm0gIUZd89ZyMEOIyIUVGCGEoKTJCCENJkRFCGEqKjBDCUFJkhBCGkiIjhDCUFBkhhKGkyAghDCVFRghhKCkyQghDSZERQhhKiowQwlD1/i3sX0KF1qQ4jLuR9IVoZg44d6dfWENT8Lk7/YJKHIXn7iQuGbInI4QwlBQZIYShpMgIIQwlRUYIYSgpMkIIQ0mREUIYSoqMEMJQUmSEEIaSIiOEMJQUGSGEoaTICCEMJUVGCGEoKTJCCEP9Kr6FfS5fbSrlyccLcDhg/ORg7v5TqEf7iRQ7j8zIJy/HSXiEieeWRGC1mSvbiwqdDL0+i0FDA5n7RLjXeTZsKuGvs3NxOOGOyaHMuNfzB9+TU+z88YFssnMcNIwwsXxpE5pFuxbl8RQ702Zkk5LqQCn4+F9NiW3u53WmdV8Wc/+cLBwOuGtKGDPvjfRoP3a8gj88kEFWjoPICDNvL4uiWbQfm7aV8ODcrMp+PyVW8N4rVsYMC60+iQuyeVMZj891LbNJk4P403TP10tJcTDjwXxyc5xERCgWL4nAFu1aZnEt0mnXzjW/omPMvP5GQ6+yAOzeUsQr8zNxOjVDJ0Qw6Z5GHu0ZJyp4/qE08nMdNIgwMfOFaJrYXMtl1h3H2f/dKTp0C2LB8uZeZwHofVUsM383AJPJxMfx+3h9426P9lHd23P/mOvIPFkEwIqvv+fj+H0A/GXUdfS7uiVKwY4DyTz90WavsvhskVFKvQ6MADK11h3cwyKBD4A4IAmYoLXO82Y6Dodm3mMFvPFeJFabmbEjshk4KIBWbao2zKefKGTM2CB+Nz6Y+G1lPLeokOcWV234Lz1XSPee/t7E8Mhz/6xcPl0RRYzNwnU3pTJ8SDBXtal6/Ufm5zJlXCi3TAhl89ZTzF2Yx/KlTQD4w31ZPPTnCAb2D6Ko2IlJ1U2me2dlsf6DGJrZLPQYlszIwSG0b1t124q/zs/mlvFh3D4hjC+3ljDrqRzeXmbl+j7BfLsxFoDcPAdteicxuL93t5ZwODSPPVbAu+81xGYzM3J4DoMGB9KmTdXq/MSCAsaOC2L8+CC2bStj0aJCFi9xLbPAQMW6DY29ylA9z7K5GSx6uzmNrX7cOyaJXjeGEtu6av68+lQmN/4unMFjw/luezGvP5vFzBeiARj/f5GUljpZ897JOsljUopZ42/g7pf/S8bJQt6bMYXN+w5zJD3Xo9+Gbw+y8MNNHsM6t7TR5Ypoxi16B4A3/zKBbq2akZCYcvF5LnpM470JDK027GHgC611a+AL93Ov7N1TQWycmRaxFvz9FcNHBbFxg+e9ZxIP2end17XC9OztzxcbSivb9u2tIDvLSd9+dXOfmITvyrgyzkLLWD/8/RXjRofw6foSjz4/HaxgQN9AAPr3Caxs33+wHLsdBvYPAiA0xERwsPeLeNd3pVwZ58cV7kwTRzdg1fpijz77D5YzsK9rutf3CTqjHeDDT4sYen2I15n27KkgLs5MrHuZjRwdyIbTlgnAoUMO+vZxFebevf35fINx9xM68H0p0bH+2Fr44+ev6D8ijO2fF3n0SU4so2tvV3Ht0iuY+I1V7V37hBAcUnebYodYK8ezTnIiJx+7w8m6bw8woOOV5zWu1hDgZ8bPYsLfYsZiNpNTWHLuEc/CZ4uM1vorILfa4NHAW+7HbwFjvJ1ORroDa3TVoY/VZiIj3eHRp91VFtavca3EG9aVUlykyctz4nRqFi0oYOZjYd7GqJSa7iAmuuoTOcZmITXNM0/H9v6sXONa8CvXllBYpMnJdXDocAXh4SYm3ZVJz0GpzJqfi8Ohvc50It1O8xjPTCfS7R59Ol3tz38/c204H68pprDISU6uZ+5/ryxk0m+9O0wCSE9zEn3a4arNaiYjzenRp/1VFta4l9m6tWUUuZcZQFmZZvhN2YwemcP6dZ7F6WJkp1fQxFY1f5rYLORkVHj0uaJdIFvXuW7GtW19ESVFTgryPOdPXWkaEUr6yaobf2WeLCIq/Mz5PrBza/4z8xaeu3MEURGu9r1Jaew+eJyNC6ay8YmpbN+fxNGM6pvhhfHZIlOLKK11GoD7b9PaOiqlpiqlEpRSCbm5ztq6oWvYBlW1Q4yZj4Wxa0cZo4dmsXtHOVFWExYzvPt2Cf1vCKg81q8L55PnqTkN+Tq+lJ6DUtkaX0q0zYzFonA4YPvOUhbOacjWtTaOJtt554OiM1/QgEzPzmnClvhTXDsoma/iTxFjs2A57WA8LcPOD/vLGTIgxPs8NQyrnufR2Q3YuaOcYUOy2bGjHKvVhNm9mOJ3NuGzNY1ZsiyceY8XkJRkP/MFvVQ9z9RZTdi7s4R7Rhxl764SGlstlXnqfNo1DNPVFuKWfUcYNm8545/+FzsPJPPELUMAaN44nJbWSAbPeY1Bs/9J9zbNuebKGK/y+Ow5GW9prV8FXgXo2Mm/1o9zq81MemrVJ0p6mpOmUZ5LP8pq5uV/uk50Fhc7Wb+mlAZhJvZ8U07CrnLee7uE4mInFRUQHKL46yMXv2cTYzNzIrVqpT+RZsdm9cwTbbWwYrmrvhYVO/lkTQnhYSZibGY6d/CnZazrfNLIocHs+sb7w4RmNgvHT3hmio7yXHWirRY+ej26MtN/1xQRHlaV+z+rChkzLAQ/P+9PEtlsJo+9u7R0B02tnp+XVquZV19zndAtLnaydk0pYWGmyjaA2FgLPXv58+M+O3FxF78pNLb6kZVWNX+y0uxENvU82d4oyo+5f28GwKliJ1vXFRISZkyVyThZhDWiQeXzphGhZBZ4Hr7ml1TtwX20/QfuG9UXgBs6teKHpHROlbv2xLbtT6JTnI1vD5+46DyX2p5MhlLKBuD+m+ntC3bs7EdSkoPjyXbKyzWfrTrFwEGe51dyc12HRgD/WFbEuImuY+vnlzZky84oNsU35eHHwhgzNsirAgNwbZcAEo/aSUquoLxc8+HKYoYP9jxRmp3jqMzz7NJ8bpsYWjnuyXwnWTmuDXDz1lLatfH+ytJvugSSeLSco+5MH6wsZOQQzz2S0zMtWpLL7yd5zocVnxQx6bcNqAudO/tx9KiDZPcyW72ylEFnWWYvLytm4kTX+aKTJ52UlenKPgm7K2jdxrvP2radAjmRVE7a8XIqyjVbPi2g142ehyf5ufbKPCteyWHIeO+vQtbmx+R0WjRpSExkGBaziaHXtGXLD0c8+jQOq1p+AzpeUXlIlJ5XyLWtmmE2KSwmE9de2czrw6VLbU9mFXA7sMj9d6W3L2ixKOYsCOOuW3JxOGDcxCBat/Vj8XOFdOjkx8DBgeyKL+P5RYUoBd16+PN4HVymPlueF56MZNSUDBwOuG1SKO3b+jP/mTyu6RzAiCHBfB1fypyFeSgFfXoE8tJTrsulZrPiqdmRDJ+QjtbQtZM/d97s/YZtsSiWPNWUYZNP4HDA7yeFcXXbAOY+k8O1nQMYNSSUzfElPPpUDkrBdT2DWPZUk8rxk45XcDy1gv69grzO8nOeBQvCuPXmPBxOmDgxiLZt/Xj+2UI6dvZj8OBA4reX87R7mfXo4c+CJ11FLzHRziMzCzCZwOmEaX8K8bgqdTHMFsX0x6OYdftxnE4YMj6cuDYBvPViFm06BtLrxgZ8v6OE15/NQino2D2Y6fOiKsd/YMIxjh8p51Sxkym9E3lgkZVu/S7+3JXDqVn44Ze8Mu13mEyKT3b8yOH0HKbd1IsfkzPYsu8IU/p3YUCHK7E7nRSUlDL7X+sB+HzPIbq3ac6HD9+KBrbvT2LLviNnn+A5qOrHar5CKfU+MABoDGQAc4FPgH8DLYBkYLzW+pxltmMnf/3fNXV3ydIbvvhrBQHK+72dunTCx36t4KfyiHN3+gXNeHFqfUc4w96lD3yjte5WU5vP7slorSfX0jTwFw0ihPDKpXZORghxiZEiI4QwlBQZIYShpMgIIQwlRUYIYSgpMkIIQ0mREUIYSoqMEMJQUmSEEIaSIiOEMJQUGSGEoaTICCEM5bNfkKxLBwuacuO6++o7BgAbh75Y3xHO0MygO7RdLpqavb+7YF2KOFxx7k4+RPZkhBCGkiIjhDCUFBkhhKGkyAghDCVFRghhKCkyQghDSZERQhhKiowQwlBSZIQQhpIiI4QwlBQZIYShpMgIIQwlRUYIYahfxbewz6V/szjm9hyIWSlWHNjLK3t3ebTP7nE9vaJbABBksdAoMJhO7ywFYGzrq7m3Sy8Alu6J56NDP3qd56tNpTz5eAEOB4yfHMzdf/L88fUTKXYemZFPXo6T8AgTzy2JwGqr+ip1UaGToddnMWhoIHOfCPc6D8CGTSX8dXYuDifcMTmUGfd6/j50coqdPz6QTXaOg4YRJpYvbUKzaNfqdTzFzrQZ2aSkOlAKPv5XU2Kbe/f725s3lfH4XNc8mjQ5iD9N95xHKSkOZjyYT26Ok4gIxeIlEdiiXfMorkU67dq5skXHmHn9jYZeZQHYtrmUZ+adxOnQ/HZSCHdOC/NoT02x8/hf88jLdRIWoXjqpUiibBZSU+w8eHcODifYKzST7whl/C2htUzl/HW/tiX3Th2IyaT4bMNe3vvPTo/2oTd24J47B5CV4/rd8Y9Xf8dnG/YCMGTg1dw2sTcAb3+wnfVfeLdOX3JFRin1OjACyNRad/D29UxKsaD3IG5e+2/SiwtZNfpWNiYf5tDJnMo+C3Zuqnx8R/uuXN0oCoDwgED+0rU3I1a+g9aaz8bcxufHEikoL7voPA6HZt5jBbzxXiRWm5mxI7IZOCiAVm2qNsqnnyhkzNggfjc+mPhtZTy3qJDnFldt9C89V0j3nv4XnaGmTPfPyuXTFVHE2Cxcd1Mqw4cEc1Wbqmk8Mj+XKeNCuWVCKJu3nmLuwjyWL20CwB/uy+KhP0cwsH8QRcVOTMr7PI89VsC77zXEZjMzcngOgwYH0qZN1er8xIICxo4LYvz4ILZtK2PRokIWL3HNo8BAxboNjb0LUS3Pwtl5/P3dJkRZzdw8KpP+NwZx5WnL7IUn8xkxNphR40LYta2UJU8X8ORLkTRpauat/zbFP0BRUuxk7OAM+g8KomnUxd9/w2RS/OWeG3nwsX+TlV3IP168jW07Ejl2PMej35df/cTiv2/0GNYgNJA7pvRh6n1vo9H8c/HtbNuZSFHRxa/Tl+Lh0pvA0Lp6sS5NbCQV5HG8MJ8Kp5PVR35iUGyrWvuPuvIqVh7ZD0D/mDi+PnGM/LJSCsrL+PrEMQY0a+lVnr17KoiNM9Mi1oK/v2L4qCA2bvBcwImH7PTuGwBAz97+fLGhtLJt394KsrOc9O0X4FWO0yV8V8aVcRZaxvrh768YNzqET9eXePT56WAFA/oGAtC/T2Bl+/6D5djtMLB/EAChISaCg71b7fbsqSAuzkysex6NHB3IhtPmAcChQw769nEVwd69/fl8w8VvJOeyb085zeMsNGthwc9fMWRkEJs/P+XR58ihCnr0cS2T3/QOqGz381f4B7iqbnm5Rju9z3NVGxsnUk+Slp6P3e7ky6/207dn7ev06bpf25KE75IoLCqlqKiMhO+S6HHtFV7lueSKjNb6KyC3rl7PGhxKWnFh5fO04kKswTXvrsaEhtG8QTjbU5Nd44Y0IK24oLI9vbgQa0gDr/JkpDuwRld9illtJjLSHR592l1lYf0a10a1YV0pxUWavDwnTqdm0YICZj7muavurdR0BzHRVXsJMTYLqWmemTq292flGldhWbm2hMIiTU6ug0OHKwgPNzHprkx6Dkpl1vxcHA7tVZ70NCfRpx0e2qxmMtI8t872V1lY455H69aWUeSeRwBlZZrhN2UzemQO69d5FqeLkZnu8DhcjbKZyay2zNpc5cfGta7C8qV7mZ3Mc/VJT7UzfkgGQ3umc8cfG3i1FwPQuFEomdlV63RWdiGNG525Xvbv04bXl93BvEdG06Rxg6pxs6qP693h2yVXZM6XUmqqUipBKZXgKCw+S8czB9W2CYy8oh1rjh7EqXVto6JrHfv86BpGV9UmNPOxMHbtKGP00Cx27ygnymrCYoZ33y6h/w0Blece6sr5ZHpqTkO+ji+l56BUtsaXEm0zY7EoHA7YvrOUhXMasnWtjaPJdt75wLs7zdU0h6vneXR2A3buKGfYkGx27CjHajVhds+W+J1N+GxNY5YsC2fe4wUkJdkNz/PAYxF8s6OMicMySNhZRlOrGbPZ1ckabeE/66NY9ZWV1R8Vk5PlqOEVz5+qPvEaUm7fmcjE3/+DO6e/yTd7jjHrgZtc49awVte0/C/EJXdO5nxprV8FXgUIiGtW62xKLy7Cdtrehy2kARklNW8Eo65ox+ztVcewacWF9LS1qHxuDWnAjrRkr3JbbWbSU6tWsvQ05xmfbFFWMy//MxKA4mIn69eU0iDMxJ5vyknYVc57b5dQXOykogKCQxR/fcS7PZsYm5kTqVUb4ok0OzarZ6Zoq4UVy5sCUFTs5JM1JYSHmYixmencwZ+Wsa7zEyOHBrPrG+8OXWw2k8eeVFq6g6ZWz89Lq9XMq6+5TugWFztZu6aUsDBTZRtAbKyFnr38+XGfnbi4i98Uoqxm0k/Lk5HmoEm1ZdY0yswLr7rOA5UUO/li7SkahJnO6HNlGz++3VXGoOHBF50nK7uQpo2r1ukmjRuQneO5ThcUVu3Bfbr+e+7+fX/XuDmFdOnY3GPcPT8cv+gscBnvyZyv77PSaBnWkOah4fiZTIy8oh2fH0s8o98V4Q0JCwjkm8zUymFbTiTRr1ksYf4BhPkH0K9ZLFtOJHmVp2NnP5KSHBxPtlNervls1SkGDvI8v5Kb6zo0AvjHsiLGTXStkM8vbciWnVFsim/Kw4+FMWZskNcFBuDaLgEkHrWTlFxBebnmw5XFDB/suRFk5zgqMz27NJ/bJoZWjnsy30lWjmsj3Ly1lHZtvLuy1LmzH0ePOkh2z6PVK0sZdJZ59PKyYiZOdJ0TOnnSSVmZruyTsLuC1m28+6y9urM/yUftnEi2U1GuWb/6FP0HBXn0ycutmj/LXy5kzATX/MtIs1Na6hpekO9kT0I5cVd6N39+OphGs5iGWKPCsVhM3NDvKrbt9FynIxuGVD7u06NV5UnhXd8c5Tdd4wgNDSA0NIDfdI1j1zdHvcpz2e7JnC+H1szZvpG3h43DrEz8++APHDqZwwPX9GFvdjobkw8DrhO+q4/85DFuflkpS76LZ/XoWwFY/G08+WXeHeNbLIo5C8K465ZcHA4YNzGI1m39WPxcIR06+TFwcCC74st4flEhSkG3Hv48XkeXqc+W6YUnI8gv8XUAABdsSURBVBk1JQOHA26bFEr7tv7MfyaPazoHMGJIMF/HlzJnYR5KQZ8egbz0VCMAzGbFU7MjGT4hHa2hayd/7rzZu/NWFotiwYIwbr05D4cTJk4Mom1bP55/tpCOnf0YPDiQ+O3lPO2eRz16+LPgSVexTUy088jMAkwmcDph2p9CPK5KXWyeh+dHcM9t2TgdmtETQmjVxo+/PZ9P+07+DBgUREJ8GUueKUApuLa7P48scO1lHUm088ITOSjlOiy5bWoordt5V2QcTs1Lr2zkuQXjMZkUaz7/gaTkHO68pS8/HUpn+85Exo66lj49WuFwOCksKmXRi2sAKCwq5e0V8fzjxdsAeOv97RQWebdOK+3tAdcvTCn1PjAAaAxkAHO11svPNk5AXDNtfUx+raA2zcx1dyWqLmQ7vT8ZW5dyHb71Wfzne+6t7whn+GrNzG+01t1qavOtuXcetNaT6zuDEOL8/erPyQghjCVFRghhKCkyQghDSZERQhhKiowQwlBSZIQQhpIiI4QwlBQZIYShpMgIIQwlRUYIYaizFhmlVCulVJ8ahl+nlLrSuFhCiMvFufZkXgIKaxh+yt0mhBBnda4iE6e13lt9oNY6AYgzJJEQ4rJyrm9hB56lLegsbT4l4FgJbabuOnfHX8CNr95f3xHOsOSGd+s7goe+gRX1HcHDnXE96zuCB39213eEC3KuPZndSqn/qz5QKXUX8I0xkYQQl5Nz7cn8BfhYKXUzVUWlG+AP/NbIYEKIy8NZi4zWOgPorZS6Hvj5h9Q+01p/aXgyIcRl4bzujKe13gRsOmdHIYSoRv4znhDCUFJkhBCGkiIjhDCUFBkhhKGkyAghDCVFRghhKCkyQghDSZERQhjqkvuZWiN0G9KFaS/9HpPZxNrlX/DB0594tI+4exCjpg3F6XByqqiUF+/+B8n7U7hhSl8mzBhd2a9lpxZMu3Ymh79P8ipP/2ZxzO05ELNSrDiwl1f2en65c3aP6+kV3QKAIIuFRoHBdHpnKQBjW1/NvV16AbB0TzwfHfrRqyw/+3ZLAa8tSMXp0AyaGMnYP0Z5tGeeKGfpzOMU5NoJjTBz//MtaGzzB+DLj3L5z8sZAIz/UxQ3jI30Os8Xm0qZNScfp1Nzy+QQ7pvewKP9eIqdPz9wkpxcBxERJv6+JJLoaDMAKSfs/GXGSU6kOlAKVrzTiBbNvdsUfG0d8qU8Smt90SPXNaXUUGAxYAZe01ovqtbeD9d9bDoBk7TWH57P64apSN1DDayxzWQy8caBxcwcvIDslFyW7VrIU1MWk7w/pbJPcIMgSgpPAdBrZDdG3jOEWTc96fE6cR1aMP+Th7it1fSzZjn4aveztpuUYvP4P3Dz2n+TXlzIqtG38udNn3LoZE6N/e9o35WrG0Xx16/XER4QyKejb2XEynfQWvPZmNsY/snbFJSXnXWa5/oWtsOhmXbjT8x76woaWf34628P8eBLsTRvXfUl/WemJ9Ht+jBuGBvJ3u2FfPFRHvc/34LCk3ZmjDnEc5+0Ril4cPQhnl/ZmtDw2jfqvoHZ58zT47oMPny/MdE2M4NuyuTVv0XSto1fZZ87p+Yw+MZAJk0I4autZbz/QTGvLHUVt1Hjsnjgzw0Y0C+QomInJhMEB9W+Uz+pWa+z5vml16FzqY88G/WH32itu9WYx5s3U5eUUmbgZWAY0B6YrJRqX61bMnAH8F5dTbdt91akJqaTfjQTe4WdzR9so/doz3n188IACAwJoKbCfMPkPmxasc3rPF2a2EgqyON4YT4VTierj/zEoNhWtfYfdeVVrDyyH4D+MXF8feIY+WWlFJSX8fWJYwxo1tLrTIe+L8EW64+1RQB+/ib6johg58Z8jz7HE0vp1DsUgI69Qtnlbv/uq0I69wmlQYSF0HALnfuE8u2Wmu6Ddv6+/a6clnEW4mIt+Psrfjs6mLXrSz36HDhkp19fVxG8ro8/aze42g8crMBhhwH9XG2hIaazFpjz4WvrkK/l8ZkiA3QHErXWR7TW5cAKYPTpHbTWSe6baDnraqKNYyLJSqnaS8hOyaVxTKMz+o2aNoS3Di3lD0/fwt/ue/2M9v4TerPp/a1e57EGh5JWXLURphUXYg0OrbFvTGgYzRuEsz012TVuSAPSigsq29OLC7GGNKhx3AuRm1FReegD0MjqR26G5z1f4toFEb/OVVh2bMjnVJGTgjx7DeP6nzHuhUpLd1Ye+gBE28ykpTs8+lzd3o/Va1wb0mdrSykq0uTmOjh8xE5YmOL2P+Rw/eBM5i7Ix+Hwbm/e19YhX8vjS0UmBjh+2vMU97CLopSaqpRKUEolVFD74YJSZw6rqaqv+tt6bm99L689/C5THh3r0daueyvKSspJ+vH4GeNdsJry1NJ15BXtWHP0IE533hpGRdc69vk7nyPq3z8SzY+7irl/5AF+3FlMI6sfZouqedyagnqZp/pynDc7nO07yrh+cCbbd5Rhs5qwWBR2O+zYVc682eF8vqYJx5LtvP/vEq/y+No65Gt5fKnI1LyNXCSt9ata625a625+BNTaLysllybNqqp842aR5KTm1tp/84pt9BnjeV5lwKQ+bFrhfcUHSC8uwnba3octpAEZJUU19h11RTtWHd5f+TytuBBbSFjlc2tIAzKKax73QjSy+pGdVl75PCe9gsgoP48+kVF+PPxKHC+ubsvND1oBCGlgrmHcciKbeo57oaJtJlJTq/ZcUtMcWKPMHn1sVjNvvdaITRuaMmuma56EhZmItpnp2MGPuFgLFovipiFB7P3Buz0rX1uHfC2PLxWZFKD5ac+bAalGT/TA7kRiWtuwxjXF4mdhwMQ+xK9K8OgT08pa+bjH8Gs4cSit8rlSin7jetXJsSvA91lptAxrSPPQcPxMJkZe0Y7PjyWe0e+K8IaEBQTyTWbVLNpyIol+zWIJ8w8gzD+Afs1i2XIiyetMrTsFk5ZUTsbxMirKnWz99CTdB4Z79CnIteN0uj4TPnolk4HjXCdZu/ZrwJ6tRRTl2ynKt7NnaxFd+3l3CNe1iz9Hjto5lmynvFzz8coShg72vFNsTq6jMs/ipYVMmRTiHteP/JNOsnNcRerrbWW0bePdlSVfW4d8LY8vXcLeDbRWSrUETgCTgClGT9TpcLLs3uUsXPcoJrOJ9W9s4tj/Urh93kQOJhwmfnUCo6cPo+vAjjgqHBTmFfHMHcsqx+/Y7yqyU3JIP5pZJ3kcWjNn+0beHjYOszLx74M/cOhkDg9c04e92elsTD4MuE74rj7yk8e4+WWlLPkuntWjbwVg8bfx5JeVnjGNC2W2KP5vbgzz7jiCwwk3joukRZtA3nsxnVYdg+h+Yzj7dhbxzrNpKAXtu4dy9+OuI90GERYmTG/KjDGHAJh4bxQNIrxb7SwWxaInIhg/JRunE6ZMDKFdWz8WPltAl85+DBscxLbt5SxYmI9S0KtnAM88GeF6L2bFvDnh/G5iNlpD547+3DolxKs8vrYO+VoeX7uEfROuS9Rm4HWt9ZNKqflAgtZ6lVLqN8DHQEOgFEjXWl99rtc92yXsX9q5LmHXB9+7kfjZL2H/0s51CVuc/RK2L+3JoLVeA6ypNmzOaY934zqMEkJcInzpnIwQ4jIkRUYIYSgpMkIIQ0mREUIYSoqMEMJQUmSEEIaSIiOEMJQUGSGEoaTICCEMJUVGCGEoKTJCCENJkRFCGEqKjBDCUD51qwej+NKtHoS4HF0Sv1YghLg8SZERQhhKiowQwlBSZIQQhpIiI4QwlBQZIYShpMgIIQwlRUYIYSgpMkIIQ0mREUIYSoqMEMJQUmSEEIbyqZ+prS/dhnRh2ku/x2Q2sXb5F3zw9Cce7SPuHsSoaUNxOpycKirlxbv/QfL+FG6Y0pcJM0ZX9mvZqQXTrp3J4e+TLqs8vphJ8lw6eerlW9hKqaHAYsAMvKa1XlStPQB4G7gWyAEmaq2TlFKNgA+B3wBvaq2nn8/0zvYtbJPJxBsHFjNz8AKyU3JZtmshT01ZTPL+lMo+wQ2CKCk8BUCvkd0Yec8QZt30pMfrxHVowfxPHuK2VucVqVa+lscXM0ke38vjU9/CVkqZgZeBYUB7YLJSqn21bncBeVrrVsCLwNPu4aXAbGBGXeVp270VqYnppB/NxF5hZ/MH2+g92nNe/bwwAAJDAqipMN8wuQ+bVmy77PL4YibJc2nlqY/Dpe5Aotb6CIBSagUwGvjfaX1GA4+7H38ILFNKKa11MbBVKdWqrsI0jokkKyWn8nl2Si7terQ+o9+oaUMYe/8ILP4WHho474z2/hN6M3fMM5ddHl/MJHkurTz1ceI3Bjh+2vMU97Aa+2it7UA+0OhCJqKUmqqUSlBKJVRQdpZ+Zw6rqaqv+tt6bm99L689/C5THh3r0daueyvKSspJ+vH4GeNdKF/L44uZJM+llac+ikwNs4Dqc+B8+pyV1vpVrXU3rXU3PwJq7ZeVkkuTZlX1q3GzSHJSc2vtv3nFNvqM6e4xbMCkPmxasfVC4l0yeXwxk+S5tPLUR5FJAZqf9rwZkFpbH6WUBQgHap9LXjiwO5GY1jascU2x+FkYMLEP8asSPPrEtLJWPu4x/BpOHEqrfK6Uot+4XnV2/sPX8vhiJslzaeWpj3Myu4HWSqmWwAlgEjClWp9VwO1APDAO+FIbdBnM6XCy7N7lLFz3KCazifVvbOLY/1K4fd5EDiYcJn51AqOnD6PrwI44KhwU5hXxzB3LKsfv2O8qslNySD+aeVnm8cVMkufSylNfl7BvAl7CdQn7da31k0qp+UCC1nqVUioQeAfoimsPZtJpJ4qTgDDAHzgJDNZa/6+GyVSSG4kLYayzXcKul/+Mp7VeA6ypNmzOaY9LgfG1jBtnaDghRJ2SrxUIIQwlRUYIYSgpMkIIQ0mREUIYSoqMEMJQUmSEEIaSIiOEMJQUGSGEoaTICCEMJUVGCGEoKTJCCENJkRFCGEqKjBDCUFJkhBCGkiIjhDCUFBkhhKGkyAghDCVFRghhKCkyQghDSZERQhhKiowQwlBSZIQQhpIiI4QwlBQZIYShpMgIIQwlRUYIYSgpMkIIQ9XLb2H7mm5DujDtpd9jMptYu/wLPnj6E4/2EXcPYtS0oTgdTk4VlfLi3f8geX8KN0zpy4QZoyv7tezUgmnXzuTw90mXVR5fzCR5Lp08Smt90SOf88WVGgosBszAa1rrRdXaA4C3gWuBHGCi1jrJ3fYIcBfgAP6stV7vHv46MALI1Fp3OJ8cYSpS91ADa2wzmUy8cWAxMwcvIDsll2W7FvLUlMUk70+p7BPcIIiSwlMA9BrZjZH3DGHWTU96vE5chxbM/+Qhbms1/Xwi1crX8vhiJsnje3k26g+/0Vp3qzGPN2/mbJRSZuBlYBjQHpislGpfrdtdQJ7WuhXwIvC0e9z2wCTgamAo8Df36wG86R5WJ9p2b0VqYjrpRzOxV9jZ/ME2eo/2nFc/LwyAwJAAairMN0zuw6YV2y67PL6YSfJcWnmMPFzqDiRqrY8AKKVWAKOB/53WZzTwuPvxh8AypZRyD1+htS4DjiqlEt2vF6+1/kopFVdXIRvHRJKVklP5PDsll3Y9Wp/Rb9S0IYy9fwQWfwsPDZx3Rnv/Cb2ZO+aZyy6PL2aSPJdWHiNP/MYAx097nuIeVmMfrbUdyAcanee4Z6WUmqqUSlBKJVRQdpZ+Zw6rqaqv+tt6bm99L689/C5THh3r0daueyvKSspJ+vH4GeNdKF/L44uZJM+llcfIIlPDW6X6O62tz/mMe1Za61e11t201t38CKi1X1ZKLk2aNap83rhZJDmpubX237xiG33GdPcYNmBSHzat2Hoh8S6ZPL6YSfJcWnmMLDIpQPPTnjcDUmvro5SyAOFA7nmOWycO7E4kprUNa1xTLH4WBkzsQ/yqBI8+Ma2slY97DL+GE4fSKp8rpeg3rlednf/wtTy+mEnyXFp5jDwnsxtorZRqCZzAdSJ3SrU+q4DbgXhgHPCl1lorpVYB7ymlXgCigdbALiNCOh1Olt27nIXrHsVkNrH+jU0c+18Kt8+byMGEw8SvTmD09GF0HdgRR4WDwrwinrljWeX4HftdRXZKDulHMy/LPL6YSfJcWnmMvoR9E/ASrkvYr2utn1RKzQcStNarlFKBwDtAV1x7MJNOO1H8KHAnYAf+orVe6x7+PjAAaAxkAHO11svPluNsl7CFEN472yVsQ4uMr5AiI4Sx6uX/yQghBEiREUIYTIqMEMJQUmSEEIaSIiOEMJQUGSGEoaTICCEMJUVGCGEoKTJCCENJkRFCGEqKjBDCUFJkhBCG+lV8QVIplQUcq4OXagxk18Hr1BXJc3a+lgd8L1Nd5YnVWjepqeFXUWTqilIqobZvmtYHyXN2vpYHfC/TL5FHDpeEEIaSIiOEMJQUmQvzan0HqEbynJ2v5QHfy2R4HjknI4QwlOzJCCEMJUVGCGGoX22RUUoNVUodUEolKqUerqE9QCn1gbt95+k/jauUesQ9/IBSashpw19XSmUqpfbVRzalVCOl1CalVJFSaln18erKeeTrp5T6VillV0qNMyrHWfLVyXKo6wxKqUil1OdKqUPuvw19KYdyWeJernuVUtfUSQit9a/uH66faDkMXAH4A98D7av1mQb83f14EvCB+3F7d/8AoKX7dczutn7ANcC+esoWAvQF/ggsq8d5Fwd0At4GxtXD8vV6ORiRAXgGeNj9+GHgaV/KAdwErMX1C649gZ11keHXuifTHUjUWh/RWpcDK4DR1fqMBt5yP/4QGKiUUu7hK7TWZVrro0Ci+/XQWn+F6/ej6iWb1rpYa70VKPUyg1f5tNZJWuu9gNPAHLWqo+VgRIbTl9tbwBgfyzEaeFu77AAilFI2bzP8WotMDHD6L4mnuIfV2EdrbQfygUbnOW59ZfslGP3+L2dRWus0APffpj6Ww5Bl+2stMqqGYdWv5dfW53zG9YY32X4J9TltYSxDlu2vtcikAM1Pe94MSK2tj1LKAoTj2u08n3HrK9svwej3fznL+Pnww/237n6wvG5yGLJsf61FZjfQWinVUinlj+vk6apqfVYBt7sfjwO+1K6zY6uASe4rPC2B1sAuH8n2SziffKJmpy+324GVPpZjFXCb+ypTTyD/58Mqr9TX2ff6/ofrTPpBXFdKHnUPmw+Mcj8OBP6D68TuLuCK08Z91D3eAWDYacPfB9KAClyfCnfVQ7YkXHs1Re4M7S8mg5f5fuOedjGQA/z4Cy/bOlkOdZ0B13mzL4BD7r+RvpQD1+HSy+7l+gPQrS4yyNcKhBCG+rUeLgkhfiFSZIQQhpIiI4QwlBQZIYShpMgIIQwlRUYIYSgpMkIIQ1nqO4C4vCilZgM34/qiXTbwDa4vcE7FdWuIROBWrXWJUupN4BTQDogFfo/rf6D2wnWbgTvcr1mE6z+J3QjkAbNw3a6gBfAXrfUq9z113sF1uwuA6Vrr7ca+W3E+ZE9G1BmlVDdgLNAV+B3w8+/5/Fdr/RutdWdgP67/dfqzhsANwP3AauBF4Gqgo1Kqi7tPCLBZa30tUAg8AQwCfovrfxqD6/s3g7TW1wATgSWGvElxwWRPRtSlvsBKrfUpAKXUavfwDkqpJ4AIIBRYf9o4q7XWWin1A5Chtf7BPe6PuG5+tQcoB9a5+/8AlGmtK9zjxLmH+wHL3IXJAbQx5i2KCyVFRtSlmm4VAPAmMEZr/b1S6g5gwGltZe6/ztMe//z85/WzQld9/6Wyn9ba6f4WOrj2hDKAzrj20I28cZe4AHK4JOrSVmCkUipQKRUKDHcPbwCkKaX8cJ2vMUI4kKa1dgK34rpNqPABsicj6ozWerdSahWu+/4eAxJwnfSdDex0D/sBV9Gpa38DPlJKjQc24foGuPAB8i1sUaeUUqFa6yKlVDDwFTBVa/1tfecS9Uf2ZERde1Up1R7XPW/ekgIjZE9GCGEoOfErhDCUFBkhhKGkyAghDCVFRghhKCkyQghD/T9bHHpGRel53AAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "scores = np.array(results.mean_test_score).reshape(6, 6)\n", "\n", "# plot the mean cross-validation scores\n", "mglearn.tools.heatmap(scores, xlabel='gamma', xticklabels=param_grid['gamma'],\n", " ylabel='C', yticklabels=param_grid['C'], cmap=\"viridis\")" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.colorbar.Colorbar at 0x20b5cc25ec8>" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDcwNC4wNjQzNzUgMjg2LjIgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic1V3LkuVGEd3rK7SEhTX1fiw9GBywM0wEC4KFwx4PTFgmbEfg3ydLV2plVmVeVXVrwwLTfe6tOqlUnlSpdFqj58/Tuy/1/OnXWc2f4X+/zf+Y/wn///2s56/nd199/O+/v/v416/fz9/9OinA1ykqt6jgbPTw64/4V5PCYgBSLz/9a5p+mmB2+ObXMOGnaXJ2iTFp42cfl+hTMg7mNNotLigXE4J/xLAxaXFO6xgAPychMLD9MP08txTWm+xmHdUS9l+0qX/95eP89/mn+d2XBpIxqcWEqJSb1QL/TbH8YMsX/fzLJziSzy9pKkf29NvSMZ9oSZYqcEmnWYzxOjkBxenh5t2zwI5Yhdm1gkxEY5yVYDw/H8uDlR2yigQmL1pnq7QEYwYhnJ2YG7OKDPAdH4INAkpo+Wh2WmbIKk0Pvyhtnc4STGjZYDZWteRsjUtQZFkF+CL8oJ3N8F2ozaefTjzdKgWHBCjAJGb+UB6p4sodi0DDnGHTIqkxAcbR8ELaU/VMxhey5dhWKTRUnRJ+LfNGRJhYZDgLVMI7xN7IiFBLFC9FKsAdaq+FRHiF+c86k/Brtd8qJRK0EB0SjYR3tItaTGgqoib4sRJSi+AoBCHWFxNC106Oa5SBOiT+dtnyhCsbG6prBurRd6MbyskQnDXdIj26rgVDCdvZUTkyUIecd0J20MrNjyudgXqk/HZ11log6oh68S4qn2khCvB+DK26GnXsTMKUuIYkXNRtc204yMRZUf1IuCzbG3RY86xySGfhCbAs2EYOB5cwJyo4CReV2irhIBNmxWUv4bJObxXBSU+UkDPMADdQiRadAONjEOTUaAITCwy4/iS8Q7KtRDC3SIJqSsJ7VHyvYkjkUoRngQpwTz9oBESoBQpUrBLeIfBWT4RbIMHikfAeyd8qrzOQVdqeOKtWgMnRCBpt5IWJBQZUsRLe0wdaeWFukeQsOwnv6gX3yotELkX4UrQC3NVGGnkRaoHirFgJ72kErbwIt0AibbpJspOC2ti/mX/et9RmNT82ztSS0C7jtn02f5p8gnOmg6f7VQh1izk2FKb3k55/m95/mN/9CbKt5g8/TB7OuUvb8hHYywU0eBUfG38fvp9+pxf1+/nD5/mPH6YtgAmidlAjmu5UIfSCMEJqsn/sLlqW0FDCsr5N2cdo6M4Lgi8otQpLdiaUBpb4g3QVJ3zHOpNstS2G4CtO6xeb8sYIX+I4Q8UJPTamnKoNphO9Ygx2STbE8OjTHGOijAZahrEhO0qJ4SvODC0v2WOnuOU0Z/nQgRrqLprHSQEVZygKq3N6Gfjp23X9loZ7dnbISX7UD1w0INga5YM1ME3UKfo5pEUnuJ7FbQebLXN0GYF0uMdeN2ZD8BVdDkuwxj/ODV/kiA56Rypf1JTuhK/o4OuQ2+wfKuMLHPHBqbfb+aN8J3zJ5+3iTYBus/UQtrgRX/Lw4yZEwnfCl3wJTnS00Gy2k82WNlpKQJ8wess85kPwFZ/R5Uwr6DRbeM/KWkGn/kJDY4bZYy7PdrTNS1APzg/r9iioTPCHY7iZ//J4gkS6O31+dPUchFxupr/x28yreIGCEUNPl8j30UxPGRQcp96vZLp6WlYecJE0urCkkBJcGktBhQzLKuedcodaYVXp2fxHaLraZ1VakB0ZqBUcUTC7aIZGWmiB0Ax0aYNuaGSAFZuPj8LKFyPV/jBQ1bnSCdZPymkbVOmd7CyB5adZzhGWj5C7bI4mhQc+Th1zqmjG2Um6Mj4ykmZ8ZCTN+PORvRl/nrgnGdcmwMo3BZ/U0afFkTTNFyPFk1XlnJ+mK+lDQ2nWh4bSVF8MFc9YlXdY1XgISId8XK968z4wss7186HyKavyzk7Tl/eRoVXenw/tzXuycMNjYvTxuG735n1gZJ3350O7885O05f3kaFV3p8P7cy70bD88zlZ54/1S2feR0ZWeb8Y2pt3fpquvA8NpXm/GCoYf+BUTJNxafG5uaeCUwErz8YNgWC6Z3DO0jp1yt7Ayxced0yvM+xM5SAW7YMp+3Mu5WDK1o/3cd/Ga/06wpensk8kHDqCiRcixgUWKVBpEkwcTdzcL5tbCU6TLkvolIIqP6gcnTePvS35w4lnW6XYrPJwm6pVCBJMQuaP5O27pyzfKkZn7ZJtY/NAMI5OOJYjaBWs3nJZCs9vudymeAQtfzrxfKsYXTCLTY3PA8EkaP5YjuIAXcPoUgBGuVByqV0Oe9BPPp14vlWMLsMstnGIIJgEzR/L27drWb5Vig51IAEmQfPHsgf9pJM8+3DiWwTpHNT5cSpLwklL4RvQjb2DBC0Eh5Ql4R3t8dbugcMWwzu1JeEdLfII28OiooQFX/Cb1GCCtActfTbxXKsc2qksCe9okHvIEb6fSrmCzrLXj1yaI+gnn0483yqHd2pLwjta5Ev/8NqVNBroDL60Na8D3KMe/UP8dOL5VjE81CkkvKNJ3thBiMsG44elBgmUgUhDERrQja2DRtuGhnXJQD1t8daeQeLlgkOiZKCejnhbs6CxMoEhJTJQTxu8tUvQeJngkAQZqKcH3toeaLxtcLg1MFBP87uzL+yeIwwRbxGSj4Qf/aLtKm9fITc8qxgSVo6Ey93u3n6whyqGhIQj4XKru68VHGFK4SC9SLjc4fYwQ94W4XB6Q4Qb9hJM9DnqR6BPPp1anlUOCUlFwuUGd28DOEIVQsJql3C5t92pfeyPwjjxQSGpSDhpDEIjubcVkMiFCLFyJLyn1d3bGXDkYoRITBLe0/nuaxQkaik6pCsJ72mC9/YNErkUIZKZhPf0xXvbCIlciBD3DAnvaZN3dhVsC5O2bJHWJJx2G6E73dtVSORChEhrEt7VP+/tKjhyMcJTbxLe1T/v6yokaim6U2sS3tU77+0qJHIpwlNrEt7VP+/tKiRyIULpAYzUbaQjGjNtGjj+st1cG3QQfGG827qEinm3sLXGu7I3rCu7X9Zl59jb6mEHgq9YE5SJdbtvj2etSC0kMsL5ytXDCgRfkEJDW2LQD/Mmf6g1JyRHh8YUi+ErzmIUUyO2WBvDElTji8XwFWeAJhRfnr0ynKoxKULfUr6xxmL4ihTqOTprdm8bR6oEr5vdDLhbF+txb6LrGrZvGgex1rBQfcZD21Jh5+kwceJrKXZxItJrGydl7fByYlZs5sSsl25Oytpj6cS02NOJaS9NnRVth7MT02JrJ6a99HZWtB0GT7zcwg5PRHtt8aS0r/F5GuhjAc7Orpg73J7Xj9Eb9yb3sG4Vr23FITrkUqADiOPzCceQ49N4KCxQxFZqhnUxRnXpe6muT6wX0vHNTMHxJR2T3ZxlAy5Ka2HVa15jVq0aPjvSXhpmYJG8ZPPUuer5Iq5yzvkYx3POuiG7cj7go6xyPjKS5pwdaUZzzs3iU0/OWUPjeNJ5X2RX1kdMqFXah4bSvPNDhxPPTtOZec7S+IrMD5gq68wPmEnrzI8MrTLPDtXDmeem6cw8Z2p8ReYHbJV15gfspHXmR4ZWmWeHjmeem6Yv86ytcTzzI8bKKvMjhtIq80NDaeb5ocOZZ6c5M//MFepgIe10c6MWjDs26PB6C8F0U+KchXeFnl/YVrBvcYXe8xq3zRcqHDyCifMMFv8pbH9jKcDEQMvN/fK2H27MKjF4WP5bVf7SkkcJLR/Ng5YbskrT2wRfabxpCMbz88HsrNyQVSQIEX5p7GUIJrx8ODsxN2YVGTLcc/nGIIZgQszHsxNzY1aJAYlKgAkxH89eV1zlkoKmTqizWCScVDqvi6akCbVAcRaMAHcory5qzCvNf9aLhF8rrylrQiwxnAUj4R3yawqbUEsUZ8lIeIcCm9Im1AIFKmIJ79BgU9z0HWkIP8w8qOoYiNS6oI2mqilnS4AqrkV6VFeXMyFkZkeFxkAdYmvqmDIy86MCY6AeoTUFTDkZAlRZDNQjsePBqs4ulUdiQcMpKA+WvI0h767IJ59OAuPKBYcrnoF6dPl2p30jCaoS4nhB1Sjhh4RaobUqOeiEaVEpCrAs4UYgO5c0JypBCRe122rjIJNmRcUn4bJybyjRmmeVQ0J1J+Gy4g+LMZyc+Higb+xWfyr78sPDYyx/OrU8qxgSlo6Ey43iXiGR960hnHg+UNVKOFGZoMpWV4RdYEFlLMA9ym9khqklClTSEt7RBm6QAUu4ygGiApfwnqZygypYxlWOENW7hPc0qLebYHjGVYwQi1fCe/rVvfIm73sT9jOQZCScyl5oE628CbvAcopGgLta0Q0a4whXMbxTMRLe08RuEBhLuMoBnoKR8K4eeIPAWMZVjvAUjIR3NcHmlo+yCyzSJqEkeymqMeeSg2MItn3UjOALx0kRq9HxePMX4zj5+IWKlc8lh0Wl+p8LQOgVJ4g0BLe/507grHwNHvLobfPCfwxfvVpPF4Vrv58antVXrN4sOTXOMAxfsVq/OPg8P54A886w2qXlIUHONNYwDF/RQgXAsardGNNlSAsqlz+Jqr1hGL5izdAM3MvjheeGtOrkFAOaOr7b9wK68zpD3kDnQE41LBSihuPMLxaT1sLEZAlf3cir6E7aSxOTg6qFk7Ob6BgTU2vcw7TklXSI9srF5GwxH2RvHofLuJga7x6mJW+mQ7RXLqaalnMx1U46REteUIdor1xMVZI5F1Pr4ENLIPKiupP30sZUFRVjY5JNfC9GJldclvrlHZm3vLbu8rlPbRliN+NX8VJXrE9DD9boAGJkesIx9uo6H6D2AnTgXC5vnB3HRvZUuOQWWEbt7WBkpNdwTEoFuLaXoEdGOli9uqe2K2lkhEV/fmq1kkbSnj2SIZpbznbTl9uBkVVuR0bS3I6MpLkdGUlzO5IhmlvWWdOX3JGhVXaHhtL0Dg2l+R0aShN84d96mmHOQdOZ4YGhdYZHhlYZHhlaZfiVZqs626x36cXmJvo46sxzDprOzA8MrTM/MrTK/CsdU/VZYA1IvEuwzvwr36JXZZ510PRlfmRolfnX2p6qs8C7iIT00cyPeJeqzF8MLTfuIUAmwuMV2AucK1jt5tnArUii/zhj2acp6xddHEnVoBUDaTGQOL09ATjR8ud92SaTdI1vX4wWTpcE4JEnjnlONB7/AuZ7vC1RL75U869s/jxrN5eFqoG1HcS3TfTdOr/7s56/+s/8zYQ2OB7L1nLGcZhmcSGHUO7pAoTsaphffoekjhl0Kv8EQ0wxG32opPorDcQHd8xZZxs85TvhS74ANxyweIJb/ZwPP5pIp6EwbPlzh0T5EH59gHBr7qMp/1xDDMeKIsiUHm4QdYrbjSOmPPFrSg83jUanDJ3fvTQ/kdIouFsKINv6LJ74JWV5Ab4r6ya4lT8u6klmdGUnIe23EYjxxK8ZnV9KzSiVVA6Hys8O9fxG6/9BzH+bvpn+B+dF6wcKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iago0MDU0CmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJxFUktyxTAI2+cUXCAz5mfj87xOV+n9t5VwOt089AwICTI9ZUim3DaWZITkHPKlV2SI1ZCfRo5ExBDfKaHArvK5vJbEXMhuiUrxoR0/l6U3Ms2u0Kq3R6c2i0Y1KyPnIEOEelbozO5R22TD63Yh6TpTFodwLP9DBbKUdcoplARtQd/YI+hvFjwR3Aaz5nKzuUxu9b/uWwue1zpbsW0HQAmWc95gBgDEwwnaAMTc2t4WKSgfVbqKScKt8lwnO1C20Kp0vDeAGQcYOWDDkq0O12hvAMM+D/SiRsX2FaCoLCD+ztlmwd4xyUiwJ+YGTj1xOsWRcEk4xgJAiq3iFLrxHdjiLxeuiJrwCXU6ZU28wp7a4sdCkwjvUnEC8CIbbl0dRbVsT+cJtD8qkjNipB7E0QmR1JLOERSXBvXQGvu4iRmvjcTmnr7dP8I5n+v7Fxa4g+AKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUyID4+CnN0cmVhbQp4nDM2M1QwUDCxVDAyNlEwNjQCYhOFFEMuoAiIlcsFE8sBs0CqcrigynNgqnK40gDpCQ3ACmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVRu3HFMAzrNQUX8J34lTSPc6/K278NQDsVYRoEQKq8ZEq5XOqSVbLC5EeH6hRN+T5gpvwO9ZDj6B7ZIbpT1pZ7GAjLxDyljlhNlnu4BYEvDE2JuYXz9wjoKwajMBOBusXfP0CzJDBpcPBTkGutWmKJDjwsFlizK8ytGilUyFV8Oza5BwVycbPQpxyaFLfcgvBliGRHarGvy2Up8rv1CRiEFeaITxSJheeBDmYi8ScDYnv22WJXVy+qERnWSYcHUgTSbG4SMDRFsuqDG9hXxzU/T0fZwclBv4rB+DY4mS9JeV8FoRCPF/4Oz9nIsZJDJBTyfbXAiCNsgBGhT+0jEGUgNEX37plSPiZViu8ARiEcfapXMrwXkdlqhs3/GV3ZKgoGVVkfn0ZwJoNJOPNkowrTUrXTv/vc4/MHY2N6gAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDUgL2h5cGhlbiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDY3IC9DIDk3IC9hIDEwMSAvZSAxMDMgL2cgMTA5IC9tIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0MgMTcgMCBSIC9hIDE4IDAgUiAvZSAxOSAwIFIgL2VpZ2h0IDIwIDAgUiAvZml2ZSAyMSAwIFIgL2ZvdXIgMjIgMCBSCi9nIDIzIDAgUiAvaHlwaGVuIDI0IDAgUiAvbSAyNSAwIFIgL25pbmUgMjYgMCBSIC9vbmUgMjcgMCBSIC9wZXJpb2QgMjggMCBSCi9zZXZlbiAyOSAwIFIgL3NpeCAzMCAwIFIgL3RocmVlIDMxIDAgUiAvdHdvIDMyIDAgUiAvemVybyAzMyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyAxNCAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMjcyIC9MZW5ndGggMzQgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggMTQgPj4Kc3RyZWFtCmiB5ZrBDcMwDAOdoqt0/7E6heOuwHscGLt5C+yZopQGyTW/n5Fdr7BujPG+x52WzhWX3mMpAEA1Lp2ENVclrOlFWGdaCQGuWDUHyFVJtBFrXApUZ4xrAawcIGe1AAxfJQdIt1JVtLXzYyGz8oGRWmAkyxpDoGrMVl81LmV/SJTtIjXWGRjjvmXFxQBAGVAAYlUp2pKvJK8Oa7v0zGOtsgNkCgir4wBRDSuRr3VWAHAoa/z7VrTjB3nogKE6FADHgbrqyPcAUSWlztYGAKA0NutqA1jdAqVds0hcEIDQAsIKWmCF0AEwou04sJGv9WRJAPVubZSBrQD6x0orH3EzMkp3auyxZsVvTtus/Wg/QDXulsQavxM/1gGDda9ox18w1H19wNLMB8ZZxZZZSrTJdnFCCFTrGfh71vKx2BMnYG2bJbHGHzQea5bigGLWiruFpsDpluLrcrqlDMzaR/UHhcCBwgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjM1NAplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDMzOS0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCAzNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMjI2NCAwMDAwMCBuIAowMDAwMDExNDU4IDAwMDAwIG4gCjAwMDAwMTE0OTAgMDAwMDAgbiAKMDAwMDAxMTU4OSAwMDAwMCBuIAowMDAwMDExNjEwIDAwMDAwIG4gCjAwMDAwMTE2MzEgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwNDUyMyAwMDAwMCBuIAowMDAwMDExNjYzIDAwMDAwIG4gCjAwMDAwMTAxNzMgMDAwMDAgbiAKMDAwMDAwOTk3MyAwMDAwMCBuIAowMDAwMDA5NTY1IDAwMDAwIG4gCjAwMDAwMTEyMjYgMDAwMDAgbiAKMDAwMDAwNDU0NCAwMDAwMCBuIAowMDAwMDA0ODQ5IDAwMDAwIG4gCjAwMDAwMDUyMjYgMDAwMDAgbiAKMDAwMDAwNTU0NCAwMDAwMCBuIAowMDAwMDA2MDA5IDAwMDAwIG4gCjAwMDAwMDYzMjkgMDAwMDAgbiAKMDAwMDAwNjQ5MSAwMDAwMCBuIAowMDAwMDA2OTAyIDAwMDAwIG4gCjAwMDAwMDcwMjYgMDAwMDAgbiAKMDAwMDAwNzM1NCAwMDAwMCBuIAowMDAwMDA3NzQ3IDAwMDAwIG4gCjAwMDAwMDc4OTkgMDAwMDAgbiAKMDAwMDAwODAyMCAwMDAwMCBuIAowMDAwMDA4MTYwIDAwMDAwIG4gCjAwMDAwMDg1NTAgMDAwMDAgbiAKMDAwMDAwODk2MSAwMDAwMCBuIAowMDAwMDA5MjgyIDAwMDAwIG4gCjAwMDAwMTIyNDQgMDAwMDAgbiAKMDAwMDAxMjMyNCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM1IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNiA+PgpzdGFydHhyZWYKMTI0NzgKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAEeCAYAAACE86MtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXhU1f348feZmeyQhBAgk4QkUCACEkApWyggyiIKVAHZqmjF4saXFq0LCliogKL1K0b52qJVqlZ8rD9BDUaUpSxhU1lEZE0I2SALZF9nzu+PCZNMCMkEw0wwn9fzzJOZOefezz2ZOeeee+bec5XWGiGEEEIIIVoKg7s3QAghhBBCCFeSDrAQQgghhGhRpAMshBBCCCFaFOkACyGEEEKIFkU6wEIIIYQQokWRDrAQQgghhGhRTO7eACGEEEIIce0bfZOfzsm1NGqZbw+WJWitx1ylTbos6QALIYQQQoifLSfXwp6EiEYtYzQfD75Km1Mv6QALIYQQQoifTQNWrO7eDKdIB1gIIYQQQjQBjUVLB1gIIYQQQrQQthFg7e7NcIp0gIUQQgghRJOQUyCEEEIIIUSLodFYtIwACyGEEEKIFkROgRBCCCGEEC2GBizSARZCCCGEEC2JjAALIYQQQogWQ4OcAyyEEEIIIVqWa2MOCOkACyGEEEKIJqDRcg6wEEIIIYRoQTRYro3+r3SAhRBCCCHEz2e7E9y1QTrAQgghhBCiCSgsKHdvhFOkAyyEEEIIIX42DVjlFAghhBBCCNGSXCsjwAZ3b4AQQgghhBCuJCPAQgghhBDiZ7PdCvnaGAGWDrAQQgghhGgSVi0dYCGEEEII0ULICLAQQgghhGhRNArLNXJ5mXSAhRBCCCFEk5BTIIQQQgghRItxLZ0CcW2MUwshhBBCiGZOYdGGRj2cWqtSY5RSR5VSJ5RST9WRHqmU+kYpdVAptUUpFd7QOqUDLIQQQgghfjYNWDE06tEQpZQReB24FegBTFNK9aiV7SVgjdY6BlgMLGtovdIBFkIIIYQQTcKCatTDCf2BE1rrU1rrcuBDYEKtPD2Ab6qeb64j/RLSARZCCCGEED+b1lflFIgw4EyN16lV79V0AJhY9fwOoLVSqm19K5UOsBBCCCGEaBJWVKMeQLBSal+Nxx9qrbKuYWJd6/XjwDCl1PfAMCANqKxvO2UWCCGEEEII8bPZZoFo9Nhqtta6Xz3pqUDHGq/DgXSHuFqnA3cCKKVaARO11nn1BZUOsBBCCCGEaALK6ZkdGmEv0FUp1QnbyO5UYLpDVKWCgVyttRV4Gni7oZXKKRBCCCGEEOJnuxqzQGitK4FHgQTgCPCR1vqwUmqxUmp8VbbhwFGl1DGgA/B8Q+uVEWAhhBBCCNEkLFfhTnBa63ggvtZ7C2s8/xj4uDHrlA6wEEIIIYT42TTqSs4BdotrYyuFEEIIIYRoIjICLIQQQgghmoS16S+CuyqkAyyEEEIIIX62K5wGzS2kAyyEEEIIIX42jboqF8FdDdIBFkIIIYQQTcKZqc2aA+kACyGEEEKIn01rrsaNMK4K6QALIYQQQogmoLAip0AIIYQQQogWQiMjwEIIIYQQooWRWSCEEEIIIUSLoVFYZRYIIYQQQgjRksgIsBBCCCGEaDE0cic4IYQQQgjRoigsMguEEEIIIYRoKWQEWAghhBBCtDgyAiyEEEIIIVoMrZWMAF8twUFGHdXRw92b8Yty7KCvuzfhF6mA89la63bu3g6Tr5/2CAxyWbxu7c66LBaAhxuuOLaiXRqvwGp0aTyAs0ltXB6zoCi9WdQZT+WlvfFz92ZcNWWRrm/zowNc2y544vo64w7fHixrFnWmJrkRxlUS1dGDPQkR7t6MX5TRob3dvQm/SF/rj0+7exsAPAKDiJo1z2XxEmavcFksgPbGVi6NB1Ciy1wab1NJgEvjAay8Z4rLY36949lmUWe88WOAutndm3HVHFv4a5fH/GL0Ky6NF2Zs7dJ47mI0H28WdeZadM11gIUQQgghRPOjAaucAyyEEEIIIVoOJadACCGEEEKIlsM2DZqMAAshhBBCiBZEboUshBBCCCFaDI2SEWAhhBBCCNGyWGUEWAghhBBCtBRag0VGgF3ny01F/GlhFhYL3D/dnyfnOE76f/pMBbPmnSUrx0JQoJE1cR0ID7XdTCMltYIHHjtHanoFSik+fz+Uhm604ep47ojZb3QfHv7f+zAYDWx46xvWvvCpQ3r7iGAef+thAtr5U5BbyPK7V5Kdlmvb1oq1JB9KAeBcSjYLf/tCg+VzR0x3lLG5GNIlkvljh2NQBj7+7gdWb9vrkP7UmGH07xQOgI+HB0F+PgxYtgqACX168NCw/gCs2rqHdft/bDDeps2lLFyUj8UC06f5MudRx7l7z6RWMu+xPHJyrAQGGohbGUhoqG0i+7CIDLpfZ2uqwsKMvPtP527q4eo6s3FzCU8sOI/FCjOn+fHYHMe5e1NSK3loXg7ZOVbaBBp467W2hIWa7OV/5PFcUtMrUQo+ea89kR0bbp6/3VrA6iXpWCwwakobJj3Y3iH9XFo5K59MJS/XQutAI/Ne7kiw2VaORfcmcWx/Md37+bFwdVSDsQD6DejMw3NHYTAoNny+n7XvJTqkj7o1hgceHkFOdiEA6/6zjw2f7wdg1kMjGDC4Cwal+HZvEm+8+pVTMZuLhtqL22ePZPzDY7BarJQUlvLK7DdJOZLKiOlDuOvxCfZ8nWIiePjGJzl5ILlZxQMYFtaJRQNvxqgUHx47yKqDux3SF/QfwSBzRwB8TB609fYl5v2VAEzs0pM5vQcD8NqBnfznxOEG423ZXMZzVe3C1Gk+PFKrXUhNtfD4Y3nk5lgJDFS8ujIQc2j1DS4KCqyMGJ7NmDHeLHnev8F4LWHf3Ry0+FMglFIdgTVACGAF/q61frVWHgW8CowFioF7tdbfNSaOxaKZMz+LhLVhhJtNDLg1hXGj/OgR7WXP8+fF2fxusj8z7/Jn0/Zi5i/NYU1cCAD3/s9Znp7bhpHD/CgssmJo4HNzdTx3xDQYDMyJu58nRy0hOzWXuD3LSFy/j5QjqfY8s1fcw8Z/bWXjmq30uel67l86gxdmvgZAeUk5D97w54YL5saY7ihjQ1xVZwxKseD2Edz/7ieczS/go9nT2fzTSU5m5drzLP9yq/35jAF96G623WgowMeLR4YPZPKb76M1fPzgDDb/dJL80svfGMJi0cx/Np+1HwRhNhu59bZsRo3yIrpbdUO+eEkBkyf5cNdkX7bvKGPp8gLiVgYC4O2t+Pqrxt3oyB3twrz551n/YXvCzEaGjs1k7Ghfutco4/zF55k+yY8Zd7Viy/ZSFi27wOrXggF4YG4OT/yPPyOG+TSqXXjzuXQWv9uJtiEmHrvjJP1v9ieiq7c9z9vLMrjpjjbcPLENB3YWsualTOa9bOvA3PlAO8pKrXz579zLhXBgMCjmzBvDk3/6gOxz+cSt/j2J24+TkpztkG/rpiPEvZLg8F6P68O4vlc4s2f+A4BX3riHmL4RHPw+pXaYKKXUOeCc1vp6AKVUELAWiAKSgbu01uedrQtKqRuBdwAfIB6Yq7Vu1K38nGkvNn2wnc/f3AjAoHH9ePDlmcwf+zybPtjOpg+22wp3fQSLP32iwc6oq+OBrV1YMugWZiR8RGZRAevH38PXKSc4fiHHnmfJnk325/d2v4GebW0HXAGe3vyxbyy3r1uDRvPFhJlsTDlBfnn97cKzz+bz/gdtMJuNjLsth5GjvOnWrbpb8tcl+Uyc5MPkyT7s2FHG8uUFvFrVLgC8tKKQgQM9GyzbxXi/9H13c2A7B/jaOAXiam5lJfCY1ro7MBB4RCnVo1aeW4GuVY8/AKsaG2TP96X8KsqDzpEeeHoqpkxozfqEIoc8R46Vc/MQHwBuivWxp/94tIzKSs3IYbZbXrbyM+DrW/+/xNXx3BEzun8X0k9kkpl0jsqKSras3cHgCf0c8kT0COf7bw4BsH/zDwyqld5Yro7pjjI6wSV1JiY8hJTcC6Sez6PCYiX+0FFGXPery+a/rVc08YeOAhDbJYqdJ0+TV1JGfmkZO0+eZkjXqHrjfb+/gqgoI5GRJjw9FRMm+JDwleOO8djxSobE2nYKsYM9SfiqtLHFcuDqOrPv+3I6R5noVFXGSRN8+SKh2CHPT8cqGT7E1jkdFuvFFwklVdtRgaUSRgzzcToewPEDxZgjPQmJ8MTD08Bvbg9g99f5DnnOnCij92DbqFrMID+H9N6xrfDxc34XEN09lPTUXDLTL1BZaWXL1z8yeEg3p5bVGjy8TJhMRjw8jJhMRi7kFtWVNRsYU+u9p4BvtNZdgW+qXoPzdWFVVfrFvLXX3yBn2ovighL7c28/L+rqY4+YFsvmD3c0u3gAfYLNJOdf4ExBHhVWK5+dOsLIiC6XzT++c3fWnToCwLDwTmxLSyavvJT88jK2pSUzPLxzvfH212oXxk3w5qta9f74cQtDYm0d3MGDPdlYo904eLCC7GwrQ4c51wFuCfvu5sKCatTDXa7af1NrnXHxaFxrXQAcAcJqZZsArNE2u4BApZS5MXHSMivpGFZ9xBhmNpGWWemQJ6anJ598YftJ7v/FF1FQaCUn18KxUxUEBBiY+Pt0bhyZwhOLs7BY6h8YcHU8d8QMDgsiK7X6qD87NZfgsLYOeU4dOM1vJg4EYMgd/fHz96V1kG1H6+ntwet7lrNy5/MMnuDcLTddHdMdZWyIq+pM+9atyMwrsL8+m19IB/+6byccGtCa8DYB7Dp1BoAO/q3IzHdu2YsyMyyEmat/tjSHGMjMsDjk6dndxBfxtp1f/IZSCgs1ueetAJSVaUaPzea2cdls+NK5jrGr60x6poXwGj/NhplNpNcqY68eHnwab+sUr99QQkGhJifXwomTFQQEKKbdn8XgkRk8s/i8U+1CztlK++kMAMEhHuScrXDI0+k6b3Z+mQdA4lf5lBRayT/v+H9wVnC71mSdq/7ss7PyCW536e1mhwy7jjffmcWCJXfSrr0t/cjhNA58d5q16+aydt1c9u05RcrpnEuWBQqB2kPSE4B3q56/C/y2xvv11oWq1/5a68SqUd81NZZ3mjPtBcD4h0fz7vHXmPXC73hj7tuXpA+7azCb/7292cUDCPFrRUZR9eebUVRAiG/dtxMO8/OnY+sAdmbYRvBDfB2XzSwqIMS3oXbBSqhDu2DkbIbVIU+P7ibiq9qFLzeUUVioOX/eitWq+evifJ551vnbHbeEfXdzcHEe4MY83MUlhxNKqSigL7C7VlIYcKbG61Qu3eHXq64fslSt/+eKhe3YmljCjSNT+G9iCWFmEyYTVFo023eXsmJRO3Zv6Mip0xW8szb/0hW6MZ47YtZet20bHDfi739eQ8zQHqz69kVihvUkKzUHS6Wt8ZoR+RCP9H+KpTNe5aFX7sXcuUODZXR1THeUsTGuZp1xpuwXje0VTcLhY1ir0utqqhr6Nbmu1NrbsHCBP4m7yhg5OovEXeWYQwyYqvaN+3a3JyE+mDfiAln4XD7JyQ134Jpju7B0YSDbE8sYPDKD7YmlhJqNmEyKSgvs3F3G0oVt+O+GEJJSKnlvbZ2jow3HrPUJ3fe0mR/2FDF33HEO7y6ibYgJo+nKdjjOfG8Sdxzn7slxzL53Nd/vS+bPz4wHIDSsDRGRwUy7cyVT71hJnxsi6dW7o7OhO2itM6riZQAXT3R2pi6EVb1fX54GOVtn1r+RwMyuc1j91PtMf2aiQ9p1/btQVlxO8uEzlyzn7nhVUS+NWWfthXGdryM++WiNdqGuZevnTLvwzILW7N5Vzq2js9m1q5yQEANGI6x5t5ibRnjZrxNwRkvYdzcPtlMgGvNwl6t+EZxSqhXwH+CPWuvan16d+9M61vEHbD9hERHmuMnhZhNn0qp3iGkZlYR2cMwTGmLiP2+HAlBYZOWT+EIC/I2Em030vd6LzpG2UZQJY1qx+7v6R5hcHc8dMbNSc2kXXj3aEBweRE6646BMTsZ5/jLpJQC8/bwZcucAivOL7WkAmUnnOLjlR7r07UTGqbPNKqY7yuispq4zpoA2Dmln8wsJCageOeng34pzBXV3uG7tFc2Sz6vP+8vML6R/VLjDsnuSU+ta1M5sNpJWYzQ0I9NKhxDHHVdIiJG3V9suDikqshIfX4q/v8GeBhAZaWLwIE9++KGCqKj6my5X15kws5HU9OoypmVUYq5VRnOIiX+/1c4eb118CQH+BsLMRmKu96RTpG37xo3xZc+3ZcysNyIEh5jIzqge8c3OrCCoVhnbdvBg/qpIAEqKLOxMyMOvtfOdhpqyzhXYR3QBgtv52y92u6ggv/pn+fjPvmfWQzcBEDs0miOH0ygtsW3v3l0n6d4zjEMHnO2c1cmZuuBUfQHHOuONr0OaM+1FTVs+3MHcNx5gxX2v298bPjWWzR86Nxrr6nhgG7U1+1V/vma/1pwtLqwz7/jO3VmQuNH+OqO4gIEh1Qc0IX6t2ZVZ/2drNhscfiXJyLTQPsSxMxQSYuTvq23tV1GRlQ1V7cJ331awZ085/1pTTFGRpqICfP0UT8+//IhwS9h3NxdWN57W0BhXteutlPLAtiN/X2v9SR1ZUoGawwDhQHrtTFrrv2ut+2mt+7Vr69h4/7qPNyeSyklKqaC8XLN2XQHjRvs55MnOsWC12tq85StzuW+qv33Z83kWsrJtX9DNO4rp0a3+84lcHc8dMY/uPUFYVzMhUe0xeZgYPiWWxPX7HPL4t22NqjqUnfb0HST8czMArQL98PA02fP0jI3m9I/1d5DcEdMdZXTG1agzJl/H78qhtEwig9oQFuiPh9HA2F7RbP7p1CWBotq2IcDbi/1nMuzv7TiRTGyXSPy9vfD39iK2SyQ7TiTXW6Y+vT1ISrKQklJJeblm3boSRo/0csiTk2u1f39XxhUydYqtA3LhgpWyMm3Ps3dvOV27NXzc7uo6c2MfT04mVZBcVcaP1xUzdpTPZeO99Fo+d0/xsy97Ic9KVo6tM7B1eynXdWv4Su+uMb6kJ5eReaacinIr2z7PY8DNjlfC5+dW2mN+vCqLWyY5N4NGXY7+lE5YxyBCzAGYTAaG39KDxB3HHPIEta3+2XvQkG720xzOnc0jpm8EBqPCaDQQ0yficqdA1OXsxVMbqv6eq3rfmbqQWvV+fXkAxzrjgeP305n2IqxLiP35gNtuIO14db1RSjF00iCnz8d1dTyAA9kZdApoQ8dWAXgYDIzr3J2NKScuydfZPwh/T2++PVf9b9yamsTQsCj8Pb3w9/RiaFgUW1OT6o3Xu1a78Nm6UkbWahdya7QLr8cVMWWKrU6tjAtk15727NzVnmcXtGbiRJ96O7/QMvbdzcHFadAa83CXqzkLhALeAo5orf92mWzrgUeVUh8CA4C8iz91OctkUqxc2p5bp6VhscB9U/3pGe3FohdzuLG3F+NHt2JLYjHPLM1BKfjNQB/iltpGYYxGxYsLgxl5Vxpaww0xXsyaEdCs4rkjptViJW7OWyz78hkMRgMJ/9zM6R9TmfmXKRzbd5LEz/bRe3hP7l86Ha01h7Yd4bVHVgMQ0T2MP/7fbKxWKwaDgQ9f+NThyuXmEtMdZWyIq+qMxar56xebWH3PnRgMik++O8yJrBzmjBjED2ln2XzU1hm+LSaa+B8cOzh5JWWs2rKbj2ZPB+CNLbvIK7n8ld5g+/4uXeLPtBm5WKwwdYoP0dEevLiigN69PRg9ypvEnbaZH5SCgQM8Wfq87Tt6/EQlTzyZh8EAVis8+kgrh9kj6ovp6nbh5eeD+O30c1gscPdUP3pEe7LkxQvc0NuT20b7si2xjOeWXUApiB3gxd+WBtnjLV0QyO13nUNr6BvjyX0z6j9/EsBoUsxeFMpz9yZhtcItk9oQ0c2b9185S5dePgy4xZ9Du4tYsyITpaBnfz8efC7UvvxTU06SeqqM0iIr98UeYc6ycG4YevlOhNWiiftbAsv+Ng2DwUDCFwc4nZTNzPuHcuynDBJ3HOe3k/oxaEg3LBYrBfklrHj+MwC2bfmJPjdG8Y93/4DWmr27T7Frx/EGy1hlPTATWF71d12N9+utC1rrDKVUgVJqILbTie4BXnM2cHXZG24vJjx6K31v7oWlwkLB+UJevDfOvnyvod3JTs0hM+lcPVHcFw/AojULE79mzejJGJXio+OHOH4hh3l9h3AwO5Ovz9g6w+N/1Z3Pko44LJtXXsrK/Yl8Nv4eAF7dv5O88vpHK00mxZIl/tw9wzZ14JSqduHlFQX06u3BqFHeJO4s54WqdmHAAE+npjqrL94vfd/dXFwrs0CoRs4G4/yKlRoCbAMOYZvSCWA+EAGgtf6/qh1+HLarcouB+7TW++pYnV2/3t56T0LEVdnmlmp0aG93b8Iv0tf642+11k5PHXG16oxPaEcdNWveFZTgymyevcJlsQDaGxvuLDa1El1/p7+pbSpx/Y5v5T1TXB7z6x3P5gLlQDBwFlgEfAp8hK0epACTtda59dUFpdR+rXWfquf9qJ4GbQMwp6Fp0PxVkB6gbm76AjYTx1Y3zYW7jbF99CsujRdmdP4CuWuZ0Xy8UfuZq61t93Z67DsTGs5Yw3sD33JLGa7aCLDWejt1n39VM48GHrla2yDEtUTqjBAkXWZHeElvtL66cLHzW/V8H3B9k22hEOIX4RdxJzghhBBCCOF+chGcEEIIIYRoMa7WPMBKqTFKqaNKqRNKqafqSI9QSm1WSn2vlDqolBrb0DplBFgIIYQQQjSJpr4ITillBF4HRmKb2WWvUmq91vrHGtmeBT7SWq+quoNqPLbbp1+WdICFEEIIIcTPd3Xu7tYfOKG1PgVQNfPLBKBmB1gDF6cJCeAy0x3WJB1gIYQQQgjxs2muyjnAdd31cUCtPM8BXyml5gB+wC0NrVTOARZCCCGEEE3iCs4BDlZK7avx+EOtVTpzR8dpwDta63BgLPAvpVS9fVwZARZCCCGEED/bxYvgGim7gXmAnbnr4/3Y5gRHa52olPLGNp/4Ze8GIyPAQgghhBCiSVyFWSD2Al2VUp2UUp7AVGx3gqwphar5wpVS3QFvIKu+lcoIsBBCCCGE+Nk0TX8RnNa6Uin1KJAAGIG3tdaHlVKLgX1a6/XAY8A/lFJ/wjYQfW9Dd3yUDrAQQgghhGgSV+NGGFrreGxTm9V8b2GN5z8CsY1Zp3SAhRBCiBak26y9Lo85ZPWfXBpv++hXXBoPIMzY2uUxmx19RecAu4V0gIUQQgghxM92hRfBuYV0gIUQQgghRJOQDrAQQgghhGgxrsZFcFeLdICFEEIIIUST0NIBFkIIIYQQLcnVmAXiapAOsBBCCCGE+Nn0NTQLhNwJTgghhBBCtCi/iBHgLzcV8aeFWVgscP90f56cE+SQfvpMBbPmnSUrx0JQoJE1cR0ID/UAICW1ggceO0dqegVKKT5/P5Sojh7NKp47YvYb3YeH//c+DEYDG976hrUvfOqQ3j4imMffepiAdv4U5Bay/O6VZKfl2ra1Yi3Jh1IAOJeSzcLfvtBg+dwR0x1lbC6GdIlk/tjhGJSBj7/7gdXbHOcFfWrMMPp3CgfAx8ODID8fBixbBcCEPj14aFh/AFZt3cO6/T82GG/T5lIWLsrHYoHp03yZ82grh/QzqZXMeyyPnBwrgYEG4lYGEhpqBCAsIoPu19maqrAwI+/+M+iS9dfF1XVm4+YSnlhwHosVZk7z47E5AQ7pKamVPDQvh+wcK20CDbz1WlvCQk328j/yeC6p6ZUoBZ+8157Ijg03z99uLWD1knQsFhg1pQ2THmzvkH4urZyVT6aSl2uhdaCReS93JNhsK8eie5M4tr+Y7v38WLg6qsFYAP0GdObhuaMwGBQbPt/P2vcSHdJH3RrDAw+PICe7EIB1/9nHhs/3AzDroREMGNwFg1J8uzeJN179yqmYzUVD7cXts0cy/uExWC1WSgpLeWX2m6QcSWXE9CHc9fgEe75OMRE8fOOTnDyQ3KziuSPmsLBOLBp4M0al+PDYQVYd3O2QvqD/CAaZOwLgY/KgrbcvMe+vBGBil57M6T0YgNcO7OQ/Jw43WL4tm8t4rqodmjrNh0dqtUOpqRYefyyP3BwrgYGKV1cGYq5qhwAKCqyMGJ7NmDHeLHnev8F44J7+gru1+HOAlVJvA7cD57TW19eRHgC8B0RUbcdLWut/NjaOxaKZMz+LhLVhhJtNDLg1hXGj/OgR7WXP8+fF2fxusj8z7/Jn0/Zi5i/NYU1cCAD3/s9Znp7bhpHD/CgssmJo4HNzdTx3xDQYDMyJu58nRy0hOzWXuD3LSFy/j5QjqfY8s1fcw8Z/bWXjmq30uel67l86gxdmvgZAeUk5D97w54YL5saY7ihjQ1xVZwxKseD2Edz/7ieczS/go9nT2fzTSU5m5drzLP9yq/35jAF96G5uB0CAjxePDB/I5DffR2v4+MEZbP7pJPmlZZeNZ7Fo5j+bz9oPgjCbjdx6WzajRnkR3a26IV+8pIDJk3y4a7Iv23eUsXR5AXErAwHw9lZ8/VW7RpXRHe3CvPnnWf9he8LMRoaOzWTsaF+61yjj/MXnmT7Jjxl3tWLL9lIWLbvA6teCAXhgbg5P/I8/I4b5NKpdePO5dBa/24m2ISYeu+Mk/W/2J6Krtz3P28syuOmONtw8sQ0Hdhay5qVM5r1s61Dc+UA7ykqtfPnv3MuFcGAwKObMG8OTf/qA7HP5xK3+PYnbj5OSnO2Qb+umI8S9kuDwXo/rw7i+VzizZ/4DgFfeuIeYvhEc/D7Fqdh11Q2lVBCwFogCkoG7tNbn61h2JvBs1cu/aq3fdSpoDc60F5s+2M7nb24EYNC4fjz48kzmj32eTR9sZ9MH2wGIuj6CxZ8+0WDH0NXx3FJGpVgy6BZmJHxEZlEB68ffw9cpJzh+IceeZ8meTfbn93a/gZ5tbQd4AZ7e/LFvLLevW4NG88WEmWxMOUF+ef3t0LPP5vP+B20wm42Muy2HkaO86datuhv01yX5TJzkw+TJPuzYUcby5QW8WtUOAby0opCBAz0b/F/WjOnq/oL7XTuzQFzNUyDeAcbUk76lcUEAACAASURBVP4I8KPWujcwHHhZKeX8N6vKnu9L+VWUB50jPfD0VEyZ0Jr1CUUOeY4cK+fmIT4A3BTrY0//8WgZlZWakcP8AGjlZ8DXt/5/iavjuSNmdP8upJ/IJDPpHJUVlWxZu4PBE/o55InoEc733xwCYP/mHxhUK72xXB3THWV0wju4oM7EhIeQknuB1PN5VFisxB86yojrfnXZ/Lf1iib+0FEAYrtEsfPkafJKysgvLWPnydMM6RpVb7zv91cQFWUkMtKEp6diwgQfEr5y3FEdO17JkFjbTiF2sCcJX5U2tlgOXF1n9n1fTucoE52qyjhpgi9fJBQ75PnpWCXDh9g6p8NivfgioaRqOyqwVMKIYT5OxwM4fqAYc6QnIRGeeHga+M3tAez+Ot8hz5kTZfQebBvlihnk55DeO7YVPn7O7wKiu4eSnppLZvoFKiutbPn6RwYP6ebUslqDh5cJk8mIh4cRk8nIhdyihhes9g6X1o2ngG+01l2Bb6peO6jqJC8CBgD9gUVKqTaNCQzOtRfFBSX2595+XmitL1nPiGmxbP5wR7OL546YfYLNJOdf4ExBHhVWK5+dOsLIiC6XzT++c3fWnToCwLDwTmxLSyavvJT88jK2pSUzPLxzvfH212qHxk3w5qta7czx4xaGxNqa1MGDPdlYo506eLCC7GwrQ4c53+S6o7/QHGitGvVwl6v239Ra/xeob2hBA62VUgpoVZW3srFx0jIr6RhWfQQXZjaRlum4mpiennzyhe0nuf8XX0RBoZWcXAvHTlUQEGBg4u/TuXFkCk8szsJiubRCuzOeO2IGhwWRlVp9FJ6dmktwWFuHPKcOnOY3EwcCMOSO/vj5+9I6yLaj9fT24PU9y1m583kGT/h1g+VzR0x3lLEhrqoz7Vu3IjOvwP76bH4hHfxb1Zk3NKA14W0C2HXqDAAd/FuRme/cshdlZlgIM1f/jGgOMZCZYXHI07O7iS/ibTuj+A2lFBZqcs9bASgr04wem81t47LZ8KVzHWNX15n0TAvhNX4qDTObSK9Vxl49PPg03tYpXr+hhIJCTU6uhRMnKwgIUEy7P4vBIzN4ZvF5p9qFnLOV9tMZAIJDPMg5W+GQp9N13uz8Mg+AxK/yKSm0kn++0V8Z2/rbtSbrXPVnn52VT3C7S2/9OmTYdbz5ziwWLLmTdu1t6UcOp3Hgu9OsXTeXtevmsm/PKVJO51yy7OVcpm5MAC6O5r4L/LaORUcDG7XWuVWjwxup/yCzTs60FwDjHx7Nu8dfY9YLv+ONuW9fkj7srsFs/vf2ZhfPHTFD/FqRUVT9fcooKiDEt+5bCYf5+dOxdQA7M2y/GIT4Oi6bWVRAiG9D7ZCVUId2yMjZDKtDnh7dTcRXtUNfbiijsFBz/rwVq1Xz18X5PPNs42517I7+grtdvBNcYx7u4s7DiTigO5AOHALmaq2t9S9yqToOQFG1/p8rFrZja2IJN45M4b+JJYSZTZhMUGnRbN9dyopF7di9oSOnTlfwztr8S1foxnjuiFl73bZtcNyIv/95DTFDe7Dq2xeJGdaTrNQcLJW2j29G5EM80v8pls54lYdeuRdz5w4NltHVMd1RxibQJHXGmbJfNLZXNAmHj2GtSq+rqbrcsvZ0J7Zh4QJ/EneVMXJ0Fom7yjGHGDBV7av27W5PQnwwb8QFsvC5fJKTG+7ANcd2YenCQLYnljF4ZAbbE0sJNRsxmRSVFti5u4ylC9vw3w0hJKVU8t7ahkdH64xZ6xO672kzP+wpYu644xzeXUTbEBNG05XtcJz53iTuOM7dk+OYfe9qvt+XzJ+fGQ9AaFgbIiKDmXbnSqbesZI+N0TSq3fHK9qOGjporTOqtiMDaF9HnjDgTI3XqVXvNYqzdWb9GwnM7DqH1U+9z/RnJjqkXde/C2XF5SQfPnPJcu6O556YlwbUdbYWMK7zdcQnH63RDtW1bP2caYeeWdCa3bvKuXV0Nrt2lRMSYsBohDXvFnPTCC/7dQnOckd/we20rdyNebiLOy+CGw3sB0YAvwI2KqW2aa0v+YSVUn8A/gAQEea4yeFmE2fSqneIaRmVhHZwzBMaYuI/b4cCUFhk5ZP4QgL8jYSbTfS93ovOkbZRlAljWrH7u/pHmFwdzx0xs1JzaRdefeQfHB5ETrrj4EtOxnn+MuklALz9vBly5wCK84vtaQCZSec4uOVHuvTtRMaps80qpjvK2ASuqM6YAhx/8T2bX0hIQPVIRgf/VpwrqLvDdWuvaJZ8Xn0eXmZ+If2jwh2W3ZOcWteidmazkbQao6EZmVY6hDjuSEJCjLy92nZxSFGRlfj4Uvz9DfY0gMhIE4MHefLDDxVERdXfdLm6zoSZjaSmV5cxLaMSc60ymkNM/PutdvZ46+JLCPA3EGY2EnO9J50ibds3bowve74tY2a9ESE4xER2RvWIb3ZmBUG1yti2gwfzV0UCUFJkYWdCHn6tG7cTvyjrXIF9RBcguJ2//WK3iwryq38ij//se2Y9dBMAsUOjOXI4jdIS2/bu3XWS7j3DOHTAuc7Zz1DnMVudGWvUGW98HdKcaS9q2vLhDua+8QAr7nvd/t7wqbFs/tC50VhXx3NHzMyiAsx+1d8ns19rzhYX1pl3fOfuLEjcaH+dUVzAwJDqA6gQv9bsyqz/u2Q2Gxx+lcnItNA+xHEMMCTEyN9X29rLoiIrG6raoe++rWDPnnL+taaYoiJNRQX4+imenl//iLA7+gvNwbUyD7A7R4DvAz7RNieAJOC6ujJqrf+ute6nte7Xrq1j4/3rPt6cSConKaWC8nLN2nUFjBvt55AnO8eC1Wpr85avzOW+qf72Zc/nWcjKtn1BN+8opke3+s/vcXU8d8Q8uvcEYV3NhES1x+RhYviUWBLX73PI49+2NarqUHba03eQ8M/NALQK9MPD02TP0zM2mtM/1t9BckdMd5SxCVxRnTH5On5XDqVlEhnUhrBAfzyMBsb2imbzT6cuWUdU2zYEeHux/0yG/b0dJ5KJ7RKJv7cX/t5exHaJZMeJ5Ho3uk9vD5KSLKSkVFJerlm3roTRI70c8uTkWu3f35VxhUydYuuAXLhgpaxM2/Ps3VtO124NH7e7us7c2MeTk0kVJFeV8eN1xYwd5XPZeC+9ls/dU/zsy17Is5KVY9s5b91eynXdGr7Su2uML+nJZWSeKaei3Mq2z/MYcLPjlen5uZX2mB+vyuKWSc7NoFGXoz+lE9YxiBBzACaTgeG39CBxxzGHPEFtq3+GHjSkm/00h3Nn84jpG4HBqDAaDcT0iWjUKRCXcVYpZQao+nuujjypQM2h5nBsv6Bcomad8cDx++lMexHWJcT+fMBtN5B2vLreKKUYOmmQ0+fjujqeO2IeyM6gU0AbOrYKwMNgYFzn7mxMOXFJvs7+Qfh7evPtueqPbWtqEkPDovD39MLf04uhYVFsTU2qN17vWu3QZ+tKGVmrHcqt0Q69HlfElCm2OrwyLpBde9qzc1d7nl3QmokTfRrs/IJ7+gvuprl2zgF25whwCnAzsE0p1QGIBi7dCzfAZFKsXNqeW6elYbHAfVP96RntxaIXc7ixtxfjR7diS2IxzyzNQSn4zUAf4pbaRmGMRsWLC4MZeVcaWsMNMV7MmhHQrOK5I6bVYiVuzlss+/IZDEYDCf/czOkfU5n5lykc23eSxM/20Xt4T+5fOh2tNYe2HeG1R1YDENE9jD/+32ysVisGg4EPX/jU4Sri5hLTHWVsAk1SZyxWzV+/2MTqe+7EYFB88t1hTmTlMGfEIH5IO8vmo7ZV3hYTTfwPjh2cvJIyVm3ZzUezpwPwxpZd5JVc/sprsH1/ly7xZ9qMXCxWmDrFh+hoD15cUUDv3h6MHuVN4k7bzA9KwcABnix93vYdPX6ikieezMNgAKsVHn2klcPsEfXFdHW78PLzQfx2+jksFrh7qh89oj1Z8uIFbujtyW2jfdmWWMZzyy6gFMQO8OJvS4Ps8ZYuCOT2u86hNfSN8eS+GfWfzwhgNClmLwrluXuTsFrhlkltiOjmzfuvnKVLLx8G3OLPod1FrFmRiVLQs78fDz4Xal/+qSknST1VRmmRlftijzBnWTg3DL38Tt1q0cT9LYFlf5uGwWAg4YsDnE7KZub9Qzn2UwaJO47z20n9GDSkGxaLlYL8ElY8/xkA27b8RJ8bo/jHu39Aa83e3afYteN4g2VswHpgJrC86u+6OvIkAEtrXPg2Cni6sYGcaS8mPHorfW/uhaXCQsH5Ql68N86+fK+h3clOzSEzqa4+uvvjuSOmRWsWJn7NmtGTMSrFR8cPcfxCDvP6DuFgdiZfn7F1hsf/qjufJR1xWDavvJSV+xP5bPw9ALy6fyd55fWPjppMiiVL/Ll7hm2qwilV7dDLKwro1duDUaO8SdxZzgtV7dCAAZ5OT3VWX0xX9xfc79qZBUI1dP7eFa9YqX9ju1I9GDiL7UpcDwCt9f8ppUKxXdlrxvYz1XKt9XsNrbdfb2+9JyHiqmxzSzU6tLe7N+EX6Wv98bdaa6enjrhadcYntKOOmjWv0dt/pTbPXuGyWADtjQ13Fptaia6/09/UNpW4fse38p4pLo/59Y5n66wzl6kbnwIfYZsWMAWYrLXOVUr1Ax7UWs+qWvb3wPyqVT3vzNSB/ipID1A3N0GJxEXHVjfNxcLO2j76FZfGAwgzNu4iuaZgNB9v1H7mavPtGqq7vnJ/o5Y5OO6vbinDVRsB1lpPayA9HdvRuBACqTNCXE49deOSXqrWeh8wq8brt4FLpysQQlwVLf5GGEIIIYQQouWwzewgHWAhhBBCCNGCXCvnAEsHWAghhBBCNAl3zu3bGNIBFkIIIYQQTUJOgRBCCCGEEC2Gxr1z+zaGdICFEEIIIUSTuEbOgHDrneCEEEIIIYRwORkBFkIIIYQQP59MgyaEEEIIIVqca+QcCOkACyGEEEKIJiEjwEIIIYQQQLdZe10ab8jqP7k0HsD20a+4PGZzJPMACyGEEEKIFkMjI8BCCCGEEKIl0YB0gIUQQgghREsip0AIIYQQQoiWRTrAQgghhBCi5ZBbIQshhBBCiJZGRoCFEEIIIUSLcQ3dCc7g7g0QQgghhBC/ELqRDycopcYopY4qpU4opZ6qI/0VpdT+qscxpdSFhtb5ixgB/nJTEX9amIXFAvdP9+fJOUEO6afPVDBr3lmyciwEBRpZE9eB8FAPAFJSK3jgsXOkpleglOLz90OJ6ujRrOK5I2a/0X14+H/vw2A0sOGtb1j7wqcO6e0jgnn8rYcJaOdPQW4hy+9eSXZarm1bK9aSfCgFgHMp2Sz87QsNls8dMd1RxuZiSJdI5o8djkEZ+Pi7H1i9zXGS+qfGDKN/p3AAfDw8CPLzYcCyVQBM6NODh4b1B2DV1j2s2/9jg/E2bS5l4aJ8LBaYPs2XOY+2ckg/k1rJvMfyyMmxEhhoIG5lIKGhRgDCIjLofp2tqQoLM/LuP4MuWX9dXF1nNm4u4YkF57FYYeY0Px6bE+CQnpJayUPzcsjOsdIm0MBbr7UlLNRkL/8jj+eSml6JUvDJe+2J7Nhw8/zt1gJWL0nHYoFRU9ow6cH2Dunn0spZ+WQqebkWWgcamfdyR4LNtnIsujeJY/uL6d7Pj4WroxqMBdBvQGcenjsKg0Gx4fP9rH0v0SF91K0xPPDwCHKyCwFY9599bPh8PwCzHhrBgMFdMCjFt3uTeOPVr5yK2Vw01F7cPnsk4x8eg9VipaSwlFdmv0nKkVRGTB/CXY9PsOfrFBPBwzc+yckDyc0qXkso47CwTiwaeDNGpfjw2EFWHdztkL6g/wgGmTsC4GPyoK23LzHvrwRgYpeezOk9GIDXDuzkPycO1xvroi2by3iuqu2bOs2HR2q1fampFh5/LI/cHCuBgYpXVwZirmr7AAoKrIwYns2YMd4sed7fqZju17QjwEopI/A6MBJIBfYqpdZrre07H631n2rknwP0bWi9V60DrJR6G7gdOKe1vv4yeYYD/wt4ANla62GNjWOxaObMzyJhbRjhZhMDbk1h3Cg/ekR72fP8eXE2v5vsz8y7/Nm0vZj5S3NYExcCwL3/c5an57Zh5DA/CousGBr43Fwdzx0xDQYDc+Lu58lRS8hOzSVuzzIS1+8j5UiqPc/sFfew8V9b2bhmK31uup77l87ghZmvAVBeUs6DN/y54YK5MaY7ytgQV9UZg1IsuH0E97/7CWfzC/ho9nQ2/3SSk1m59jzLv9xqfz5jQB+6m9sBEODjxSPDBzL5zffRGj5+cAabfzpJfmnZZeNZLJr5z+az9oMgzGYjt96WzahRXkR3q+5QLl5SwORJPtw12ZftO8pYuryAuJWBAHh7K77+ql2jyuiOdmHe/POs/7A9YWYjQ8dmMna0L91rlHH+4vNMn+THjLtasWV7KYuWXWD1a8EAPDA3hyf+x58Rw3wa1S68+Vw6i9/tRNsQE4/dcZL+N/sT0dXbnuftZRncdEcbbp7YhgM7C1nzUibzXrbt4O98oB1lpVa+/Hfu5UI4MBgUc+aN4ck/fUD2uXziVv+exO3HSUnOdsi3ddMR4l5JcHivx/VhXN8rnNkz/wHAK2/cQ0zfCA5+n+JU7MtpqM4opRTwKjAWKAbu1Vp/19g4zrQXmz7YzudvbgRg0Lh+PPjyTOaPfZ5NH2xn0wfbAYi6PoLFnz7RYEfN1fFaQhkNSrFk0C3MSPiIzKIC1o+/h69TTnD8Qo49z5I9m+zP7+1+Az3b2g4oAzy9+WPfWG5ftwaN5osJM9mYcoL88su3e2Cro88+m8/7H7TBbDYy7rYcRo7yplu36q7XX5fkM3GSD5Mn+7BjRxnLlxfwalXbB/DSikIGDvSsN06z0/TnAPcHTmitTwEopT4EJgCXG32ZBixqaKVX8xSId4Axl0tUSgUCbwDjtdY9gclXEmTP96X8KsqDzpEeeHoqpkxozfqEIoc8R46Vc/MQHwBuivWxp/94tIzKSs3IYX4AtPIz4Otb/7/E1fHcETO6fxfST2SSmXSOyopKtqzdweAJ/RzyRPQI5/tvDgGwf/MPDKqV3liujumOMjrhHVxQZ2LCQ0jJvUDq+TwqLFbiDx1lxHW/umz+23pFE3/oKACxXaLYefI0eSVl5JeWsfPkaYZ0jao33vf7K4iKMhIZacLTUzFhgg8JXznuOI4dr2RIrK1zGjvYk4SvSq+kaHaurjP7vi+nc5SJTlVlnDTBly8Sih3y/HSskuFDbJ3TYbFefJFQUrUdFVgqYcQwH6fjARw/UIw50pOQCE88PA385vYAdn+d75DnzIkyeg+2jTjFDPJzSO8d2wofP+d3AdHdQ0lPzSUz/QKVlVa2fP0jg4d0c2pZrcHDy4TJZMTDw4jJZORCblHDCzbsHeqpM8CtQNeqxx+AVVcSxJn2origxP7c288LXcdkqCOmxbL5wx3NLp47Yro6Xp9gM8n5FzhTkEeF1cpnp44wMqLLZfOP79yddaeOADAsvBPb0pLJKy8lv7yMbWnJDA/v3GDM/bXavnETvPmqVtt2/LiFIbG2Du7gwZ5srNE2HjxYQXa2laHDrsEOcNOeAhEGnKnxOrXqvUsopSKBTsCmutJrumodYK31f4H6hhamA59orVOq8p+7kjhpmZV0DKs+mgozm0jLrHTIE9PTk0++sP0k9//iiygotJKTa+HYqQoCAgxM/H06N45M4YnFWVgs9X8aro7njpjBYUFkpVYfFWen5hIc1tYhz6kDp/nNxIEADLmjP37+vrQOsu1oPb09eH3PclbufJ7BE37dYPncEdMdZWyIq+pM+9atyMwrsL8+m19IB/9WdeYNDWhNeJsAdp2ytT0d/FuRme/cshdlZlgIM1f/pGcOMZCZYXHI07O7iS/ibTuG+A2lFBZqcs9bASgr04wem81t47LZ8KVzHWNX15n0TAvhNX62DDObSK9Vxl49PPg03tYpXr+hhIJCTU6uhRMnKwgIUEy7P4vBIzN4ZvF5p9qFnLOV9tMZAIJDPMg5W+GQp9N13uz8Mg+AxK/yKSm0kn/e8f/grOB2rck6V/3ZZ2flE9yu9SX5hgy7jjffmcWCJXfSrr0t/cjhNA58d5q16+aydt1c9u05RcrpnEuWbSwn6swEYI222QUEKqXMjY3jTHsBMP7h0bx7/DVmvfA73pj79iXpw+4azOZ/b2928dwR09XxQvxakVFU/f3NKCogxPfS7y9AmJ8/HVsHsDPD9gtFiK/jsplFBYT41t/uAWRmWAl1aPuMnM2wOuTp0d1EfFXb9+WGMgoLNefPW7FaNX9dnM8zz9a9jc3WxTvBNeYBwUqpfTUef6i11rp+E7tcIzkV+FhrbblMup07L4LrBrRRSm1RSn2rlLrnSlZS1x1HVK1/1YqF7diaWMKNI1P4b2IJYWYTJhNUWjTbd5eyYlE7dm/oyKnTFbyzNv/SFboxnjti1l63bRscN+Lvf15DzNAerPr2RWKG9SQrNQdLpa1iz4h8iEf6P8XSGa/y0Cv3Yu7cocEyujqmO8rYBJqkzjhT9ovG9oom4fAxrFXpdbZCDdz2p67U2tuwcIE/ibvKGDk6i8Rd5ZhDDJiq9hv7drcnIT6YN+ICWfhcPsnJDXfgmmO7sHRhINsTyxg8MoPtiaWEmo2YTIpKC+zcXcbShW3474YQklIqeW9tw6Ojdcas9Qnd97SZH/YUMXfccQ7vLqJtiAmj6crOz3Pme5O44zh3T45j9r2r+X5fMn9+ZjwAoWFtiIgMZtqdK5l6x0r63BBJr94dr2g7GsnpkaP6OFtn1r+RwMyuc1j91PtMf2aiQ9p1/btQVlxO8uEzlyzn7njuiOn6Ml4aUF+mDzWu83XEJx+t0e7VtWzDnGn7nlnQmt27yrl1dDa7dpUTEmLAaIQ17xZz0wgv+7UQv3DZWut+NR5/r5WeCtRsMMKB9Musayrwb2eCuvMiOBNwI3Az4AMkKqV2aa2P1c5YdTTwB4CIMMdNDjebOJNWvUNMy6gktINjntAQE/95OxSAwiIrn8QXEuBvJNxsou/1XnSOtI2iTBjTit3f1T/C5Op47oiZlZpLu/DqI/Hg8CBy0h0HWXIyzvOXSS8B4O3nzZA7B1CcX2xPA8hMOsfBLT/SpW8nMk6dbVYx3VHGJnBFdcYU0MYh7Wx+ISEB1aMKHfxbca6g7g7Xrb2iWfJ59S9JmfmF9I8Kd1h2T3JqXYvamc1G0mqMhmZkWukQ4tioh4QYeXu17SK1oiIr8fGl+Psb7GkAkZEmBg/y5IcfKoiKqr/pcnWdCTMbSU2vLmNaRiXmWmU0h5j491vt7PHWxZcQ4G8gzGwk5npPOkXatm/cGF/2fFvGzHojQnCIieyM6hHf7MwKgmqVsW0HD+avigSgpMjCzoQ8/Fpf2Q4161yBfUQXILidv/1it4sK8qt/so7/7HtmPXQTALFDozlyOI3SEtv27t11ku49wzh0wLnO2c/g9MhRzTrjja9DmjPtRU1bPtzB3DceYMV9r9vfGz41ls0fOjca6+p47ojp6niZRQWY/aq/v2a/1pwtLqwz7/jO3VmQuNH+OqO4gIEh1f2vEL/W7Mps+LtrNhscfgnKyLTQPsRx3DEkxMjfV9va6KIiKxuq2r7vvq1gz55y/rWmmKIiTUUF+Popnp7f/EeEr8KtkPcCXZVSnYA0bJ3c6bUzKaWigTZAYu20urhzBDgV+FJrXaS1zgb+C/SuK6PW+u8XjwzatXVsvH/dx5sTSeUkpVRQXq5Zu66AcaP9HPJk51iwWm2fyPKVudw31d++7Pk8C1nZth3l5h3F9OhW/7k2ro7njphH954grKuZkKj2mDxMDJ8SS+L6fQ55/Nu2RlUdyk57+g4S/rkZgFaBfnh4mux5esZGc/rH+jtI7ojpjjI2gSuqMyZfx+/KobRMIoPaEBboj4fRwNhe0Wz+6dQl64hq24YAby/2n8mwv7fjRDKxXSLx9/bC39uL2C6R7DiRXO9G9+ntQVKShZSUSsrLNevWlTB6pJdDnpxcq/37uzKukKlTbB2QCxeslJVpe569e8vp2q3h43ZX15kb+3hyMqmC5KoyfryumLGjfC4b76XX8rl7ip992Qt5VrJybDvKrdtLua5bwzPDdI3xJT25jMwz5VSUW9n2eR4Dbna8Sjw/t9Ie8+NVWdwyybkZNOpy9Kd0wjoGEWIOwGQyMPyWHiTucDz2Cmpb/bPwoCHd7Kc5nDubR0zfCAxGhdFoIKZPRJOcAuEEp0eOatYZDxy/n860F2FdQuzPB9x2A2nHq+uNUoqhkwY5fT6uq+O1hDIeyM6gU0AbOrYKwMNgYFzn7mxMOXFJvs7+Qfh7evPtueqvydbUJIaGReHv6YW/pxdDw6LYmprUYMzetdq+z9aVMrJW25dbo+17Pa6IKVNs7cbKuEB27WnPzl3teXZBayZO9LkmOr9Ak58DrLWuBB4FEoAjwEda68NKqcVKqfE1sk4DPtQN/SxZxZ0jwOuAOKWUCfAEBgCvNHYlJpNi5dL23DotDYsF7pvqT89oLxa9mMONvb0YP7oVWxKLeWZpDkrBbwb6ELfUNgpjNCpeXBjMyLvS0BpuiPFi1oyAZhXPHTGtFitxc95i2ZfPYDAaSPjnZk7/mMrMv0zh2L6TJH62j97De3L/0ulorTm07QivPbIagIjuYfzx/2ZjtVoxGAx8+MKnDlf1NpeY7ihjE2iSOmOxav76xSZW33MnBoPik+8OcyIrhzkjBvFD2lk2H7V1hm+LiSb+B8cOTl5JGau27Oaj2baD7ze27CKvpP4roU0mxdIl/kybkYvFClOn+BAd7cGLKwro3duD0aO8Sdxpm/lBKRg4wJOlz9u+o8dPVPLEk3kYDGC1wqOPtHKYPaK+mK5uF15+PojfTj+HxQJ3T/WjR7QnS168wA29PblttC/bEst4btkFXpIRZAAAIABJREFUlILYAV78bWmQPd7SBYHcftc5tIa+MZ7cN6Ph8wuNJsXsRaE8d28SVivcMqkNEd28ef+Vs3Tp5cOAW/w5tLuINSsyUQp69vfjwedC7cs/NeUkqafKKC2ycl/sEeYsC+eGoZffwVotmri/JbDsb9MwGAwkfHGA00nZzLx/KMd+yiBxx3F+O6kfg4Z0w2KxUpBfwornPwNg25af/j97Zx4eRZH+8U/NTBJCyARCQk5IQCAcEkAQ5FhAWG4lHtyo4IIiKOuuq4IXqCii4LJixAsV2UXBVX+CCxhBAgqEUy4FuSEkJOQkB7ln6vfHDEkm10xCZiYh9XmeeZLpequ+9XZ3Vb9TXV1Ntx6hfPz5o0gp2b/3HHt2nbbqYy2wAXjC/NR4byBDSplgJU85bOkvIp4YSfchXTAUGshKz+ataZHF+bsM6EhKXCqJ522btu9ovYbgo0FK5sdsZfXwcWiF4KvTxzh9NZWnuvfnaEoiWy+ZguExt3Tk+/MnLPJmFOSx/HAM348xzTp75/BuMgqs373V6QQLF+p5cIppecQJ5r7v7SVZdOnqwrBhjYjZXcCb5r6vd2/XerTUWRXY4UUYUspNwKYy2+aX+f5ydcoUNgbK1UYI8SUwCPABrmBaksIFQEr5gdnmGeBhwAislFL+y1q5Pbs2kvuiWtmlzg2V4YEVDiIqbpCt8uuDUkqbl46wV5txD2wpQ2c8Ve3615TomUscpgXQQms9WKxtcmXVQX9tsy3X+g/l2mb5QxMcrrl114u12mbMy6BFYlopIgd4WEp5oOLSStALb9lbDKm+A4o6w6mVtfNwcnXYObza4xE3TKvgxGq1GXvjFhosA154slp5Lj76rFN8sNsIsJRykg02SwDHXi0VijqKajMKRfWw1mbMt0Ifd1B1FApFNd7u5mxuijfBKRQKhUKhUCicjbDLFAh7oAJghUKhUCgUCkXtoEaAFQqFQqFQKBQNChUAKxQKhUKhUCgaFCoAVigUCoVCoVA0GK6/CrkeoAJghUKhUCgUCkWtINQIsEKhUCgUCoWiQVFPAuAqX4UshGgrhOhXwfY/CSFusV+1FIr6SY7M5qpMKbddtRlFQyAnN5WrmRfLbU/PuEBOrkNefaxQKBQ2UWUADPwLyKpge645TaFQlOIUh9FWfGNFtRnFTc+p85vQat3KbddqXDh1flMFORQKxc2GkNX7OAtrUyBCpZRHy26UUh4QQoTapUYK9WriekwuOXiKpuW2N6Q2k+XgDq2FY+Wcgl6T5+wq2ERufjqeHv7ltus9g8jNv+qEGikaKu1n7He4Zv+Vf3e4Jsx1gqYVbpKH4BpVkeZemxVRKG4GjBiqSlZtRnFTYzQWVZFW6MCaKBQKp1CPXoVsbQrEfiHEI2U3CiGmAwftUyWFov6ix5t4ea7cdtVmFA0BfZMg4hPLj7zFXzmA3iPQCTVSKBSKirE2Avw34P+EEFMouXj3BFyBe+1ZMYWiPtKerhxlNwkyFiBYCPE2qs0oGgjtW4/m6B9rSEg+gr5JEACZ2fFIaSC8w2Qn106hUDiEejICXGUALKW8AvQVQtwJ3GrevFFKuc3uNVMo6iFuohG3M5g0mcSv/FwAXEC1GUUDwc21CbeHzyTt6jmyc64A4NOsPd5N1QIoCkVD4aZaB1hKGQ1E27kuCsVNg7doAZIkKeW7zq6LQuFovJu2wbtpG2dXQ6FQOIObKQBWKBQKhUKhUCisogJghUKhUCgUCkVDwdlr+1YHFQArFAqFQqFQKGqHm2Qd4HrBD9uu8ff5yRgMMH2ynrlzvC3SL14qZMZTV0hONeDdVMvqSD+CA10AiI0r5JF/JBF3uRAhBP9bE0hoS5c6pQfQc3g3Zv/rYTRaDZs/+Yl1b35nkd6ilQ9PfzIbL189WWnZLH5wOSnxaab6Fq7jwrFYAJJiU5h/z5t1Tq+h+FhX6N82hOdHDUIjNHz962+s/MVy6ap5IwbSq3UwAO4uLnh7uNP7jfcBiOjWiVkDewHw/o59rD983Krez9F5vP5yJgYDjJvUmJmPN7FIj48r4rmnM0hPNeLVVMPS5U3xD9AWp2dnGRlxZzJDRzRiwWteNvno6Ha6JTqXZ19Kx2CEqZM8+Mccy3rGxhUx66lUUlKNNGuq4ZN3mxMUaOqCL8UV8fjTacRdLkII+PY/LQhpab173rvjGpGvJGMwwugJeqbMsvQxMa6Qt+Ze4WqqAc+mWl5Y5keLABdOH89n2YtJ5GQb0WjggSe8GXyXp1W9nr3bMPvJYWg0gs3/O8y6/8RYpA8bGc4jsweTmpINwPpvDrD5f4cBmDFrML37tkUjBAf3n2fFOz9a1atLWOsv7po5lDGzR2A0GMnNzmPZzA+JPRHH4Mn9Gf90RLFd6/BWzO4xl7NHLtQpvYbgozP26cCg1iy4YwhaIVh76ijvH91rkf5Sr8H0CWgJgLvOheaNGhO+ZjkA97ftzJyufQF498huvjnzu1W9OkFDHwEWQnwK3AUkSSlvrcLudmAPMEFK+XV1dQwGyZznk4laF0RwgI7eI2O5e5gHncJKXsf5zKspPDBOz9TxerbtzOH5RamsjjS9rWjaX6/w3JPNGDrQg+xrRjRWfrg4Wg9Ao9EwJ3I6c4ctJCUujch9bxCz4QCxJ+KKbWYueYgt/97BltU76HbnrUxfNIU3p5qevyrILeCx256xdZc6XK+h+GgNR7UZjRC8dNdgpn/+LVcys/hq5mSi/zjL2eS0YpvFP+wo/n9K7250DPAFwMvdjccH3cG4D9cgJXz92BSi/zhLZl5+pXoGg+SVFzP57Atv/AO03H9XCkOGutG2fUlA+eZrWdxzvzv3jWtMzK58li7OYuk7JW/U+9fSLHrd4Wqzj87oF556Pp0Na1sQFKBlwKhERg1vTMdSPj7/ajqTx3owZXwTtu/MY8EbV1n5rg8AjzyZyrN/1TN4oLvN/YLBIHlnfjJL/x2Er7+OxyJi6fdnD0Lblfj4/qIUht2nZ8T9en7dncPHb6XywjJ/GjUSPP+2H8GtXUm5UsSjd8dy+4DGeOq1leppNII5T41g7t+/ICUpk8iVfyFm52liL6RY2O3YdoLIZVEW2zrdGsStXYKZOfVjAJateIjw7q04eijWuqNWEEKMAN4BtMBKKeXiMukDML2GPByYWKM2Y0N/se2Lnfzvwy0A9Lm7J4+9PZXnR73Oti92su2LnQCE3tqKV7971mrg5Gi9huCjU/apECzs82emRH1F4rUsNox5iK2xZzh9NbXYZuG+kgWCpnW8jc7NTe+29HJtxN+69+Ou9auRSDZGTGVL7BkyCyrva+sK9WUKhLUXYdwIq4ARVRkIIbTAm0BUVXZVse9QHreEutAmxAVXV8GECE82RF2zsDlxqoAh/U0v4bqzn3tx+vGT+RQVSYYO9ACgiYeGxo2r3iWO1gMI69WWy2cSSTyfRFFhEdvX7aJvRE8Lm1adgjn00zEADkf/Rp8y6dXB0XrO0HSGjzawCge0mfBgf2LTrhKXnkGhwcimYycZ3KHyZapGdwlj07GTAPRrG8rusxfJyM0nMy+f3Wcv0r9daJV6Rw8XEhKqpVWIDldXwegx7mz90bITP3O6iL79TYHbHX1d+enHklf//na0kJRkI/0HuGErjm6nBw4V0CZUR2uzj2MjGrMxKsfC5o9TRQzqb3q55sB+bmyMyjXXoxBDEQwe6G6zHsAfR/IICnEhsJULLq6CwXd7smuLpY8XzxRwW19Tud37uLNrqym9ZRtXglubflD4+Olo1lxLRmqVbzEkrGMgl+PSSLx8laIiI9u3Hqdv//ZW6wkgJbi46dDptLi4aNHptFxNu2Y9oxXM7eE9YCTQCZgkhOhUxiwWmAZ8UVMdW/qLnKzc4v8bebghZfkoYPCkfkSv3VXn9JyhebPrAXTzCeBC5lUuZWVQaDTy/bkTDG3VtlL7MW06sv7cCQAGBrfml/gLZBTkkVmQzy/xFxgUXE9WVpHV/DgJuwXAUsqfgTQrZnOAb4CkmurEJxbRMqhkIDsoQEd8ouXrOMM7u/LtRtMtuf/bdI2sbCOpaQZOnSvEy0vD/X+5TI+hsTz7ajIGQ9VHw9F6AD5B3iTHlfxiTIlLwyeouYXNuSMX+dP9dwDQ/95eeOgb4+ltus3s2siF9/YtZvnu1+kbcXud02soPlrDUW2mhWcTEjOyir9fyczGT9+kQttAL0+Cm3mx59wlAPz0TUjMtC1vsU2iAf/AkpFF/wANVxItg60OHXVEbTIFvT/+kMe1bEl6uhGjUbJ4YSZzX9RXy0dHt9PLiQaCS/kYFKDjcoKlj106ufDdJlNQvGFzLlnZktQ0A2fOFuLlJZg0PZm+QxN44dV0m/qF5MQifANKfPT115FcxsdbOrry8w8mH3+JukZOtpGMdMt6nTicR2GhJDCk6ikePr6eJCeVHPuU5Ex8fMtPm+g/sAMfrprBSwvvw7eFKf3E7/Ec+fUi69Y/ybr1T3Jg3zliL6aWy1sDegFnpJTnpJQFwFogorSBlPKClPIoYKypiC39BcCY2cP5/PS7zHjzAVY8+Wm59IHj+xL95c46p+cMzZtdD8DfowkJ10raTMK1LPwbVzzVKMhDT0tPL3YnmO6K+De2zJt4LQv/xlX3tXUCWfIgnK0fZ2HPEeAqEUIEYXoz1gc3Uk4FP9AQZW4fLpnvy46YXHoMjeXnmFyCAnTodFBkkOzcm8eSBb7s3dyScxcLWbUus07pVVS+qR6WFfnomdWED+jE+wffInxgZ5LjUjEUmfr7KSGzeLzXPBZNeYdZy6YR0MavTuk1FB9vlNpqM7b4fp1RXcKI+v0URnN6RXfmK8tbkm69DnNf1LNvTz4RI5LZv6cAP38NOi2sWZ3DwMFuBARWfmu+ppqO7hcWzW/Kzph8+g5NYGdMHoEBWnQ6QZEBdu/NZ9H8Zvy82Z/zsUX8Z50No6M2aM563pcje3OZMTqWI3tz8fHXoS21K1OTilj0VCJzl/ihsTLvwpbzJmbXaR4cF8nMaSs5dOACz7wwBoDAoGa0CvFh0n3LmXjvcrrdFkKXri2t+2idIOBSqe9x5m21iq1tZsOKKKa2m8PKeWuY/ML9FmkderUlP6eAC79fKpfP2XrO0LzZ9cyq5TUrGfK8u00HNl04WaqvrShvPaGhjwDbwL+AuVLKqu+7AUKIR4UQB4QQB5LL3KYLDtBxKb5k1CM+oYhAP8upzYH+Or75NJCDW1rx2nOmX3xeei3BATq63+pGmxAXdDpBxIgmHDpW9fwaR+sBJMel4Rtc8kvVJ9ib1MuWA4WpCem8MnYps3o8y6cvfAlATmZOcRpA4vkkjm4/TtvureuUXkPxsRaoUZspyrEMpq5kZuPvVTIK4advQlJWxQHXyC5hbDRPfwBIzMzGX29b3uv4B2hJvFxS5cQEIy38LANaP38t733szfoffPn7s6byPfUaDh8s4D+rrnFnnyQWv5bJd9/ksuQN6z8aHd1OgwK0xJXyMT6hiAB/Sx8D/HV8+Ykvu7cEsGBeU7OehqAALeG3utI6RIdOJ7h7RGMOHyuw6qNvgI7khBIfkxOL8Cnjo4+fjoUfBLJyYyumP23ysYl5nu+1LAPz/nKZ6f9oTufu7lb1kpOyikd0AXx89cUPu10nKzOXwkLTftj0/SHah5nmVPcbEMaJ3+PJyy0kL7eQ/XvO0rFzrcSpFf4mq1FBpdpMIZbH25b+ojTb1+6i3z29LLYNmtiP6LW2jRw6Ws8Zmje7HphGbQM8StpMgIcnV3KyK7Qd06YjG8zTHwAScizz+leRt86hAmCr9ATWCiEuAGOBFUKIeyoylFJ+JKXsKaXs6dvc8qJye7dGnDlfwPnYQgoKJOvWZ3H3cA8Lm5RUA0ajaS8vXp7GwxP1xXnTMwwkp5guItG7cujUvuoHbRytB3By/xmC2gXgH9oCnYuOQRP6EbPhgIWNvrknwvwTd9Jz9xL1menFfU2aeuDiqiu26dwvjIvH46gKR+s1FB9rgRq1GV1jy/PzWHwiId7NCGqqx0WrYVSXMKL/OFeujNDmzfBq5MbhSwnF23aduUC/tiHoG7mhb+RGv7Yh7DpzocpKd+nqwoULBi7FFlFQINm4IZchQy3n86alGYvbzIeR2Yyd0BiAt99txo69fkTHtGDei3ruud+dZ56zPh3C0e20RzdXzp4v5ILZx6/X5zBqmGVQWVpv6buZPDjBozjv1Qwj13/c79iZR4f21leGCQtvRNyFAhIuFVJYINn2fRZ9/2zp49W0Es0vVqQxapzJx8ICyUuPJTDsPk8Gjba++gPAyT8uE9TSG/8AL3Q6DYP+3ImYXacsbLybl9yi7dO/ffE0h6QrGYR3b4VGK9BqNYR3a1VbUyDigNJDycHA5ZoUVLrNuGB5ftrSXwS19S/+v/fo24g/XdJuhBAMGNvH5rmjjtZrCD46Y58eSUmgtVczWjbxwkWj4e42HdkSe6acXRu9N3rXRhxMKjl1d8SdZ0BQKHpXN/SubgwICmVH3HmbtZ1JfZkC4bRl0KSUxUNmQohVwP+klN9VnqNidDrB8kUtGDkpHoMBHp6op3OYGwveSqVHVzfGDG/C9pgcXliUihDwpzvciVxkeqJdqxW8Nd+HoePjkRJuC3djxpSql1hytB6A0WAkcs4nvPHDC2i0GqI+i+bi8TimvjKBUwfOEvP9AboO6sz0RZORUnLslxO8+/hKAFp1DOJvH8zEaDSi0WhY++Z3Fk+91gW9huLjjVJbbcZglLy2cRsrH7oPjUbw7a+/cyY5lTmD+/Bb/BWiT5qC4dHhYWz6zTLAycjN5/3te/lq5mQAVmzfQ0Zu1aOjOp1g/kI90x9Iw2CAsRPcaRfmwjtLs7g13IUhwxqxLyaftxdnIQT07O3KyzYudVaVpqP7hbdf9+aeyUkYDPDgRA86hbmy8K2r3NbVldHDG/NLTD4vv3EVIaBfbzf+uci7WG/RS025a3wSUkL3cFcenmJ9rp9OJ3jylRY881A8RiOMHKendXs3Pv1nKmFd3Og3tAmH9+Tw8ZJUBBDey52/vWryMXpjFkf25ZKRbuCHr00j6vOW+tOuU+UPGhoNksh/RvHGPyeh0WiI2niEi+dTmDp9AKf+SCBm12nuGduTPv3bYzAYycrMZcnr3wPwy/Y/6NYjlI8/fxQpJfv3nmPPrtNWfbSB/UA7IURrIB6YCEyujYJLY0t/EfHESLoP6YKh0EBWejZvTYsszt9lQEdS4lJJPG/b1H1H6zUEH52xTw1SMj9mK6uHj0MrBF+dPsbpq6k81b0/R1MS2XrJFAyPuaUj358/YZE3oyCP5Ydj+H7MQwC8c3g3GQV55TQUNUdYm79X44KF+BIYBPgAV4AFgAuAlPKDMrarMF3MrS5P07NrI7kvqlVtV7dOMTywq7OroKgFtsqvD0opbV46wl5txj2wpQyd8ZTtFb9BNjy6xGFaALfoHP9gSK507FJEB/JtXwGjtnjtgakO19y668VqtRkAIcQoTNODtMCnUsrXhRCvAgeklBvMywb+H9AMyAMSpZSdqypTL7xlbzGkZk4oGiynVtbOA9HVIXb63Gq3GXvSKKilDJlZvevNqQVPOcUHu40ASyknVcN2mr3qoVDUF1SbUSiqj5RyE7CpzLb5pf7fj2lqhEKhsDf16FXIzpwDrFAoFAqFQqFQOJyb4lXICoVCoVAoFIo6QD0ZAVYBsEKhUCgUCoWidlABsEKhUCgUCoWioSCoP3OAVQCsUCgUCoVCoagdVACsUCgUCoVCoWgw1KNVIFQArFAoFAqFQqGoHepJAKyWQVMoFAqFQqFQ1A6ymh8bEEKMEEKcFEKcEULMq8RmvBDiuBDidyHEF9bKVCPACoVCoVAoFIpaobanQAghtMB7wFAgDtgvhNggpTxeyqYd8BzQT0qZLoRoYa1cNQKsUCgUCoVCoagdan8EuBdwRkp5TkpZAKwFIsrYPAK8J6VMB5BSJlkrVI0AW2F4YFdnV0FRC0RdPuJwTW2AwyUVCoVC4STaz9jvcM1YhytaoRrTGqpBEHCp1Pc4oHcZm/YAQohdgBZ4WUr5Q1WFqgBYoVAoFAqFQlEr1GAKhI8Q4kCp7x9JKT8qXWQFecqq6IB2wCAgGPhFCHGrlPJqZaIqAFYoFAqFQqFQ1A7VD4BTpJQ9q0iPA1qW+h4MXK7AZo+UshA4L4Q4iSkgrnRYXs0BVigUCoVCoVDUCkJW72MD+4F2QojWQghXYCKwoYzNd8CdAEIIH0xTIs5VVagKgBUKhUKhUCgUtUMtPwQnpSwCngCigBPAV1LK34UQrwohxpjNooBUIcRxIBp4RkqZWlW5agqEQqFQKBQKheLGsc9DcEgpNwGbymybX+p/CTxl/tiECoAVCoVCoVAoFDeMoOIn1uoiKgBWKBQKhUKhUNQO6lXICoVCoVAoFApF3eOmGAH+Yds1/j4/GYMBpk/WM3eOt0X6xUuFzHjqCsmpBrybalkd6UdwoAsAsXGFPPKPJOIuFyKE4H9rAglt6VKlXs/h3Zj9r4fRaDVs/uQn1r35nUV6i1Y+PP3JbLx89WSlZbP4weWkxKeZ6lq4jgvHTEtXJ8WmMP+eN23y0dGaDcFHR583dYn+bUN4ftQgNELD17/+xspfLFeKmTdiIL1aBwPg7uKCt4c7vd94H4CIbp2YNbAXAO/v2Mf6w8exxs/Rebz+ciYGA4yb1JiZjzexSI+PK+K5pzNITzXi1VTD0uVN8Q/QFqdnZxkZcWcyQ0c0YsFrXjb56OjjuyU6l2dfSsdghKmTPPjHHMt6xsYVMeupVFJSjTRrquGTd5sTFGjqgi/FFfH402nEXS5CCPj2Py0IaWm9e9674xqRryRjMMLoCXqmzLL0MTGukLfmXuFqqgHPplpeWOZHiwAXTh/PZ9mLSeRkG9Fo4IEnvBl8l6dVvZ692zD7yWFoNILN/zvMuv/EWKQPGxnOI7MHk5qSDcD6bw6w+X+HAZgxazC9+7ZFIwQH959nxTs/WtWrS1jrn+6aOZQxs0dgNBjJzc5j2cwPiT0Rx+DJ/Rn/dMlLq1qHt2J2j7mcPXKhTuk1BB8bwj6tC9T2q5DthTDNG7ZDwUJ8CtwFJEkpb60gfQow1/w1G5glpbT6uq6eXRvJfVGtir8bDJIO/S4StS6I4AAdvUfGsmaFP53C3Iptxj+SwOihHkwdr2fbzhxWrc1kdaQ/AIPvi+O5J5sxdKAH2deMaAQ0blwyMF72TXAajYbPTr7D3GELSYlLI3LfGyya/A6xJ+KKbV5a9xR7Nh5ky+oddLvzVoZPu5M3p74LwIbMfzNG/6A1N52qeTP6WPZNcPY+bwC0AacPWlnb0AJ7tRn3wJYydEbJcwEaIdj85DSmf/4tVzKz+GrmZJ7+7ybOJqdVmH9K7250DPDlxe+24OXuxn9nTmHch2uQEr5+bApjP1hDZl5+sf2GR5dY5DcYJMMGJPPZF974B2i5/64UlkU2pW37koDyr4+lM2iIG/eNa0zMrny++SqXpe80LU5/bUEGaebguGwAfIvOMpi+rmnP45sr88vpdeufwIa1LQgK0DJgVCKfrfChYykfH3g0mZF/dmfK+CZs35nHf9Zls/JdHwBG3H+FZ/+qZ/BA9wr1DuS7URaDQfLg4Iss/XcQvv46HouI5aXl/oS2K7FdMDuBPkM8GHG/nl9357D5v5m8sMyfS+cKEAKCW7uScqWIR++O5fOtIXjqS350vPbAVAs9jUbw2ZezmPv3L0hJyiRy5V9Y9PJ3xF5IKbYZNjKc9h0CiFwWZZG3061BPDp7CE898W8Alq14iE8+jOboIcv3WG3d9WKFbUYIMQJ4B9MbnlZKKReXSXcDVgM9gFRggpTyghCiOfA1cDuwSkr5RLkdWQF64S17iyGlfLfePzX2dCcnKxeAPnf35O5Zw3l+1OsW5Ybe2opXv3uWh9pWXQ1H6zUEH2/WfbpVfl2t64y9aezXUrabaPNzaAAcXf6UU3yw5xSIVcCIKtLPAwOllOHAQuCjKmwrZd+hPG4JdaFNiAuuroIJEZ5siLpmYXPiVAFD+rsDcGc/9+L04yfzKSqSDB3oAUATD025IKYsYb3acvlMIonnkygqLGL7ul30jbA8bq06BXPop2MAHI7+jT4RN3ZcHa3ZEHx09HljI6twQJsJD/YnNu0qcekZFBqMbDp2ksEdbqnUfnSXMDYdOwlAv7ah7D57kYzcfDLz8tl99iL924VWqXf0cCEhoVpahehwdRWMHuPO1h8tA8gzp4vo298UuN3R15WffswrTvvtaCEpyUb6DygfBFaGo4/vgUMFtAnV0drs49iIxmyMyrGw+eNUEYP6NwJgYD83NkblmutRiKEIBg90t1kP4I8jeQSFuBDYygUXV8Hguz3ZtcXSx4tnCritr6nc7n3c2bXVlN6yjSvBrV0B8PHT0ay5loxUQ5V6YR0DuRyXRuLlqxQVGdm+9Th9+7e3Wk8AKcHFTYdOp8XFRYtOp+Vq2jXrGQEhhBZ4DxgJdAImCSE6lTGbDqRLKdsCy4Drt4DygJeAp20SqwRb+qfrQQxAIw83KhpcGjypH9Frd9U5PWdo3ux6ztKsE9TyMmj2wm4BsJTyZ6DiISVT+m4pZbr56x5Mb/aoNvGJRbQMKrlVGBSgIz6xyMImvLMr32403ZL7v03XyMo2kppm4NS5Qry8NNz/l8v0GBrLs68mYzBUfTR8grxJjitZWi4lLg2foOYWNueOXORP998BQP97e+Ghb4ynt2mUyrWRC+/tW8zy3a/TN+J2m3x0tGZD8NHR540tOKrNtPBsQmJGVvH3K5nZ+OnLj6ICBHp5EtzMiz3nTK9h99M3ITHTtrzFNokG/ANLRhb9AzRcSbQMtjp01BG1yRT0/vhDHteyJenpRoxGyeKFmcx9UV8tHx19fC8nGggu5WPmZc1kAAAgAElEQVRQgI7LCZY+dunkwnebTEHxhs25ZGVLUtMMnDlbiJeXYNL0ZPoOTeCFV9NtOp+SE4vwDSjx0ddfR3IZH2/p6MrPP5h8/CXqGjnZRjLSLet14nAehYWSwJCqp3j4+HqSnFRy7FOSM/HxLT9tov/ADny4agYvLbwP3xam9BO/x3Pk14usW/8k69Y/yYF954i9WOUSnaXpBZyRUp6TUhYAa4GIMjYRwOfm/78GhgghhJTympRyJ6ZAuMbY0j8BjJk9nM9Pv8uMNx9gxZOflksfOL4v0V/urHN6ztC82fWcpel0qvkSDGdOl6grD8FNBzbXJGNFMzhEmTU4lsz3ZUdMLj2GxvJzTC5BATp0OigySHbuzWPJAl/2bm7JuYuFrFqXWaVe2bJNdbCsxEfPrCZ8QCfeP/gW4QM7kxyXiqHICMCUkFk83msei6a8w6xl0who42fVR0drNgQfHX3e2IEatxlb9vV1RnUJI+r3UxjN6RW+kN3KNCpb9vXcF/Xs25NPxIhk9u8pwM9fg04La1bnMHCwGwGlgktbcPTxtUVv0fym7IzJp+/QBHbG5BEYoEWnExQZYPfefBbNb8bPm/05H1vEf9bZMDpqg+as5305sjeXGaNjObI3Fx9/HdpSuzI1qYhFTyUyd4kfGk3VixfZct7E7DrNg+MimTltJYcOXOCZF0xr1AcGNaNViA+T7lvOxHuX0+22ELp0bVm+wIoJAi6V+h5n3lahjXnR/AygfKRRQ2xtMxtWRDG13RxWzlvD5Bfut0jr0Kst+TkFXPj9Url8ztZzhubNrucszTpBQx8BthUhxJ2YLuZzq7B5VAhxQAhxILnMbbrgAB2X4ktGPeITigj0s3x4JNBfxzefBnJwSytee87UJ3rptQQH6Oh+qxttQlzQ6QQRI5pw6JjlrdmyJMel4Rtc0q/6BHuTetly0C41IZ1Xxi5lVo9n+fSFLwHIycwpTgNIPJ/E0e3Hadu9dZV6ztBsCD46+rypTarbZopyLIOpK5nZ+HuVjNz56ZuQlFVxwDWySxgbzdMfABIzs/HX25b3Ov4BWhIvl7TbxAQjLfwsA1o/fy3vfezN+h98+fuzpvI99RoOHyzgP6uucWefJBa/lsl33+Sy5A3rPzYcfXyDArTElfIxPqGIAH9LHwP8dXz5iS+7twSwYF5Ts56GoAAt4be60jpEh04nuHtEYw4fK7Dqo2+AjuSEEh+TE4vwKeOjj5+OhR8EsnJjK6Y/bfKxiXme77UsA/P+cpnp/2hO5+7uVvWSk7KKR3QBfHz1xQ+7XScrM5fCQtN+2PT9IdqHmeZU9xsQxonf48nLLSQvt5D9e87SsXPZGLZSKvzdVQObqkVKtZlCLI+3Lf1Tabav3UW/e3pZbBs0sR/Ra20bxXO0njM0b3Y9Z2nWBdQIsA0IIcKBlUBEVa+sk1J+JKXsKaXs6dvc8qJye7dGnDlfwPnYQgoKJOvWZ3H3cA8Lm5RUA0ajaS8vXp7GwxP1xXnTMwwkp5guItG7cujU3rXKOp/cf4agdgH4h7ZA56Jj0IR+xGw4YGGjb+6JMP/0m/TcvUR9Fg1Ak6YeuLjqim069wvj4vE4rOFozYbgo6PPm9qiJm1G19jSr2PxiYR4NyOoqR4XrYZRXcKI/qP8K9NDmzfDq5Ebhy8lFG/bdeYC/dqGoG/khr6RG/3ahrDrzIUq69ylqwsXLhi4FFtEQYFk44Zchgy1nM+blmYs3tcfRmYzdkJjAN5+txk79voRHdOCeS/qued+d555zvp0CEcf3x7dXDl7vpALZh+/Xp/DqGGWQWVpvaXvZvLgBI/ivFczjFz/cb9jZx4d2ltfUSQsvBFxFwpIuFRIYYFk2/dZ9P2zpY9X00o0v1iRxqhxJh8LCyQvPZbAsPs8GTTa+uoPACf/uExQS2/8A7zQ6TQM+nMnYnadsrDxbl4yHaZP//bF0xySrmQQ3r0VGq1Aq9UQ3q1VdaZAxAGlh4uDgcuV2QghdIAXVUwnqojSbcYFy/PTlv4pqK1/8f+9R99G/OmSdiOEYMDYPjbP43S0XkPwsSHs0zpDPRkBdtoyaEKIVsC3wINSylPW7CtDpxMsX9SCkZPiMRjg4Yl6Ooe5seCtVHp0dWPM8CZsj8nhhUWpCAF/usOdyEW+AGi1grfm+zB0fDxSwm3hbsyYUvUSS0aDkcg5n/DGDy+g0WqI+iyai8fjmPrKBE4dOEvM9wfoOqgz0xdNRkrJsV9O8O7jKwFo1TGIv30wE6PRiEajYe2b31k8DVpXNBuCj44+b2qD2mozBqPktY3bWPnQfWg0gm9//Z0zyanMGdyH3+KvEH3SFAyPDg9j02+WMhm5+by/fS9fzZwMwIrte8jIrXp0VKcTzF+oZ/oDaRgMMHaCO+3CXHhnaRa3hrswZFgj9sXk8/biLISAnr1dednGpc6q0nTk8dXpBG+/7s09k5MwGODBiR50CnNl4VtXua2rK6OHN+aXmHxefuMqQkC/3m78c5F3sd6il5py1/gkpITu4a48PKXqedXXNZ98pQXPPBSP0Qgjx+lp3d6NT/+ZSlgXN/oNbcLhPTl8vCQVAYT3cudvr5p8jN6YxZF9uWSkG/jha9OI+ryl/rTrVPmDhkaDJPKfUbzxz0loNBqiNh7h4vkUpk4fwKk/EojZdZp7xvakT//2GAxGsjJzWfL69wD8sv0PuvUI5ePPH0VKyf6959iz67RVH83sB9oJIVoD8cBEYHIZmw3AVCAGGAtsk7W4xJEt/VPEEyPpPqQLhkIDWenZvDUtsjh/lwEdSYlLJfF8Up3Uawg+NoR9WldQy6AJ8SUwCPABrgALABcAKeUHQoiVwP3ARXOWIluWwSi7DJq9KbsMmqJ+UnYZNEdQg2XQ7NJmyi6DZm/KLoNmbypaBs3elF0Gzd5UtAyavSm7DJojqGIZtFHAvzAtg/aplPJ1IcSrwAEp5QYhRCPg30B3TCO/E6WU58x5LwB6wBW4CgyTUla5eHXZZdAUirpKnVsGzbel7HB/9a43hz50zjJodhsBllJOspI+A5hhL32For6h2oxCUTFSyk3ApjLb5pf6Pw8YV0neULtWTqFQWFJPRoBvijfBKRQKhUKhUCici6D+TIFQAbBCoVAoFAqFonZQAbBCoVAoFAqFoiEh7PRsWW2jAmCFQqFQKBQKxY3j5KXNqoMKgBUKhUKhUCgUtYKaA6xQKBQKhUKhaFjUkwDY6a9CVigUCoVCoVAoHIkaAVYoFAqFQqFQ1ApqCoRCoVAoFAqFomGhAmD7cOpoY/V6YoVC4VSyjIUO1fPUOOGKsvuw4zUVCkX9RqoRYIVCoVAoFApFQ0MFwAqFQqFQKBSKhoJ6FbJCoVAoFAqFouGh3gSnUCgUCoVCoWhIqBFghUKhUCgUCkXDQb0KWaFQKBQKhULR0BBGZ9fANlQArFAoFAqFQqGoHdQIsEKhUCgUCoWiIaHmADuQnsO7MftfD6PRatj8yU+se/M7i/QWrXx4+pPZePnqyUrLZvGDy0mJTwPgh8J1XDgWC0BSbArz73mzzukpH+2j+cO2a/x9fjIGA0yfrGfuHG+L9IuXCpnx1BWSUw14N9WyOtKP4EAXAGLjCnnkH0nEXS5ECMH/1gQS2tLFJj/rAv3bhvD8qEFohIavf/2Nlb/st0ifN2IgvVoHA+Du4oK3hzu933gfgIhunZg1sBcA7+/Yx/rDx63q/Rydx+svZ2IwwLhJjZn5eBOL9Pi4Ip57OoP0VCNeTTUsXd4U/wBtcXp2lpERdyYzdEQjFrzmZZOPjj6+26LzmL/A5OPkSY2Z84Slj5fiinjqHxmkphpp2lRD5PKmBAaafAxqlUDHDqbuOChIy+efeZcrvyJ2b89l6StXMRjgnokePDxbb5GeEFfEK8+kkZ5m2q8L/+WNX4COhLginp6ZgtEIRYWSCdM8GftAk0pUSrDWRodNHcQjbz1Iqrldrn9vM5s/2QbA0IcGMuWF+wFY8/o3bFm9wyYf6wrWfL9r5lDGzB6B0WAkNzuPZTM/JPZEHIMn92f80xHFdq3DWzG7x1zOHrlQp/Qago8NYZ86HUm9WQVCSDtVVAjxKXAXkCSlvLWCdAG8A4wCcoBpUspfrZWrF96ytxhS/F2j0fDZyXeYO2whKXFpRO57g0WT3yH2RFyxzUvrnmLPxoNsWb2DbnfeyvBpd/Lm1HcB2JD5b8boH7TZL0frKR9rRzPq8hGL7waDpEO/i0StCyI4QEfvkbGsWeFPpzC3YpvxjyQweqgHU8fr2bYzh1VrM1kd6Q/A4PvieO7JZgwd6EH2NSMaAY0bayw0tAGnD0ope9q6D+zVZtwDW8rQGU8Vf9cIweYnpzH982+5kpnFVzMn8/R/N3E2Oa3C/FN6d6NjgC8vfrcFL3c3/jtzCuM+XIOU8PVjUxj7wRoy8/KL7Tc8usQiv8EgGTYgmc++8MY/QMv9d6WwLLIpbduXBJR/fSydQUPcuG9cY2J25fPNV7ksfadpcfprCzJIMwfHZQPgW3TlAzd7H98kQ3Y5vX4Dkln3hTcBAVpGjk5hxXtNCSvl4yMz0xn6ZzfGj2vMzl35rF2XS+Ryk4+3tE/k7Cn/Cvc/wGVD+bEKg0Fy76AEVqxpgZ+/lgfHXGHR8ua0KaX57KwU/jTEnbvHerBvVx7f//caC//VnMICiZTg6ibIuWZk/LBEPvvWD1+/kh8dc0N7W+jZ0kaHTR1E+563EDnnE4u8ns2a8N7+xTx++zyklKw48Caze84l++o1C7ut8uvTmC6hWmCllHJx6XQhhBuwGugBpAITpJQXzGnPAdMBA/BXKWWUeXuV7aoianKdaezpTk5WLgB97u7J3bOG8/yo1y3KDb21Fa9+9ywPtX2iSn1H6zUEH2/WfbpVfl2t64y9adKspew2+Mlq5dn17TNO8UFj3aTGrAJGVJE+Emhn/jwKvF8TkbBebbl8JpHE80kUFRaxfd0u+kZY7sdWnYI59NMxAA5H/0afiJrvZ0frOUOzIfi471Aet4S60CbEBVdXwYQITzZEWV6MT5wqYEh/dwDu7OdenH78ZD5FRZKhAz0AaOKhKRf81pBVOKDNhAf7E5t2lbj0DAoNRjYdO8ngDrdUaj+6Sxibjp0EoF/bUHafvUhGbj6ZefnsPnuR/u1Cq9Q7eriQkFAtrUJ0uLoKRo9xZ+uP+RY2Z04X0be/KTi9o68rP/2YV5z229FCUpKN9B/ghq04+vgeOlxIaKiWELOPERHuRJXx8dTpIvr3M/nQr68rUaV8rAm/Hy6gZagLwa10uLgKht3dmO1bci1szp8upJdZ8/a+buwwp7u4ClzdBAAFBRKjDQ+t2NJGK6Pn8K4c3HqUrPRssq9e4+DWo9w+opuFjXkwphWm87wTMEkI0alMUdOBdCllW2AZ8CaA2W4i0BlTG1ohhLgeza+i6nZlFVt8vx7EADTycKOiwaXBk/oRvXZXndNzhubNrucszTqBrObHSdgtAJZS/gxUPKRkIgJYLU3sAZoKIQKqq+MT5E1yXGrx95S4NHyCmlvYnDtykT/dfwcA/e/thYe+MZ7eplEj10YuvLdvMct3v07fiNvrnJ7y0T6a8YlFtAwqGVULCtARn1hkYRPe2ZVvN5pG+v5v0zWyso2kphk4da4QLy8N9//lMj2GxvLsq8kYDDfeih3VZlp4NiExI6v4+5XMbPz0Fd/+DvTyJLiZF3vOXQLAT9+ExEzb8hbbJBrwDywZWfQP0HAl0WBh06GjjqhNpoDwxx/yuJYtSU83YjRKFi/MZO6Llrf2reHo45uYYCCo1JSNAH8NiQmWPnbuqGOj2cdNm/PIzpakpZsiz/x8yfBRKYy+O4XNP9gWGCclGvArpekXoCW5zH5t19GVnzabLrDRP+RyLVtyNd1kk3i5iAnDExl1RwLTHvO0GP2tCFvaKED/+3rz4eGlvPTVP/ANNqU3D/Im+VJKqbypNA+ynOaRYTr186WU56SUBcBaTOd8aSKAz83/fw0MMd8ZiQDWSinzpZTngTNAL7CpXVnFVt/HzB7O56ffZcabD7DiyU/LpQ8c35foL3fWOT1naN7ses7SdDbX3wRXnY+zsOcIsDWCgEulvseZt1ULIcpvK/sL6qNnVhM+oBPvH3yL8IGdSY5LxVBkuvBMCZnF473msWjKO8xaNo2ANn51Sk/5aB/Nimb+lK3Dkvm+7IjJpcfQWH6OySUoQIdOB0UGyc69eSxZ4MvezS05d7GQVesyrfpYCziszVxnVJcwon4/hdGcXkHWSvOWpFuvw9wX9ezbk0/EiGT27ynAz1+DTgtrVucwcLAbAYFVB2c10azN41vRHiirN/8lPTF78hk6PJmYPQUEmH0EOLC3BVGbfFgR2ZT5L2dy4UJR+QJroPn3F5vy6558Jo9M5ODefFr4a9FqTUb+gTrWRfmz/ucA/vdNDqnJhgpKrLxsKH/sY74/wIOtZzOz29Mc+ukoz6x6wpy3wswWX/PJBSgotami87u4DUgpi4AMoDm11DYqw9Y2s2FFFFPbzWHlvDVMNs93vk6HXm3Jzyngwu+XyuVztp4zNG92PWdpOh0pq/9xEs4MgCu8llZoKMSjQogDQogDhVjeVkyOSyseZQDwCfYm9bLlj/3UhHReGbuUWT2e5dMXvgQgJzOnOA0g8XwSR7cfp2331lVW2tF6ykf7aAYH6LgUXxJkxCcUEehnOc8y0F/HN58GcnBLK157zlQ3L72W4AAd3W91o02ICzqdIGJEEw4dszwv7USN2kxRjuWt/yuZ2fh7eRZ/99M3ISnrWtkiABjZJYyN5ukPAImZ2fjrbct7Hf8ALYmXS4KrxAQjLcqMNvr5a3nvY2/W/+DL3581le+p13D4YAH/WXWNO/sksfi1TL77Jpclb1j/seHo4xsQoCW+1IhvQqIRP39LH/39tXy60pstUb48N9fko16vKU4DCAnR0bePK7/9VmjVRz9/LVdKaV5JMOBTZr/6+mlZ+pEPX2z25/FnTHOnPfWacjZt2us4tK9qH21po1lp2RQWmPb7po9/on2PNoBpxNe3pU+pvM1JvZxu1UfKn9+VtQGb20Zl3Oh1pjTb1+6i3z29LLYNmtiP6LW2jeI5Ws8Zmje7nrM0b1aEECOEECeFEGeEEPMqSJ8mhEgWQhw2f2ZYK9OZAXAc0LLU92DgckWGUsqPpJQ9pZQ9XbCcB3hy/xmC2gXgH9oCnYuOQRP6EbPhgIWNvrln8QjEpOfuJeqzaACaNPXAxVVXbNO5XxgXj8dRFY7WUz7aR/P2bo04c76A87GFFBRI1q3P4u7hHhY2KakGjEbTNXTx8jQenqgvzpueYSA5xXShj96VQ6f2rlZ9rAVq1GZ0jS39OhafSIh3M4Ka6nHRahjVJYzoP86VKyO0eTO8Grlx+FJC8bZdZy7Qr20I+kZu6Bu50a9tCLvOXKiy0l26unDhgoFLsUUUFEg2bshlyFDLdpyWZize1x9GZjN2QmMA3n63GTv2+hEd04J5L+q55353nnnO+nQIRx/fbl1dOH/eQKzZx/XrcxlexsfUUj4uj8xmotnHq1eN5OfLYpv9+wto1976Aj2durpy6Xwh8bFFFBZIfvw+h4FD3S1s0tNKfPzsvUzGjDftgysJReTlme6eZGYYOXKggJBbqta0pY16+5c8uNhnTM/ih30ORB2hx9CuNGnqQZOmHvQY2pUDUZYPprrhDlB6R1d0fhe3ASGEDvDCNL3B5rZRGTd6nQlqW/IQY+/RtxF/uqTdCCEYMLaPzfM4Ha3XEHxsCPu0rlDbUyDM8/nfo+rnAwDWSSm7mT8rrZXrzGXQNgBPCCHWAr2BDCllgpU85TAajETO+YQ3fngBjVZD1GfRXDwex9RXJnDqwFlivj9A10Gdmb5oMlJKjv1ygncfN+2XVh2D+NsHMzEajWg0Gta++Z3F05l1QU/5aB9NnU6wfFELRk6Kx2CAhyfq6RzmxoK3UunR1Y0xw5uwPSaHFxalIgT86Q53Ihf5AqDVCt6a78PQ8fFICbeFuzFjim1Lc90gtdJmDEbJaxu3sfKh+9BoBN/++jtnklOZM7gPv8VfIfqkKRgeHR7Gpt9OWeTNyM3n/e17+WrmZABWbN9DRm7VI4c6nWD+Qj3TH0jDYICxE9xpF+bCO0uzuDXchSHDGrEvJp+3F2chBPTs7crLNi51VpWmI4+vTidYtFDPpClpGIwwcYI7YWEuvLUki65dXRg+rBExu/NZZPbxjt6uLHrdVObpM0U8OzcDjQaMRnji8SYWq0dUpfnsq8144iHTHOWI8U24pb0L77+dQadwVwYOdedgTD6Rb2UgBHTv5ca8hc0AOH+miGWvXUUI0x3IBx/1pF2HqoN8W9roPX8dRZ+7e2IoMpCVls2Sh98DICs9mzWvfU3kPtOiDmsW/pesdMuVNPQ0A2gkhGgNxGN6qG1ymWpsAKYCMcBYYJuUUgohNgBfCCH+CQRielB0n9WdaCO2+B7xxEi6D+mCodBAVno2b02LLM7fZUBHUuJSSTyfVCf1GoKPDWGf1hlqf1ZDL+CMlPIcgPkaGAFYX4OzCuy5DNqXwCDAB7gCLABcAKSUH5gfXIjE9HRuDvCwlPJAxaWVUHZ5GoXCFsoug+YIarAMml3aTNll0OxN2WXQ7E1Fy6DZm7LLoNmbipZBszdll0FzBFvl12coWQbtUynl60KIV4EDUsoNQohGwL+B7phGfieWuii+APwFKAL+JqXcbN5erl1JKS3XaSuDus4o6gt1bRk0z6bB8rY/VW8ZtJ//92yVPgghxgIjpJQzzN8fBHpLKZ8oZTMNeANIBk4Bf5dSVjlx2m69qpRykpV0CTxuL32For6h2oxCQUbZC6GUcn6p//OAcRVllFK+DrxewfYq25VCoahFJGCs9sCqjxCi9GDOR1LKj0p9t2WO//fAl1LKfCHEY5hWixlclehN8SY4hUKhUCgUCkUdoPoTC1KsjGJbneMvpUwt9fVjzGuEV4UzH4JTKBQKhUKhUNxE2GEd4P1AOyFEayGEK6bnAzZYaFquiT8GOGGtUDUCrFAoFAqFQqGoHWr52TIpZZEQ4gkgipLnA34v/XwA8FchxBhMzwCkAdOslasCYIVCoVAoFApFrWCPt7tJKTcBm8psK/18wHPAc9UpUwXACoVCoVAoFIobR2KPZdDsggqAFQqFQqFQKBQ3jACEE19vXB1UAKxQKBQKhUKhqB2Mzq6AbagAWKFQKBQKhUJRK6gRYIVCoVAoFApFw6EezQG226uQ7YUQIhm4WIOsPkBKLVenrmkqH+uWZoiU0re2K1NdVJupU3rO0KxPeqrN1H3Nm13PGZr1vs1cR+8ZJG/vUb0Xlm7b8YJTXudc70aAa3qghRAHHL2DHa2pfLx5NGsT1Wbqjp4zNG92PXug2kzD1XOG5s3QZkpjj2XQ7EG9C4AVCoVCoVAoFHWUejKzQL0KWaFQKBQKhULRoGhII8AfNQBN5ePNo1kXaAj7WvlY//XqEup8qv96ztC8edqMBFFPlkGrdw/BKRQKhUKhUCjqHvomQbJ311nVyrN190vqITiFQqFQKBQKRT2mnoyr3nRzgIUQnwohkoQQv1WSLoQQy4UQZ4QQR4UQt9lZb4pZ56gQYrcQouuN6NmiWcrudiGEQQgx1t56QohBQojDQojfhRA77KknhPASQnwvhDhi1nv4BvVaCiGihRAnzOU9WYFNrZ43zkAIMUIIcdLsw7wK0t2EEOvM6XuFEKGl0p4zbz8phBhearut52KNtIUQzc3HJlsIEWlH3wcIIX4VQhTdaHsxl2f3fqgiDSGEtxBiixDitPlvs0ryTjXbnBZCTK0NDVt9EkL0EEIcM9stF0KI6vruCGw9tyvJW6GP5nP8sPlzQQhx2J565rQ55nP/dyHEWw7w8WUhRHwpP0fZqe+psEwhxBPmbVII4WMnbZv3W031RS31fc5ASFmtj7O46QJgYBUwoor0kUA78+dR4H07650HBkopw4GF1M5cH2uaCCG0wJtAlL31hBBNgRXAGCllZ2CcPfWAx4HjUsquwCDgbSGE6w3oFQH/kFJ2BO4AHhdCdCpjU9vnjUMxnw/vYfKjEzCpAh+nA+lSyrbAMkznD2a7iUBnTMdlhbk8sP1crJE2kAe8BDxdHX9roB8LTAO+qKlOGVZh/36oIo15wE9SynbAT+bvFgghvIEFQG+gF7BAVBIoV1PDVp/eN6dft63y/HEiq6h53Sr0UUo5QUrZTUrZDfgG+NaeekKIO4EIINzcNy8tk6/WNc0sK+VnFLXc91hp07uAP2Nax1lT29rmPKuwYb85u+9zGlJW7+MkbroAWEr5M5BWhUkEsFqa2AM0FUIE2EtPSrlbSplu/roHCK6plq2aZuZg6mCTHKA3GfhWShlrtr8hTRv0JOBpHnFoYrYtugG9BCnlr+b/s4ATQFAZs1o9b5xAL+CMlPKclLIAWIvJp9JEAJ+b//8aGGLexxHAWillvpTyPHDGXJ6t52KNtaWU16SUOzFdDGqKVX0p5QUp5VFq6S32juiHKtEovR8/B+6pIOtwYIuUMs3cN22hkot5NTWs+mT+rpdSxkjTAyirK6mj06nIdyHELUKIH4QQB4UQvwghOpTNZ4uP5nY1HvjSznqzgMVSynyzhkXfbE8fS2GPvqfSMqWUh6SUF8xl3WYHbVv7vRvyvZb6PscjMfWi1fk4iZsuALaBIOBSqe9xlA927MV0YLO9RYQQQcC9wAf21jLTHmgmhNhu7jQfsrNeJNARuAwcA56UUtZKMzLffuoO7C2T5Mzzpjawpf7FNlLKIiADaG5jXntp1wZ18djZq05+UsoEMP2wA1rYQbsyDVuPc9wNaDubj4A5UsoemEbmVlRgY4uPfwKuSClP21mvPfAn8631HUKI263o1YYmwBPCNA3mU3MdamynP2MAAAjKSURBVLvvsfUcDrCDdnVwdt/ncATVm/7gzCkQDfEhuIrmm9n9CJhvRU0H+ttbC/gXMFdKaRCOmV6nA3oAQwB3IEYIsUdKecpOesOBw8Bg4BZgixDiFyll5o0UKoRogmnU/G8VlOWU86YWsaX+ldncqO83ol0b1MVj58w62Uvb2cfZrpj7h77Af0v1q24VmVawrayPkyg1+mtHPR3QDNPUrtuBr4QQbWQlyz/Vkub7mKb7SfPfqcC5SmytlVfZ9ooG7yryyZn93o3q11/qyepiDTEAjgNalvoejGkk0W4IIcKBlcBIKWWqPbXM9ATWmjswH2CUEKJISvmdnfTigBQp5TXgmhDiZ6ArYK8A+GFMt/UkcEYIcR7oAOyraYFCCBdMwe8aKeW3FZg4/LypZWyp/3WbOCGEDvDCdJvvRn2/Ee3aoC4eO3vV6YoQIkBKmWC+TV3RdKQ4THPnS2tvrwUNW49zsBWbuooGuGqe11qMeZ7nQfPXDZgCwEp9NJ/f92EaNLC3Xhym6WkS2CeEMGK6JiTbS1NKeaVUvo8xzaMtrKR+16lJ32NL+7lsg529+r3SZddEv/5STwLghjgFYgPwkDBxB5Bx/XaePRBCtML0oMODdhwRtUBK2VpKGSqlDMU0p2i2HYNfgPWYbrPphBCNMT1cc8KOerGYRpsRQvgBYZQfYbAZ83yvT4ATUsp/VmLm0PPGDuwH2gkhWpsfGJyIyafSbMA0WgMwFthmvnBuACYK09PKrTE98FKdHxs3ol0b2KLvaOx1PpXej1Mxtc2yRAHDhBDNzA+/DaN6D8tWpmHVJ/P3LCHEHeZ291AldaxzmO8KnRdCjIPiVS+6SikN0vzAl5Ryvg0+/hn4Q0oZV16l1vW+w3SnDCFEe8AVSLGnprCc930vcIDa73tsbdOH7KBdHZzd9zmeejQHGCnlTfXBdFspAdMvzjhM0w4eg/9v7/5C7KjuAI5/fwlKNEnjn4D/Gt0I9kEjQd0UFB9EGhqUasGItlUaW5A+iJAHQZT4EPPki1TEhyASaR8KpYVuRJK+VESkmj+YxAhqLJWEhhRFpEk1Rvfnw5mNt+nu5k7uzN4M9/uBYe/MnZkzZ+89w49zz5wfv6neD8pTmR9Rxo+Ot1zei8BnlJ/s3wF2tl3HU/bdAqxtuzzgMeA94F3KEII2/6eXA3+tPr93gQcGLO9WSrPd2/M53dHm92YYS1WnD6o6PFlt20iZvQNgAfBHysMebwNX9xz7ZHXc+5RfMmb8rFoo+5+UHpGjVRnXtlD3VdW5jwGfAvtb/g4P/H2aoYyLKTMzfFj9vajadxx4sefYX1X/6wPAQw2VMWOdgHd6Xo9T2u1HlPH8Mey2UaPuy4FtwB7K/e6pGY6dsY6Ue/J09+rGy6MEvL+v3tsN3D4HZf6u+vz3UoK7y2jn3vN/56y2P1rV5WtKb+u2Fsru677X572n1XvfXC/fO++y/PHKDbUWGoiLzmQxE5wkSZIGtuT8y/Pma35d65jtezeZCU6SJEldNdy5feswAJYkSdLgEgNgSZIkjZhhPthWgwGwJEmSGjHM5BZ1jOI0aJIkSRph9gBLkiSpGR3pATYAliRJ0uASmDQA1hyIiA3AL4CDlAw/u4DPgYcpk6AfoGSh+29EbAG+oKQNvoqSUviXwM3AW5m5rjrnUcqE9j+iJPF4AngGuJKS5GIiIsYoE54vrC7lkcx8s93aSoOzzUj12GbUv+5Mg+YY4A6LiHHgHuAGSm75qYmk/5yZqzJzJSUlce+s1BdSUmOuB7YCzwLXAddHxFT+94XAa5l5E/AfYBOwmpLWcmO1z7+B1Zl5I3Af8FwrlZQaZJuR6rHNqLbMesuQ2APcbbcCf8nMLwAiYmu1fUVEbAIuABYB23uO2ZqZGRH7gCOZua86dj8wRkkD/BUlfSSUlJbHM/NEdcxYtf0c4PnqZvYN8IN2qig1yjYj1WObUT0d6QE2AO62mGH7FuCnmbknItYBt/W8d7z6O9nzemp96vtwIr/LkX1yv8ycjIipfdYDR4CVlF8SvjzjWkhzxzYj1WObUf86NAbYIRDd9gbwk4hYEBGLgDur7YuBwxFxDmXcVhuWAIczcxJ4EJjfUjlSk2wzUj22GdWQkJP1liGxB7jDMnNHREwAe4CPgZ2UBxM2AG9V2/ZRblRNewH4U0TcC/wNONZCGVKjbDNSPbYZ1daRIRCRHblQTS8iFmXm0Yg4H3gdeDgzdw/7uqSzlW1Gqsc2o34tOfeSvOXSn9U6ZtvB3+7KzPHT79kse4C7b3NEXAssAF72piSdlm1Gqsc2o/51pGPVALjjMvPnw74GqUtsM1I9thnV0pEA2IfgJEmS1ICacwD3GSxHxJqIeD8iDkTE47PstzYispq/elb2AEuSJGlwCUw2O7NDRMynZA1cDRwCdkTERGa+d8p+i4FHKQ9nnpY9wJIkSWpG8z3APwQOZOY/MvMr4A/A3dPs9zQlnXZf80UbAEuSJKkZzQfAVwAHe9YPVdtOiogbgGWZ+Uq/l+kQCEmSJDUgzyQT3NKI2NmzvjkzN/esT5eN8GQhETEPeBZYV6dQA2BJkiQNLiHrZ3f75DTzAB8ClvWsfx/4V8/6YmAF8FpEAFwKTETEXZnZG1j/D4dASJIk6Wy1A7gmIpZHxLnA/cDE1JuZ+XlmLs3MscwcA/4OzBr8gj3AkiRJakr9IRCzysyvI+IRYDswH3gpM/dHxEZgZ2ZOzH6G6RkAS5IkqRktJMLIzFeBV0/Z9tQM+97WzzkNgCVJkjS4zMbnAW6LAbAkSZKa0ZFUyAbAkiRJakTaAyxJkqTR0Xdyi6EzAJYkSdLgksZngWiLAbAkSZKaUT8RxlAYAEuSJGlgCaQ9wJIkSRoZmfYAS5IkabTYAyxJkqTR0pEe4MiOTFchSZKks1dEbAOW1jzsk8xc08b1zMYAWJIkSSNl3rAvQJIkSZpLBsCSJEkaKQbAkiRJGikGwJIkSRopBsCSJEkaKd8CVgCiEm/dNusAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 936x360 with 4 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(1, 3, figsize=(13, 5))\n", "\n", "param_grid_linear = {'C': np.linspace(1, 2, 6),\n", " 'gamma': np.linspace(1, 2, 6)}\n", "\n", "param_grid_one_log = {'C': np.linspace(1, 2, 6),\n", " 'gamma': np.logspace(-3, 2, 6)}\n", "\n", "param_grid_range = {'C': np.logspace(-3, 2, 6),\n", " 'gamma': np.logspace(-7, -2, 6)}\n", "\n", "for param_grid, ax in zip([param_grid_linear, param_grid_one_log,\n", " param_grid_range], axes):\n", " grid_search = GridSearchCV(SVC(), param_grid, cv=5)\n", " grid_search.fit(X_train, y_train)\n", " scores = grid_search.cv_results_['mean_test_score'].reshape(6, 6)\n", "\n", " # plot the mean cross-validation scores\n", " scores_image = mglearn.tools.heatmap(\n", " scores, xlabel='gamma', ylabel='C', xticklabels=param_grid['gamma'],\n", " yticklabels=param_grid['C'], cmap=\"viridis\", ax=ax)\n", "\n", "plt.colorbar(scores_image, ax=axes.tolist())" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "List of grids:\n", "[{'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}, {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}]\n" ] } ], "source": [ "param_grid = [{'kernel': ['rbf'],\n", " 'C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]},\n", " {'kernel': ['linear'],\n", " 'C': [0.001, 0.01, 0.1, 1, 10, 100]}]\n", "print(\"List of grids:\\n{}\".format(param_grid))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best parameters: {'C': 10, 'gamma': 0.1, 'kernel': 'rbf'}\n", "Best cross-validation score: 0.97\n" ] } ], "source": [ "grid_search = GridSearchCV(SVC(), param_grid, cv=5,\n", " return_train_score=True)\n", "grid_search.fit(X_train, y_train)\n", "print(\"Best parameters: {}\".format(grid_search.best_params_))\n", "print(\"Best cross-validation score: {:.2f}\".format(grid_search.best_score_))" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>...</th>\n", " <th>38</th>\n", " <th>39</th>\n", " <th>40</th>\n", " <th>41</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>mean_fit_time</th>\n", " <td>0.0008</td>\n", " <td>0.0006</td>\n", " <td>0.0008</td>\n", " <td>0.0008</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0.0002</td>\n", " <td>0.001</td>\n", " </tr>\n", " <tr>\n", " <th>std_fit_time</th>\n", " <td>0.0004</td>\n", " <td>0.00049</td>\n", " <td>0.0004</td>\n", " <td>0.0004</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0.00041</td>\n", " <td>1.6e-05</td>\n", " </tr>\n", " <tr>\n", " <th>mean_score_time</th>\n", " <td>0.0002</td>\n", " <td>0.0004</td>\n", " <td>0.0002</td>\n", " <td>0.0002</td>\n", " <td>...</td>\n", " <td>0.0008</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>std_score_time</th>\n", " <td>0.0004</td>\n", " <td>0.00049</td>\n", " <td>0.0004</td>\n", " <td>0.0004</td>\n", " <td>...</td>\n", " <td>0.0004</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>param_C</th>\n", " <td>0.001</td>\n", " <td>0.001</td>\n", " <td>0.001</td>\n", " <td>0.001</td>\n", " <td>...</td>\n", " <td>0.1</td>\n", " <td>1</td>\n", " <td>10</td>\n", " <td>100</td>\n", " </tr>\n", " <tr>\n", " <th>param_gamma</th>\n", " <td>0.001</td>\n", " <td>0.01</td>\n", " <td>0.1</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>param_kernel</th>\n", " <td>rbf</td>\n", " <td>rbf</td>\n", " <td>rbf</td>\n", " <td>rbf</td>\n", " <td>...</td>\n", " <td>linear</td>\n", " <td>linear</td>\n", " <td>linear</td>\n", " <td>linear</td>\n", " </tr>\n", " <tr>\n", " <th>params</th>\n", " <td>{'C': 0.001, 'gamma': 0.001, 'kernel': 'rbf'}</td>\n", " <td>{'C': 0.001, 'gamma': 0.01, 'kernel': 'rbf'}</td>\n", " <td>{'C': 0.001, 'gamma': 0.1, 'kernel': 'rbf'}</td>\n", " <td>{'C': 0.001, 'gamma': 1, 'kernel': 'rbf'}</td>\n", " <td>...</td>\n", " <td>{'C': 0.1, 'kernel': 'linear'}</td>\n", " <td>{'C': 1, 'kernel': 'linear'}</td>\n", " <td>{'C': 10, 'kernel': 'linear'}</td>\n", " <td>{'C': 100, 'kernel': 'linear'}</td>\n", " </tr>\n", " <tr>\n", " <th>split0_test_score</th>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>...</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0.96</td>\n", " </tr>\n", " <tr>\n", " <th>split1_test_score</th>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>0.35</td>\n", " <td>...</td>\n", " <td>0.91</td>\n", " <td>0.96</td>\n", " <td>1</td>\n", " <td>0.96</td>\n", " </tr>\n", " <tr>\n", " <th>split2_test_score</th>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>...</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>split3_test_score</th>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>...</td>\n", " <td>0.91</td>\n", " <td>0.95</td>\n", " <td>0.91</td>\n", " <td>0.91</td>\n", " </tr>\n", " <tr>\n", " <th>split4_test_score</th>\n", " <td>0.41</td>\n", " <td>0.41</td>\n", " <td>0.41</td>\n", " <td>0.41</td>\n", " <td>...</td>\n", " <td>0.95</td>\n", " <td>0.95</td>\n", " <td>0.95</td>\n", " <td>0.95</td>\n", " </tr>\n", " <tr>\n", " <th>mean_test_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.96</td>\n", " <td>0.97</td>\n", " <td>0.97</td>\n", " <td>0.96</td>\n", " </tr>\n", " <tr>\n", " <th>std_test_score</th>\n", " <td>0.022</td>\n", " <td>0.022</td>\n", " <td>0.022</td>\n", " <td>0.022</td>\n", " <td>...</td>\n", " <td>0.04</td>\n", " <td>0.022</td>\n", " <td>0.036</td>\n", " <td>0.029</td>\n", " </tr>\n", " <tr>\n", " <th>rank_test_score</th>\n", " <td>27</td>\n", " <td>27</td>\n", " <td>27</td>\n", " <td>27</td>\n", " <td>...</td>\n", " <td>8</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>split0_train_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>0.99</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>split1_train_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.97</td>\n", " <td>0.98</td>\n", " <td>0.99</td>\n", " <td>0.99</td>\n", " </tr>\n", " <tr>\n", " <th>split2_train_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.94</td>\n", " <td>0.98</td>\n", " <td>0.98</td>\n", " <td>0.99</td>\n", " </tr>\n", " <tr>\n", " <th>split3_train_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>0.99</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>split4_train_score</th>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>0.36</td>\n", " <td>...</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>1</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>mean_train_score</th>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>0.37</td>\n", " <td>...</td>\n", " <td>0.96</td>\n", " <td>0.98</td>\n", " <td>0.99</td>\n", " <td>0.99</td>\n", " </tr>\n", " <tr>\n", " <th>std_train_score</th>\n", " <td>0.0056</td>\n", " <td>0.0056</td>\n", " <td>0.0056</td>\n", " <td>0.0056</td>\n", " <td>...</td>\n", " <td>0.0088</td>\n", " <td>0.0055</td>\n", " <td>0.007</td>\n", " <td>0.0084</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>23 rows × 42 columns</p>\n", "</div>" ], "text/plain": [ " 0 \\\n", "mean_fit_time 0.0008 \n", "std_fit_time 0.0004 \n", "mean_score_time 0.0002 \n", "std_score_time 0.0004 \n", "param_C 0.001 \n", "param_gamma 0.001 \n", "param_kernel rbf \n", "params {'C': 0.001, 'gamma': 0.001, 'kernel': 'rbf'} \n", "split0_test_score 0.35 \n", "split1_test_score 0.35 \n", "split2_test_score 0.36 \n", "split3_test_score 0.36 \n", "split4_test_score 0.41 \n", "mean_test_score 0.37 \n", "std_test_score 0.022 \n", "rank_test_score 27 \n", "split0_train_score 0.37 \n", "split1_train_score 0.37 \n", "split2_train_score 0.37 \n", "split3_train_score 0.37 \n", "split4_train_score 0.36 \n", "mean_train_score 0.37 \n", "std_train_score 0.0056 \n", "\n", " 1 \\\n", "mean_fit_time 0.0006 \n", "std_fit_time 0.00049 \n", "mean_score_time 0.0004 \n", "std_score_time 0.00049 \n", "param_C 0.001 \n", "param_gamma 0.01 \n", "param_kernel rbf \n", "params {'C': 0.001, 'gamma': 0.01, 'kernel': 'rbf'} \n", "split0_test_score 0.35 \n", "split1_test_score 0.35 \n", "split2_test_score 0.36 \n", "split3_test_score 0.36 \n", "split4_test_score 0.41 \n", "mean_test_score 0.37 \n", "std_test_score 0.022 \n", "rank_test_score 27 \n", "split0_train_score 0.37 \n", "split1_train_score 0.37 \n", "split2_train_score 0.37 \n", "split3_train_score 0.37 \n", "split4_train_score 0.36 \n", "mean_train_score 0.37 \n", "std_train_score 0.0056 \n", "\n", " 2 \\\n", "mean_fit_time 0.0008 \n", "std_fit_time 0.0004 \n", "mean_score_time 0.0002 \n", "std_score_time 0.0004 \n", "param_C 0.001 \n", "param_gamma 0.1 \n", "param_kernel rbf \n", "params {'C': 0.001, 'gamma': 0.1, 'kernel': 'rbf'} \n", "split0_test_score 0.35 \n", "split1_test_score 0.35 \n", "split2_test_score 0.36 \n", "split3_test_score 0.36 \n", "split4_test_score 0.41 \n", "mean_test_score 0.37 \n", "std_test_score 0.022 \n", "rank_test_score 27 \n", "split0_train_score 0.37 \n", "split1_train_score 0.37 \n", "split2_train_score 0.37 \n", "split3_train_score 0.37 \n", "split4_train_score 0.36 \n", "mean_train_score 0.37 \n", "std_train_score 0.0056 \n", "\n", " 3 ... \\\n", "mean_fit_time 0.0008 ... \n", "std_fit_time 0.0004 ... \n", "mean_score_time 0.0002 ... \n", "std_score_time 0.0004 ... \n", "param_C 0.001 ... \n", "param_gamma 1 ... \n", "param_kernel rbf ... \n", "params {'C': 0.001, 'gamma': 1, 'kernel': 'rbf'} ... \n", "split0_test_score 0.35 ... \n", "split1_test_score 0.35 ... \n", "split2_test_score 0.36 ... \n", "split3_test_score 0.36 ... \n", "split4_test_score 0.41 ... \n", "mean_test_score 0.37 ... \n", "std_test_score 0.022 ... \n", "rank_test_score 27 ... \n", "split0_train_score 0.37 ... \n", "split1_train_score 0.37 ... \n", "split2_train_score 0.37 ... \n", "split3_train_score 0.37 ... \n", "split4_train_score 0.36 ... \n", "mean_train_score 0.37 ... \n", "std_train_score 0.0056 ... \n", "\n", " 38 \\\n", "mean_fit_time 0 \n", "std_fit_time 0 \n", "mean_score_time 0.0008 \n", "std_score_time 0.0004 \n", "param_C 0.1 \n", "param_gamma NaN \n", "param_kernel linear \n", "params {'C': 0.1, 'kernel': 'linear'} \n", "split0_test_score 1 \n", "split1_test_score 0.91 \n", "split2_test_score 1 \n", "split3_test_score 0.91 \n", "split4_test_score 0.95 \n", "mean_test_score 0.96 \n", "std_test_score 0.04 \n", "rank_test_score 8 \n", "split0_train_score 0.97 \n", "split1_train_score 0.97 \n", "split2_train_score 0.94 \n", "split3_train_score 0.97 \n", "split4_train_score 0.97 \n", "mean_train_score 0.96 \n", "std_train_score 0.0088 \n", "\n", " 39 \\\n", "mean_fit_time 0 \n", "std_fit_time 0 \n", "mean_score_time 0 \n", "std_score_time 0 \n", "param_C 1 \n", "param_gamma NaN \n", "param_kernel linear \n", "params {'C': 1, 'kernel': 'linear'} \n", "split0_test_score 1 \n", "split1_test_score 0.96 \n", "split2_test_score 1 \n", "split3_test_score 0.95 \n", "split4_test_score 0.95 \n", "mean_test_score 0.97 \n", "std_test_score 0.022 \n", "rank_test_score 1 \n", "split0_train_score 0.99 \n", "split1_train_score 0.98 \n", "split2_train_score 0.98 \n", "split3_train_score 0.99 \n", "split4_train_score 0.99 \n", "mean_train_score 0.98 \n", "std_train_score 0.0055 \n", "\n", " 40 \\\n", "mean_fit_time 0.0002 \n", "std_fit_time 0.00041 \n", "mean_score_time 0 \n", "std_score_time 0 \n", "param_C 10 \n", "param_gamma NaN \n", "param_kernel linear \n", "params {'C': 10, 'kernel': 'linear'} \n", "split0_test_score 1 \n", "split1_test_score 1 \n", "split2_test_score 1 \n", "split3_test_score 0.91 \n", "split4_test_score 0.95 \n", "mean_test_score 0.97 \n", "std_test_score 0.036 \n", "rank_test_score 3 \n", "split0_train_score 0.99 \n", "split1_train_score 0.99 \n", "split2_train_score 0.98 \n", "split3_train_score 0.99 \n", "split4_train_score 1 \n", "mean_train_score 0.99 \n", "std_train_score 0.007 \n", "\n", " 41 \n", "mean_fit_time 0.001 \n", "std_fit_time 1.6e-05 \n", "mean_score_time 0 \n", "std_score_time 0 \n", "param_C 100 \n", "param_gamma NaN \n", "param_kernel linear \n", "params {'C': 100, 'kernel': 'linear'} \n", "split0_test_score 0.96 \n", "split1_test_score 0.96 \n", "split2_test_score 1 \n", "split3_test_score 0.91 \n", "split4_test_score 0.95 \n", "mean_test_score 0.96 \n", "std_test_score 0.029 \n", "rank_test_score 8 \n", "split0_train_score 0.98 \n", "split1_train_score 0.99 \n", "split2_train_score 0.99 \n", "split3_train_score 1 \n", "split4_train_score 1 \n", "mean_train_score 0.99 \n", "std_train_score 0.0084 \n", "\n", "[23 rows x 42 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "results = pd.DataFrame(grid_search.cv_results_)\n", "# we display the transposed table so that it better fits on the page:\n", "display(results.T)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Using different cross-validation strategies with grid search" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Nested cross-validation" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores: [0.967 1. 0.967 0.967 1. ]\n", "Mean cross-validation score: 0.9800000000000001\n" ] } ], "source": [ "param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}\n", "scores = cross_val_score(GridSearchCV(SVC(), param_grid, cv=5),\n", " iris.data, iris.target, cv=5)\n", "print(\"Cross-validation scores: \", scores)\n", "print(\"Mean cross-validation score: \", scores.mean())" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "def nested_cv(X, y, inner_cv, outer_cv, Classifier, parameter_grid):\n", " outer_scores = []\n", " # for each split of the data in the outer cross-validation\n", " # (split method returns indices of training and test parts)\n", " for training_samples, test_samples in outer_cv.split(X, y):\n", " # find best parameter using inner cross-validation\n", " best_parms = {}\n", " best_score = -np.inf\n", " # iterate over parameters\n", " for parameters in parameter_grid:\n", " # accumulate score over inner splits\n", " cv_scores = []\n", " # iterate over inner cross-validation\n", " for inner_train, inner_test in inner_cv.split(\n", " X[training_samples], y[training_samples]):\n", " # build classifier given parameters and training data\n", " clf = Classifier(**parameters)\n", " clf.fit(X[inner_train], y[inner_train])\n", " # evaluate on inner test set\n", " score = clf.score(X[inner_test], y[inner_test])\n", " cv_scores.append(score)\n", " # compute mean score over inner folds\n", " mean_score = np.mean(cv_scores)\n", " if mean_score > best_score:\n", " # if better than so far, remember parameters\n", " best_score = mean_score\n", " best_params = parameters\n", " # build classifier on best parameters using outer training set\n", " clf = Classifier(**best_params)\n", " clf.fit(X[training_samples], y[training_samples])\n", " # evaluate\n", " outer_scores.append(clf.score(X[test_samples], y[test_samples]))\n", " return np.array(outer_scores)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "hide_input": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation scores: [0.967 1. 0.967 0.967 1. ]\n" ] } ], "source": [ "from sklearn.model_selection import ParameterGrid, StratifiedKFold\n", "scores = nested_cv(iris.data, iris.target, StratifiedKFold(5),\n", " StratifiedKFold(5), SVC, ParameterGrid(param_grid))\n", "print(\"Cross-validation scores: {}\".format(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Parallelizing cross-validation and grid search" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Evaluation Metrics and Scoring\n", "#### Keep the End Goal in Mind" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Metrics for Binary Classification\n", "##### Kinds of errors\n", "##### Imbalanced datasets" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_digits\n", "\n", "digits = load_digits()\n", "y = digits.target == 9\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " digits.data, y, random_state=0)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Unique predicted labels: [False]\n", "Test score: 0.90\n" ] } ], "source": [ "from sklearn.dummy import DummyClassifier\n", "dummy_majority = DummyClassifier(strategy='most_frequent').fit(X_train, y_train)\n", "pred_most_frequent = dummy_majority.predict(X_test)\n", "print(\"Unique predicted labels: {}\".format(np.unique(pred_most_frequent)))\n", "print(\"Test score: {:.2f}\".format(dummy_majority.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test score: 0.92\n" ] } ], "source": [ "from sklearn.tree import DecisionTreeClassifier\n", "tree = DecisionTreeClassifier(max_depth=2).fit(X_train, y_train)\n", "pred_tree = tree.predict(X_test)\n", "print(\"Test score: {:.2f}\".format(tree.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dummy score: 0.84\n", "logreg score: 0.98\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\users\\t3kci\\checkout\\scikit-learn\\sklearn\\dummy.py:132: FutureWarning: The default value of strategy will change from stratified to prior in 0.24.\n", " \"stratified to prior in 0.24.\", FutureWarning)\n" ] } ], "source": [ "from sklearn.linear_model import LogisticRegression\n", "\n", "dummy = DummyClassifier().fit(X_train, y_train)\n", "pred_dummy = dummy.predict(X_test)\n", "print(\"dummy score: {:.2f}\".format(dummy.score(X_test, y_test)))\n", "\n", "logreg = LogisticRegression(max_iter=1000, C=0.1).fit(X_train, y_train)\n", "pred_logreg = logreg.predict(X_test)\n", "print(\"logreg score: {:.2f}\".format(logreg.score(X_test, y_test)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Confusion matrices" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Confusion matrix:\n", "[[402 1]\n", " [ 6 41]]\n" ] } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "\n", "confusion = confusion_matrix(y_test, pred_logreg)\n", "print(\"Confusion matrix:\\n{}\".format(confusion))" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYwOC41MzQzNzUgNDc1LjYzOTM3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJylVE1P20AQvc+vmBvlMtnZ7z02aonUG60lDohTYtJEwW1DCn+fsR3DOraJEIfI2ZeZ92Y275lxC7OvjOtHVLiVzzPe4p08V8i4wNm38mmzLH8u5rh8BCX4A3gVyRlrgpPjLj/a4MibVH/dSXHv+BugAtGRnoVQrwHYWUptozHkXFNY0zOZU3iXw9ZHsh1vxtLDRe9eNtPtZmuRlO0oZvvVg8gvoL3vFsjnyGFFqpsD5rLFM8wLnF0xaoXFPbBPpFg1FSxjOq8dFiv48ndfrjbLQ7nCi+rPAatNVV5cYrHF7wU0w4CNicJQPIfPiFtRDL6RnNQe6mbXxlaTDkdhdix3eIpPKHsyx6WNJR9C5KP2Yf+/PCdrnKzIQ9kMH5cNpKVIE/NA8PSO/+GoyaxMblH0KEbcl3iDFerGGUFwI/ytQ97cD+J+EyLx8K/K4J4B4Rdc4+cGgH78MirtFKU0TEyGv06g8Ueb7Z77J6nz3abCJcyjMX2YjKl0fCzv/YaM610N1ezapp17WV93JgptZFOipFQdFmMCpeBqjtpKVnFnn16HjpGSN7XjWCt5Nbx2xNF6x2LRtv5EQY/WWx/kbckxDPhN6hqu4QUI6jW+CmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKNDYyCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVRu3HFMAzrNQUX8J34lTSPc6/K278NQDsVYRoEQKq8ZEq5XOqSVbLC5EeH6hRN+T5gpvwO9ZDj6B7ZIbpT1pZ7GAjLxDyljlhNlnu4BYEvDE2JuYXz9wjoKwajMBOBusXfP0CzJDBpcPBTkGutWmKJDjwsFlizK8ytGilUyFV8Oza5BwVycbPQpxyaFLfcgvBliGRHarGvy2Up8rv1CRiEFeaITxSJheeBDmYi8ScDYnv22WJXVy+qERnWSYcHUgTSbG4SMDRFsuqDG9hXxzU/T0fZwclBv4rB+DY4mS9JeV8FoRCPF/4Oz9nIsZJDJBTyfbXAiCNsgBGhT+0jEGUgNEX37plSPiZViu8ARiEcfapXMrwXkdlqhs3/GV3ZKgoGVVkfn0ZwJoNJOPNkowrTUrXTv/vc4/MHY2N6gAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNiA+PgpzdHJlYW0KeJxNUEtuRCEM23OKXOBJJCEBzkPVVef+27HDVO0qhhh/SA/pslUe61NidYns8qVNl8oyeRWo5U/b/1EMAm7/0MhBtLeMnWLmEtbFwiQ85TQjGyfXLB+PO08bZoXGxI3jnS4ZYJ8WATVblc2BOW06N0C6kBq3qrPeZFAMIupCzQeTLpyn0ZeIOZ6oYEp3JrWQG1w+1aEDcVq9Crlji5NvxBxZocBh0Exx1l8B1qjJslnIIEmGIc59o3uUCo2oynkrFcIPk6ER9YbVoAaVuYWiqeWS/B3aAjAFtox16QxKgaoAwd8qp32/ASSNXVMKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDUyID4+CnN0cmVhbQp4nDMyN1UwULA0UzAxtVAwNLdUMDeyVEgx5IIxc8EskGQOF1QVmAGSy4GryuFKAwAHGQ5fCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgMzkgL3F1b3Rlc2luZ2xlIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgNTYgL2VpZ2h0Ci9uaW5lIDk5IC9jIC9kIC9lIDEwNSAvaSAxMTAgL24gL28gL3AgMTE0IC9yIDExNiAvdCAvdSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9jIDE2IDAgUiAvZCAxNyAwIFIgL2UgMTggMCBSIC9laWdodCAxOSAwIFIgL2ZvdXIgMjAgMCBSIC9pIDIxIDAgUgovbiAyMiAwIFIgL25pbmUgMjMgMCBSIC9vIDI0IDAgUiAvb25lIDI1IDAgUiAvcCAyNiAwIFIgL3F1b3Rlc2luZ2xlIDI3IDAgUgovciAyOCAwIFIgL3NwYWNlIDI5IDAgUiAvdCAzMCAwIFIgL3RocmVlIDMxIDAgUiAvdHdvIDMyIDAgUiAvdSAzMyAwIFIKL3plcm8gMzQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM1IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzNDEtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgMzYKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDgwMzUgMDAwMDAgbiAKMDAwMDAwNzg0MSAwMDAwMCBuIAowMDAwMDA3ODczIDAwMDAwIG4gCjAwMDAwMDc5NzIgMDAwMDAgbiAKMDAwMDAwNzk5MyAwMDAwMCBuIAowMDAwMDA4MDE0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDA5MzYgMDAwMDAgbiAKMDAwMDAwNjU0MSAwMDAwMCBuIAowMDAwMDA2MzQxIDAwMDAwIG4gCjAwMDAwMDU5MjUgMDAwMDAgbiAKMDAwMDAwNzU5NCAwMDAwMCBuIAowMDAwMDAwOTU2IDAwMDAwIG4gCjAwMDAwMDEyNTkgMDAwMDAgbiAKMDAwMDAwMTU1OSAwMDAwMCBuIAowMDAwMDAxODc3IDAwMDAwIG4gCjAwMDAwMDIzNDIgMDAwMDAgbiAKMDAwMDAwMjUwNCAwMDAwMCBuIAowMDAwMDAyNjQ0IDAwMDAwIG4gCjAwMDAwMDI4NzggMDAwMDAgbiAKMDAwMDAwMzI3MSAwMDAwMCBuIAowMDAwMDAzNTU4IDAwMDAwIG4gCjAwMDAwMDM3MTAgMDAwMDAgbiAKMDAwMDAwNDAxOSAwMDAwMCBuIAowMDAwMDA0MTQzIDAwMDAwIG4gCjAwMDAwMDQzNzMgMDAwMDAgbiAKMDAwMDAwNDQ2MiAwMDAwMCBuIAowMDAwMDA0NjY2IDAwMDAwIG4gCjAwMDAwMDUwNzcgMDAwMDAgbiAKMDAwMDAwNTM5OCAwMDAwMCBuIAowMDAwMDA1NjQyIDAwMDAwIG4gCjAwMDAwMDgwOTUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzNSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzYgPj4Kc3RhcnR4cmVmCjgyNDkKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHbCAYAAABsjib7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd5xU1f3/8feHpUgvgmKkWUCxoO6OCkYURAkiilhii0qAXcvXgsafLUYwfk1ii6j5JjCiGBMVESWKUTGoFAtlZxEFIwKiIErvVWDP74+ZxXWYO1tm9t7Z2dfz8biPhXPunPO5szOzn7nn3nPMOScAAAD4p1bQAQAAANQ0JGAAAAA+IwEDAADwGQkYAACAz0jAAAAAfEYCBgAA4LPaQQeAmqNly5auQ4cOQYcB1DirV6+WJLVq1SrgSICaJxKJrHHO7fPmIwGDbzp06KDCwsKgwwAAwDdm9k2icoYgAQAAfEYCBgBZLhwOKxwOBx0GgFKMpYjgl1Ao5BiCBPxnZpIkPu8B/5lZxDkXii/nDBgAAIDPSMAAAAB8RgIGAADgMxIwAAAAn5GAAQAA+IwEDAAAwGfMhA8AWY7pJ4DMwxkwAAAAn5GAAQAA+IwEDACyXF5envLy8oIOA0ApXAMGAFmuqKgo6BAAxOEMGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jLsgASDL5efnBx0CgDgkYACQ5cLhcNAhAIjDECQAAIDPSMAAIMtFIhFFIpGgwwBQCkOQAJDlQqGQJMk5F3AkAEpwBgwAAMBnJGAAAAA+IwEDAADwGQkYAACAz0jAAAAAfEYCBgAA4DOmoQCALFdYWBh0CADikIABQJbLy8sLOgQAcRiCBAAA8BkJGABkuYKCAhUUFAQdBoBSjKUp4JdQKOS4FgXwn5lJYikiIAhmFnHOheLLOQMGAADgMxIwAAAAn5GAAQAA+IwEDAAAwGckYAAAAD5jIlYAyHK5ublBhwAgDgkYAGS5SCQSdAgA4jAECQAA4DMSMAAAAJ+RgAFAljOzvbPhA8gMJGAAAAA+IwEDAADwGQkYAACAz0jAAAAAfEYCBgAA4DMSMAAAAJ8xEz4AZLlRo0YFHQKAOCRgAJDlCgoKgg4BQByGIAEAAHxGAgYAWS4cDiscDgcdBoBSzDkXdAyoIUKhkCssLAw6DKDGKVmGiM97wH9mFnHOheLLOQMGAADgMxIwAAAAn5GAAQAA+IwEDAAAwGckYAAAAD4jAQMAAPAZM+EDQJZj+gkg83AGDAAAwGckYAAAAD4jAQOALJeXl6e8vLygwwBQCteAAUCWKyoqCjoEAHE4AwYAAOAzEjAAAACfkYABAAD4jAQMAADAZyRgAAAAPuMuSADIcvn5+UGHACAOCRgAZLlwOBx0CADiMAQJAADgMxIwAMhykUhEkUgk6DAAlMIQJABkuVAoJElyzgUcCYASJGAAEtq1a5cWL16stWvXasuWLapbt64aN26sDh06qGXLlkGHByADbNy4UStXrtTGjRu1YcMG1a5dW82bN1fz5s21//77q1GjRkGHmLFIwICA/epXv9Lzzz+fdJ8xY8Zo4MCBVR7L3Llz9dJLL+ntt9/WvHnztGvXroT7tWzZUj169FC/fv108cUXq0GDBlUeWyIrVqxQYWHh3m327NlatWpVwn3bt2+vr7/+2t8AgSyydu1aTZ06VR9++KHmzZun+fPna/ny5Ukfc9hhh6lbt27q2rWrzjvvPLVt29anaDOfcUoafgmFQq6wsDDoMDLKW2+9pb59+5a5X1UnYDNnztQdd9yhqVOnVvixLVq00E033aTbb79d9evXr4LootauXbtPslXWh39pNTkBMzNJDEGiYpxzmjFjhl555RW9++67mjt3bkqvoZycHJ177rm64YYb1KtXrzRGmtnMLOKcC+1T4ZxjY/Nly8vLc/jRpk2bXNu2bZ2kMrcxY8ZUSQw7d+50N9xwgzOzcsWRbDvkkEPczJkz0xrf4sWL3UUXXeQ6dOiQcnzt27dPa2zVSclzAJTH559/7oYOHeratGmT8vvOa+vbt69bvnx50IfqC0mFLsHfRO6CBAJyxx13aNmyZYH1v2HDBvXs2VN/+ctfFP2MSM2SJUt02mmn6cUXX0xDdFFLly7V+PHja+yZKyAIf//73zVixAh9++23VdbHm2++qWOOOUYvvfRSlfWR6UjAgABMnz5dI0eODKz/LVu2qE+fPvroo4/S2u7OnTt15ZVXavz48WltF0D2Wb9+vS677DI9+eSTQYcSCC7CB3y2Y8cODRkyJC1nnSpr0KBBmjlzpmd93bp1ddlll+niiy9Wbm6uWrZsqZ07d2rp0qWaNm2ann76aXldz7dnzx5deeWV6tixo4477riqOgRUANdeIp1q166tk08+Wd27d1coFNLhhx+utm3bqnHjxtq1a5fWrl2rr776SlOnTtUrr7yiTz/91LMt55xuvvlmtW7dWhdffLGPR5EBEo1LsrFVxcY1YFF33HHHPtdDmJnr2bOnL9eAjRw5Mum1Gd26dXOLFy8us53nn3/eNW7c2LOdjh07uu3bt6cU6/vvv1/u688uvvhi9+CDD3INGJAir8+os846y40ZM8Zt2LChQu39+9//doceemjS93CTJk3cN998U0VHFCxxDRgQvDlz5ujRRx/dp3zQoEE67bTTqrz/1atX66677vKs79u3r6ZMmaJDDz20zLYuv/xyTZ06Vc2bN09Yv3DhQj300EOVjtVL27ZtNWDAAD3wwAOaNGnS3m/b48aN0+233572/oCarFGjRrr11lu1cOFCvfPOOxo4cKCaNm1aoTb69u2roqIi9evXz3OfTZs26bbbbks13GqFIUjAJ7t379bgwYO1e/fun5QfeOCBevjhh/X4449XeQz333+/1q9fn7Cuc+fOGjdunOrWrVvu9k444QS9+OKLOvvssxX9ovdTf/rTn3TttdfqgAMOqFS8jRo10rnnnqtQKKRQKKQTTzxRrVq1qlRbNVlBQYEkFuVG+TVq1Ei33HKLhg4dqhYtWqTcXtOmTTV+/Hj17t1b06ZNS7jP+PHjtWDBAh1xxBEp91ctJDotxsZWFVtNH4J84IEHEp56f/HFF51zzg0bNqxKhyBXr17tGjRokLB9M3Mff/xxpdseMmSIZ+x33313yrFXhFccNXkIsuQ5AMpj2rRpbuXKlVXS9vLlyz0/h4L4vPCDGIIEgrNgwQL9/ve/36f87LPP1qWXXupLDE8//bS2bduWsO7CCy9U165dK932/fffr3r16iWsGzlypH744YdKtw3AX927d6/0Weuy/OxnP9PQoUM9699+++0q6TcTkYABVcw5pyFDhmjnzp0/KW/YsKH+9re/+RbHP/7xD8+6W2+9NaW2W7durSuuuCJh3bp16/Tmm2+m1D6A7HHJJZd41s2dO7fGfGEjAQOq2P/93//pgw8+2Kf8vvvuU/v27X2JYf78+Zo/f37Cuo4dO6pbt24p93H11Vd71tXkyRYB/FSXLl20//77J6zbs2dPjZl4mQQMqEJLly5NeNdhbm5u0tPw6fbOO+941l144YVp6SPZsMV//vMfFRcXp6UfANXfQQcd5FnndaNQtiEBA6rQNddcoy1btvykLCcnR+FwWDk5Ob7FMXnyZM+6s846Ky19mJnnArtr167VnDlz0tIPgOqvSZMmnnXxd4pnKxIwoIo899xzCS8ovfnmm5WXl+drLLNnz05YXqtWLZ100klp6+eUU07xrJs1a1ba+kHF5ObmKjc3N+gwgL3WrVvnWdeoUSMfIwkO84ABVWDVqlW65ZZb9ilv3759wrshq9KyZcu0evXqhHWdOnVK64ddssSyqKgobf2gYiKRSNAhAHvt2LFDixYt8qxv166dj9EEhzNgQBW44YYbEn7D++tf/6qGDRv6Gsu8efM86zp37pzWvpK1lywOADXH5MmTPYcZ27Rp47m6RrYhAQPS7LXXXtPLL7+8T/kll1yivn37+h7PV1995VnXsWPHtPbVrFkztWzZMmHdkiVL0toXgOop2ZQ4PXr08C+QgJGAAWm0ceNGXX/99fuUN2/e3JelhhJJdkt3mzZt0t6fV5srV670nAgWVcvMZGZBhwFo0aJFeuWVVzzrL774Yh+jCRYJGJBGv/nNb/Tdd9/tU/7QQw/pwAMPDCAi6fvvv/esa926ddr7S3Z7+YoVK9LeH4Dq47bbbtOePXsS1rVr105nn322zxEFhwQsS5iZM7MpQcdRk7333nt6+umn9yk/7bTTNHjw4AAiikp2t5HXZIipSLZwb7JYAGS3l19+Wa+99ppn/R133KE6der4GFGwykzAzKxD7I/7sz7Ek3ZmNjAWf48A+s76pCjI5zeTbNu2Tfn5+fuU16tXT+FwONDhn2RJT+PGjdPeX7I2165dm/b+AGS+ZcuW6brrrvOsP+aYY1RQUOBjRMFjGors0VkSF9gE5J577kl4sftdd92lI444IoCIfrR161bPuqqYbydZm1wDBtQ8u3bt0i9/+UvPL2C1atXSyJEjVbt2zUpJatbRZjHn3BdBx1BTzZo1K+EF9p07d064DJHfdu3a5VlXFR94yYYQasoiuwB+dO2112rGjBme9bfffrt+/vOf+xhRZkg6BGlmwyWV3Dt+dWyoqWQbGNunR+z/w83sJDP7t5mti5V1iO3jORRnZs+W3jeu7mQzG29mK8zsBzNbZmajzOxnlTze0m07M5tiZi3NLGxm35vZTjObb2a/9nhMLTO71sxmm9kWM9sa+/d1Zlar1H4DzczF/nt63PM2vByxTYntW9vM7jazhbHYlpnZg2ZW1+t44sqGlwwPmtlFZjbLzLbFfj9jzexgj/5bmNkfzey/ZrbdzDaa2btm1rus2GuaXbt2afDgwfusc2hmCofDqlt3n1+V70jAAATlwQcf1DPPPONZ//Of/9z3yakzRVmfvlMkNZN0s6S5kv5Vqu6TuH27SbpL0geSnpHUUlKlP21jSdBTknZKel3SMkkdJQ2RdK6ZdXXOLa1s+zHNJH0Yi3O8pP0kXSTpGTMrds79PW7/f0i6PBbLaElO0gBJf5V0qqQrYvt9Iuk+ScMkfSPp2VJtTKlAfC9I6i7pLUmbJPWVdLukAyQlTBI9XC/pPEWfx6mSTpZ0iaTjzOx459zOkh3NrH0sxg6Spkt6W1JDSf0kvW1m1zjnnqpA31ntgQceSDjBaH5+vk499dQAIqoY51zZO1VQskW3mQohGKNGjQo6BNRAL7zwQtJRgNatW2vcuHE16sL7n3DOJd0U/UPsJD3rUd8jVu8kXeOxj5M0xaPu2Vh9h1JlnRRNihZJOjhu/zMk7ZE0oazYyziukphHS8opVX6UpN2SPo/b/7LY/kWSGpUqbyipMFZ3eXmPu4zYpsQeG5HUIq6vRbHjb11WX5KGx8o3STo2ru6FWN0vE/RdLOnSuPJmiiaW2yUdWJnnPC8vz2WTefPmubp165a8jvZurVu3duvXr69we8OGDdunrZJtzJgxlY7zyCOP9Gx3wYIFlW7Xy5133unZ37hx49LeXzyvvtu3b1/lfQOIevPNN12dOnU8349NmzZ1RUVFQYfpC0mFLsHfxHROQ/GJcy5dX7Ouk1RH0s3OueWlK5xz7yl6JudcM0v1Fq5tkm51zu2dlMQ597miZ8U6x7U/KPbzTufcllL7b5V0R+y/Q1KMJ94dzrm9t7DF+npe0aHjUAXaecI591lcWclZrL0rMZvZcZJOl/SKc25s6Z2dcxsUPaO3n6QLK9B3ViouLtbgwYMTDqk98cQTatasWQBRJVavXj3PuqoYEkzWZiYMyQKoWtOmTdOFF17oeflDgwYN9O9//1snnHCCz5FllnReADIrjW11i/083cxOTFB/gKQcRc+UpbLK7ELn3KYE5ctiP5tJ2hz7d66iZ4amJNh/qqJnpdL9aipMEltFFssqbzslz3tTj2vVWsV+lnsBQTMrkFQgZdcCqyNGjNDMmTP3KT/nnHMybibnZHclbtmyxbOusjZv3uxZVxXTXqBs4XBYkmrcbf7w38yZM9WvXz9t3749Yf1+++2n119/vUZedB8vnQlYOqe4Lpkd8v+VsV+q99Bv8CgvWSU0p1RZU0nrnHP7fL13zu02szWKJoZpEzvrVJ7YylLedkqe97Nim5dyP+/OubCksCSFQqH0X3AUgK+++kq/+93v9ilv1KiR/vrXvwYQUXLJJkbdtCnR94/UJGszWSyoOtdcc40kEjBUrU8++URnn32255ewunXravz48erVq5fPkWWmdCZgyf64uiR9JRqr2Rj72dTjDFUQNkpqYWZ1nHM/Oa9qZrUVvekgU2KtrJLn/Wbn3BOBRpLB8vPzE85ndf/992fkWb5ks92vXr067f2tWrWqUrEAqL7mz5+vs846S+vXr09YX7t2bb300ks655xzfI4sc5XnGrCS66MqcsYl3npJbeMLzSxH0vEJ9i+ZMKR7Cn2m2xxFn6/TEtSdpujzUxRXXqzUnje/ZeLznlH+/ve/67333tunPBQK6cYbbwwgorIlW3A72TqRleW13mNOTk7SdSIBVE8LFizQmWeeqTVr1iSsz8nJ0T//+U+df/75PkeW2cpzBmy9omewUvlqP0tSHzPr7Zx7p1T5PZLaJ9j/L4peN/SYmS10zn1ZujI2D9bJzrnpKcRUUc9I6iXpj2bWwzm3LRZLA0l/iu0TvxDgWiVIPDOVc67QzKZLusDMBjnn9pm8xcyOlbTSOed9miOLzZkzJ2F5//799dZbb6XU9pdffulZN3fuXL3xxhsJ69q2bavjjjvO87GHHHKIZ90333xT/gDLaenSxLPDtG3btsbNdA1ku8WLF6tXr16eX7xq1aqlMWPG6JJLLvE5ssxX5qehc26Lmc2U1N3Mnpf0paJnxV53zn1azn4ekfQLSa+Z2UuS1kk6RdIhil7U3iOuzy/MbJCiSc98M3s71m8dRRPB7pJWSzqynP2nzDn3gpn1l/TLWEz/UjQxPV/R4xjnnHs+7mHvSrrUzCYqerPAbknTnHPT/Iq7Ei6X9J6kp83sJkkzFb2GrI2kLpKOUfRi/RqZgHlJdE1YOo0YMUIjRoxIWHf11Vfr2Wef9Xzs4Ycf7lm3cOHCVEP7ie+++85z6aPDDjssrX0BCNY333yjM844Q8uXL09YXzIh9ZVXXulzZNVDeb+OXinpMUl9FJ0PyyR9K6lcCZhz7l0zO1/SvZIulbRV0n8UnQz0Po/H/NPM5kr6jaSeknrHHvedopOmvlTO2NPpMkXveBwk6ZpY2X8lPSrpbwn2v1nRJK2XopOo1lL0eDM2AXPOfWtmeZJuVHS6iSsUHUZdIelzSU9Kip/SAhmsS5cunnWJJpFNxWefeb80kp2lA1C9LFu2TD179vQ84y1J//d//6fBgwf7GFX1Uq4EzDm3SNK5HnVTFE3IymrjdUXn74o3MLYlesxnXnWpcs55xuycSxiTc65Y0Vnvy3WrW2yY7vJKxNYjSd2z+unM+iXl+xyPc264opOxJmrna3n83pxzmyX9IbahmmvWrJkOPfTQhIuFL1++XCtXrtSBBx6Ylr4iEe9ZYXJzc9PSB4BgfffddzrjjDO0ZMkSz30ef/xxXXfddT5GVf2kcyJWABkq2Zw706al74Ts1KlTPetOOeWUtPWDinE/rmgBpGTlypU644wztGjRIs99Hn74Yd10000+RlU9kYABNcBZZ3lP6zZp0qS09LFt2zZNn574vpiOHTsmvRkAQOZbs2aNevXqpQULFnju88ADD+i2227zMarqiwQMqIARI0ZUev3RsrZhw4Z59jtmzBjPxyW7AL9E7969lZOTeEaUCRMmeC4ZUhGvv/665+zXffv2Tbl9AMFZt26dzjzzTM2fP99zn/vuu0933323j1FVbyRgQA1w4IEHes4+vW7dOr366qsp9/H00/GzsPzoiiuuSLl9VF5eXp7y8vKCDgPV1MaNG9W7d2/NnTvXc5977rlH9957r49RVX8kYEANcfXVV3vWPfjggyldI1RYWKjJkycnrOvcubNOPDHRkq7wS1FRkYqK4ueJBsq2ZcsW9enTJ+kNNnfccYfuv/9+H6PKDiRgQA1x8cUXq23bxPMCz5kzR2PGjKlUu845DR061LOe60GA6mnbtm0655xzNGPGDM99br31Vv3pT3/yrIc3EjCghqhTp45uv/12z/qhQ4cmvbjWy//+7//qww8/TFjXvn17/epXv6pwmwCCtXPnTvXv3z/pXdI33XSTHn30UR+jyi4kYEANcu211+rYY49NWLd582b17t27QrPj/+Uvf0l688Cf//xn1a1bt8JxAgjOrl27dNFFF3leViBJ119/vR5//HEfo8o+LMwG1CC1a9dWOBxW9+7dtXv37n3qly5dqlAopIcffliDBw/2vHPyu+++0+23367nn49ffetHAwYM0AUXXJByzGvXrtXHH3+ccjvbt2/3XE8zkV69eql+/fop9wtUN4MGDUr6Xjn22GPVp0+fCr2fKqJTp07q1KlTlbSdSUjAgBqma9eueuihh3TrrbcmrN+0aZOuueYa3Xffferfv79yc3O1//77a9euXfrmm280ffp0vf3220mnrjj00EP1zDP7rOVeKZ999pnOPTfhQhwVsmrVqgq1s2TJEnXo0CHlfoHqxms+vxKfffaZzjvvvCrrf9iwYRo+fHiVtZ8pSMCAGuiWW27RsmXL9Nhjj3nu89133+lvf0u0xGlyP/vZzzRp0iQ1a9YslRCRRvn5+UGHACAOCRhQQ/35z39WkyZN9Pvf/z5ty9R07txZr732mg4//PC0tIf0CIfDQYcAIA4X4QM12PDhw/XGG2+oXbt2KbVjZho8eLBmzpypjh07pik6AMheJGBADde3b1998cUXeuihhyqciOXk5OiCCy7QzJkzNXr0aDVu3LiKokQqIpFI0ok0AfjP0jX0AJQlFAq5wsLCoMNAEnv27NFHH32kSZMmqaioSAsWLNCaNWu0detW1alTR02aNFH79u111FFH6fTTT9fZZ5+t1q1bBx02ymBmkpS2oWYA5WdmEedcKL6ca8AA7JWTk6Pu3bure/fuQYcCAFmNIUgAAACfkYABAAD4jAQMAADAZyRgAAAAPiMBAwAA8Bl3QQJAlmP6FyDzkIABQJbLy8sLOgQAcRiCBAAA8BkJGABkuYKCAhUUFAQdBoBSWIoIvmEpIiAYLEUEBMdrKSLOgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGQkYAACAz5iIFQCyXG5ubtAhAIhDAgYAWS4SiQQdAoA4DEECAAD4jAQMAADAZyRgAJDlzGzvbPgAMgMJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jAQMAADAZ8yEDwBZbtSoUUGHACAOCRgAZLmCgoKgQwAQhyFIAAAAn5GAAUCWC4fDCofDQYcBoBRzzgUdA2qIUCjkCgsLgw4DqHFKliHi8x7wn5lFnHOh+HLOgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGQkYAACAz0jAAAAAfMZM+ACQ5Zh+Asg8nAEDAADwGQkYAACAz0jAACDL5eXlKS8vL+gwAJTCNWAAkOWKioqCDgFAHM6AAQAA+IwEDAAAwGckYAAAAD4jAQMAAPAZCRgAAIDPuAsSALJcfn5+0CEAiEMCBgBZLhwOBx0CgDgMQQIAAPiMBAwAslwkElEkEgk6DAClMAQJAFkuFApJkpxzAUcCoARnwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jAQMAADAZyRgAAAAPmMaCgDIcoWFhUGHACAOCRgAZLm8vLygQwAQhyFIAAAAn5GAAUCWKygoUEFBQdBhACjFWJoCfgmFQo5rUQD/mZkkliICgmBmEedcKL6cM2AAAAA+IwEDAADwGQkYAACAz0jAAAAAfEYCBgAA4DMmYgWALJebmxt0CADikIABQJaLRCJBhwAgDkOQAAAAPiMBAwAA8BkJGABkOTPbOxs+gMxAAgYAAOAzEjAAAACfkYABAAD4jAQMAADAZyRgAAAAPiMBAwAA8Bkz4QNAlhs1alTQIQCIQwIGAFmuoKAg6BAAxGEIEgAAwGckYACQ5cLhsMLhcNBhACjNOcfG5ssmyXlto0aNciVGjRrluV/0Jfuj3Nxcz/3y8/P37ldYWJi0zcLCwr375ufne+6Xm5v7k/45Jo6JY+KYOCaOqYxjKnQJ/iZyBgwAAMBnFk38gKoXCoVcYWFh0GEANU7JQtx83gP+M7OIcy4UX84ZMAAAAJ+RgAEAAPiMBAwAAMBnJGAAAAA+YyZ8AMhyXHwPZB7OgAEAAPiMBAwAAMBnJGAAkOXy8vKUl5cXdBgASuEaMADIckVFRUGHACAOZ8AAAAB8RgIGAADgMxIwAAAAn5GAAQAA+IwEDAAAwGfcBQkAWS4/Pz/oEADEIQEDgCwXDoeDDgFAHIYgAQAAfEYCBgBZLhKJKBKJBB0GgFIYggSALBcKhSRJzrmAIwFQgjNgAAAAPiMBAwAA8BkJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfMQ0FAGS5wsLCoEMAEIcEDACyXF5eXtAhAIjDECQAAIDPSMAAIMsVFBSooKAg6DAAlGIsTQG/hEIhx7UogP/MTBJLEQFBMLOIcy4UX84ZMAAAAJ+RgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGROxAkCWy83NDToEAHFIwAAgy0UikaBDABCHIUgAAACfkYABAAD4jAQMALKcme2dDR9AZiABAwAA8BkJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jJnwASDLjRo1KugQAMQhAQOALFdQUBB0CADiMAQJAADgMxIwAMhy4XBY4XA46DAAlGLOuaBjQA0RCoVcYWFh0GEANU7JMkR83gP+M7OIcy4UX84ZMAAAAJ+RgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGQkYAACAz5gJHwCyHNNPAJmHM2AAAAA+IwEDAADwGQkYAGS5vLw85eXlBR0GgFK4BgwAslxRUVHQIQCIwxkwAAAAn5GAAd8xJdsAACAASURBVAAA+IwEDAAAwGckYAAAAD4jAQMAAPAZd0ECQJbLz88POgQAcUjAACDLhcPhoEMAEIchSAAAAJ+RgAFAlotEIopEIkGHAaAUhiABIMuFQiFJknMu4EgAlOAMGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jLsgAWSN7du3a9WqVdqwYYM2bNigHTt2qEmTJmrWrJmaNWum1q1by8yCDhNIaPPmzVq+fLk2b96sbdu2afv27apfv76aNm2qpk2bqmXLlmrcuHHQYf7EDz/8oKVLl2rFihXatm2bzEyNGjXSgQceqA4dOqhWLc7zeCEBA1Btbdq0SePHj9eHH36o2bNn6/PPP9eePXs892/cuLHy8vIUCoXUp08fnXHGGTUiISssLAw6BJSyZMkSffLJJ/rss8/02Wef6YsvvtCyZcu0cePGMh972GGH7X0NX3jhhTr00EN9iPhHxcXFmjJliiZMmKDp06dr3rx5nu+5evXq6fjjj9cvfvEL/fKXv9TRRx/ta6yZzpgXBn4JhUKOPwRIh3nz5umxxx7TSy+9pK1bt1a6nUMPPVRDhgzRjTfeqEaNGqUxQuBHW7duVTgc1ocffqgPP/xQK1asSEu7ZqbTTz9d+fn5uuyyy6r0y8SePXv01FNP6ZFHHtHixYsr1UaPHj30hz/8Qd26dUtzdJnNzCLOudA+5SRg8AsJGFK1c+dO3X///XrooYe0a9eutLXbrl07jRo1Sn369Elbm0CJRYsWqWPHjlXaR9euXTVy5Egdd9xxaW97zpw5uuqqqzRv3ryU2zIzDR48WE888YTq16+fhugyn1cCxuAsgGph2bJlCoVCeuCBB9KafEnS0qVLdfbZZ+umm25ScXFxWtvOBAUFBSooKAg6DFShGTNmKBQK6cEHH0xru88++6y6deuWluRLiq7GMHr0aHXr1k3ff/99WtqsrjgDBt9wBgyV9d133+mUU07RN998U+V9DRo0SE8//XSV9+OnkqEpPu+D4ccZsNJuu+02Pfzwwym38+STT+qmm25KQ0SJHXHEEZoyZYpat25dZX1kAq8zYFyEDyCj7d69WxdccEGZyVebNm101VVX6ZRTTtExxxyj5s2bq379+tqwYYNWrFihWbNmadKkSZowYYJ2797t2c4zzzyjLl266Oabb073oQA/0bBhQ5100kk64YQT1KlTJ3Xq1Ent2rVT48aN1aRJE9WqVUubNm3S+vXr9fnnn2vOnDmaMGGCPv3006TtPvLIIzr00EN13XXXVTq2V155pcz3QJMmTXThhRfqvPPO0zHHHKMDDzxQOTk5Wrlypb788ktNnDhRL7/8slatWpXw8QsWLNCAAQM0depU1a1bt9KxVlvOOTY2X7a8vDwHVNSjjz7qJHlujRo1cqNGjXK7du0qV3vffvut69+/f9I299tvP7d06dIqPjL/lBwXgrFw4UInydWpU8f16tXLPfbYY66wsNDt3r27Uu0VFha6U089tczX8FdffVWp9pcsWeKaNGmStP1Bgwa5lStXltnWxo0b3W233eZq1arl2dYtt9xSqTirC0mFLsHfxMD/KLPVnI0EDBW1fft2t//++3t+cO+///5u/vz5lWr73nvvTfoH5vrrr0/z0QSHBCxYa9eudWPHjnUbN25Ma7v33HNP0tfwlVdeWal2+/Xr59mmmbkRI0ZUuM2xY8e6OnXqJGwzJyfHFRYWVirW6oAEjC3wjQQMFTV27Nikf2CmTJmSUvuXXXaZZ9tNmzZ1O3fuTNORBIsELHvdeOONnq/hevXqubVr11aovWnTpiV9zw0fPrzSsY4ePdqz3e7du1e63UznlYBxFySAjPX222971g0YMECnn356Su0//PDDnrfCb9y4UR9//HFK7QNV7Y9//KN+9rOfJazbuXOn/vOf/1SovREjRnjWhUIh/fa3v61Qe6UNHjxY5557bsK66dOna+rUqZVuuzoiAQOQsYqKijzrBg4cmHL7Bx98sM466yzP+jlz5qTcRybIzc1Vbm5u0GGgCjRs2FCXXHKJZ/3s2bPL3dbGjRs1ceJEz/r//d//Ve3aqd2798c//tGz7s9//nNKbVc3JGAAMlayOx979uyZlj7OOOOMSvVfnUQiEUUikaDDQBU588wzPeu++uqrcrfz9ttve86xd/jhh6t3794Vji3e0Ucf7fnefeutt7R69eqU+6guSMAAZKwtW7YkLG/SpEnaFiVu06ZNhfsHMonXEKQUXeC7vD766CPPuvPOOy9tSx31798/YfmuXbv08ssvp6WP6oAEDEDGatCgQcLydK7bmCyR8+ofyCT16tXzrKvIazjZ/GJdu3atUEzJJGvrrbfeSls/mY4EDEDG2n///ROWr1u3Lm19rFmzxrOuZcuWaesnSGZWpQs1I1jJlvSpyGv466+/9qw79thjKxJSUl26dPGse//999O+1FimIgEDkLG8Pqh37Nihb7/9Ni19LFq0yLPu+OOPT0sfQFVKNnRYkZsvkn0ZadGiRYViSqZ+/frab7/9EtZt3bo1betOZjoSMAAZq0ePHp51yaaoqAivIY+cnBydeuqpaekDqCrFxcUaO3asZ32vXr3K3db27ds965o1a1ahuMrSvHlzz7qacsMICRiAjHXFFVd4Xt/yxBNPqLi4OKX2P/zwQ82YMSNh3YUXXpj0jwSQCZ544gnNnz8/YV2PHj105JFHlrutZMPUydZPrYxkw4xlrXWZLUjAAGSsAw44QL/+9a8T1n322Wd65JFHKt325s2bdf311yesy8nJ0R133FHptgE/vPDCC/p//+//JawzMw0fPrxC7SW7YH/Dhg0VaqssydpbvHhxWvvKVCRgADLagw8+qHbt2iWsu/POO/W3v/2twm2uWbNG5513nuc37dtvv52JS5Gxli9frquvvlq/+tWvPM9M3XrrrRVeKeKAAw7wrFu5cmWF2kpm3bp1Sc+oVWTusuqMBAxARmvSpIkmTJiQ8BoU55yuv/569e/fP+ms+SV27NihMWPG6Nhjj9WUKVMS7nP++efrvvvuSzVsIGXFxcXatGmTvv32W73//vsaMWKEevfurfbt2+u5555TdJnBff3qV7/Sgw8+WOH+2rdv71lXWFhY4fa8lDU7f7K7OrNJamsKAIAPcnNzNXnyZA0YMEDLli3bp/7111/X66+/ri5duujUU0/V0UcfrRYtWmi//fbTxo0btWLFCs2aNUtTpkxJOoXFVVddpdGjR6tOnTpVeTi+GzVqVNAhIInDDz88LcNutWvX1m9/+1vde++9qlWr4udXunTponfffTdh3ccff6z8/PxUQ5Qkz+suS2zcuFG7d+9OedmjjJdohW626rVJ6qHoivLDg44l2ZaXl+eAVKxfv94NHDjQ5eTkuNhrPi1b27Zt3dixY4M+PNRQhx12WMqv4XPOOcdFIpGU4hg3bpxn+82aNXNbt25N+ViLi4tdx44dyzyelStXptxXppBU6BL8TazWQ5Bm1sHMnJk9G3QslWFmA2Px9wg6lsoys2fNLPF5cCDNmjVrpjFjxui///2v/ud//ifpEixlqV27tnr27Kmnn35aixcvTrqgMZCJDjroIA0bNkzz58/XG2+8kfJ1i7179/Y8+7thwwY9//zzKbUvRaePWbhwYZn7bd26NeW+Ml21TsCw1yxJnSX9JehAAD8cfvjhuvTSS3X55ZdXelmiI444Qr1799bPf/7zrBtyjBcOhxUOh4MOA2n2/fffa+zYsRo9erS++OKLlNtr2rSp+vXr51l/zz33pLRY9vbt2zV06NBy7fvDDz9Uup9qI9FpseqySeqg6OnKZ4OOpZLxD4zF3yPoWFI4hmejL6Oy92UIEqnatWuXe+aZZ9yRRx6ZtuFHM3P9+vVzM2bMCPrwqkzJsSIzpWMI0szceeed5xYvXpxSLFOmTEnaT79+/dyuXbsq1faQIUPKfTyffvppSseRSZRtQ5BmNlzSkth/r44N5ZVsA2P79Ij9f7iZnWRm/zazdbGyDrF9nJlN8ejj2dL7xtWdbGbjzWyFmf1gZsvMbJSZVX5M5Me2nZlNMbOWZhY2s+/NbKeZzTezfSZFKn2cceVTYuW1zexuM1sYa2eZmT1oZnU9+j8yduzLYvuvNLMXzOyIVI8NqKwFCxbolFNO0aBBg9Lybb+Ec05vvPGGunXrpltvvVU7d+5MW9tAeTz11FOaOHHiPtsrr7yi0aNH65FHHtGgQYN0zDHHeF5c75zbeyPK008/XelYTj/9dPXu3duz/o033tAFF1ygHTt2lLvNPXv2aMiQIRo9enS5H1OZmwiqm+p8i8EUSc0k3SxprqR/lar7JG7fbpLukvSBpGcktZRU6fObsSToKUk7Jb0uaZmkjpKGSDrXzLo655ZWtv2YZpI+jMU5XtJ+ki6S9IyZFTvn/l6Btl6Q1F3SW5I2Seor6XZJB0j6SUJnZn0kvSqpjqSJkhZJaiPpAknnmFlP51zZ9/sDafTOO+9owIAB2rZtm+c+Rx11lAYMGKDTTjtNHTt2VIsWLdSgQQOtX79ea9as0ezZszVt2jSNGzdOW7Zs2efxzjk99thj+vjjjzVp0iQ1adKkKg8J2Ktnz57l3nfZsmV66qmnNHLkyITDgVu3btWQIUO0Zs2aSk8m/Ne//lXHHXec53VYEydO1NFHH62HH35YAwYMSDqD/vvvv69bbrlFc+fOrVAMXmtFZpVEp8Wqy6YyhiD1492BTtI1Hvs4SVM86p6N1XcoVdZJ0aRokaSD4/Y/Q9IeSRNSPK6SmEdLyilVfpSk3ZI+9zjO4XHlU2LlEUktSpU3jMW/R1LrUuXNJa2XtEbSUXFtHS1pi6Siyh4XQ5CojMmTJ7v99tvPc6ji0EMPdRMnTnTFxcXlam/9+vVu2LBhrnbt2p5tduvWzW3fvr2Kj8w/JceF7LFmzRp36aWXJh3GGz16dKXbf/7558s1VHjQQQe5/Px8N2LECPfiiy+6cePGuSeffNLdeOON7pBDDvF8XNu2bV23bt0865cvX57GZytY8hiCDDyJSmWrQAI2J0kbFU3AHouVnePxmAmxJKlxCsflJG2V1CRB3dRYfeNSZWUlYGcmaOe+WF2/UmU3x8r+xyOukmM/qgLHUiCpUFJhu3btHFARK1eudAcccIDnh/Q555zjNmzYUKm2P/roI9eqVSvPtocOHZrmowkOCVj2uuuuuzxfww0bNnQLFy6sdNuPPvpoua/ZqsjWpEkTN3v27KQJ2I4dO9L4LAXLKwGrzkOQFTErjW11i/083cxOTFB/gKQcRc+UpbKk+0Ln3KYE5SWzUDaTtLmcbSWawrikndKrDZcc23Hx15PFdIr97Czp8/J07JwLSwpLUigUcuV5DFDihhtu0KpVqxLWde3aVePHj6/0UEW3bt302muv6Ywzzkh4Pcvjjz+uyy67TCeddFKl2gf88Ic//EHffvut/vGPf+xTt3XrVt19990aN25cpdq+9dZb1aJFC1133XUVuuYrmZYtW+qNN95QKBTyfG+3aNFC9erVS0t/maymJGAr0tjW/rGfiVdA/VHl7o3/kddKpSULaOWUtyHnXKK2ErVTcmxlTXec6rEBZfryyy/1yiuvJKyrW7euXnzxxZSvE+nWrZt+97vf6be//e0+dc45Pfzww3r55ZdT6gOoao8++qhef/11bdy4cZ+6V199VUuWLNEhhxxSqbYHDhyovLw8FRQUlDmDfVl69Oih5557Tm3btlVxcXHCVS0k6eCDD06pn+oi+28ziEp25sXJOxHdd/E5qeQV3tQ5Z0m2qSlFHIySYzuujGOryA0AQKWMHDlSxcXFCesGDx6sDh06pKWfm2++WS1btkxYN2HCBM9v6dWJ+/GSAGShVq1aafDgwQnr9uzZo3/9618J68rr2GOP1UcffaRXX31Vp512WtKL7hM54YQT9NJLL+n9999X27ZtJUnffvut51xfnTt3Tine6qK6J2B7Yj/LfTYogfWS2sYXmlmOpOMT7F/yFaB7Cn1mqmw+NlQzkydP9qxL56z1DRs21DnnnJOwbs+ePZo6tTp+l0JNc+6553rWpeM1bGYaMGCApk6dqqVLl2rUqFH69a9/rZNPPlkHHXSQ6tevr1q1aqlhw4Zq166dfvGLX2jYsGGaPXu2ioqK9Mtf/vIn7SW7K/KYY45JOd7qoLoPQa5X9AxWuxTamCWpj5n1ds69U6r8HkntE+z/F0UvLH/MzBY6574sXRmbW+tk59z0FGIKyhhJv5U0zMxmO+d+cu2cmdWSdJpzbkoQwaHm2LRpk+bNm5ewrn79+jrllFPS2t+ZZ56pv/898YndGTNm6OKLL05rf0C6nXzyyZ518+fPT2tfbdq0UUFBgQoKCirdRlGR92xGoVCo0u1WJ9U6AXPObTGzmZK6m9nzkr5U9KzY6865T8vZzCOSfiHpNTN7SdI6SadIOkTRuwh7xPX5hZkNUnQ+sflm9nas3zqKJoLdJa2WdGRqR+c/59xaM7tI0Ts5Z5jZu5LmSypW9Ni6KXqdWA2YoAVBWrFiheeQ2cEHH5z2pYOSDWd+//33ae0rCHl5eZKkSCSV+4KQyerXr6/GjRtr8+Z9781au3ZtABElN2XKlITltWvX1qmnnupvMAGp1glYzJWKTo/QR9JlkkzSt5LKlYA55941s/Ml3SvpUkWnf/iPpEsUnaoh0WP+aWZzJf1GUk9JvWOP+07RSVNfSuF4AhV7PrpIuk3RxLS7ovOefSfpPUmJr4oG0ijZHwyv67VS0apVq0rFUl0kO9uA7NGwYcOECdimTYluqA/O5s2b9fHHHyesO+mkk9S4cWOfIwpGtU/AnHOLJCUc/I4NlZV5taBz7nVFZ7SPNzC2JXrMZ151qXLOecbsnNsnJq/jdM71SNLOs4rOc5ao7mtJN5QZKFBFkl0wvmvXrrT3l2z5oYpecAwEwTnn+WWhQYMGPkeT3MSJEz3fczVpuL+6X4QPIAsl+wacaPmVVCVrs1EjZl1B5luzZo3nl5P9998/YXlQnnrqqYTltWrVSusNNpmOBAxAxkk2D9Dy5cu1YYPXNHmV43XBv6S9t80Dmey9997zrOvYsaOPkSQ3Z84cz+u/BgwYoIMOOsjfgAJEAgYg47Ro0cLzWq89e/bo3XffTWt/kyZN8qw74ogj0toXUBWSzfWVSas53HnnnZ51t912m4+RBI8EDEBG6tatm2fdyJEj09bPokWL9J///KdScQCZ4NNPP026YkPv3r19jMbbc889p3feeSdhXd++fdW1a1efIwoWCRiAjNSvXz/PusmTJ3t+kFfUnXfeqd27dyesa9u2rbp06ZKWfoKUn5+v/PyyVhhDdbRz505de+212rNnT8L6Dh06qHv34OfW/uSTT3TDDYnv7apTp44ee+wxnyMKHgkYgIx00UUXJb176/LLL9eiRYtS6uOPf/yj53qTknTVVVdlxV2Q4XBY4XA46DBqpBEjRmjWrFll71gJO3fu1IABAzyndJCk3/zmN4G/hufMmaM+ffoknCJDku6991516tTJ56iCRwIGICO1aNFC11xzjWf92rVr1aNHD33wwQcVbnv37t266667Ei7CXaJhw4a66aabKtw2UNqUKVN08sknq1+/fvrggw/StibnjBkzdPLJJ+utt97y3Kdz586Vnq1++PDheu6555JO0VIW55yeeuopnXbaaVq5cmXCfU4//XTdfffdle6jWitZpJWNraq3vLw8B1TE+vXrXevWrZ2iS44l3GrXru2uvfZat3DhwjLb27Nnj3vllVdcbm5u0jYluUceecSHI/RHYWGhKywsDDqMGql///4/eV21adPGDR061H3wwQdu+/btFWpr586dbsKECW7AgAHOzJK+fuvVq+cikUjKcbdq1cpdd9117u2333Y7d+4s12N37Njhxo0b5/Ly8pLG2LFjR7dq1apKx1hdSCp0Cf4mWrQOqHqhUMgVFhYGHQaqmffff1+9e/f2vE6rRK1atdSlSxeddtpp6tixo1q0aKEGDRpo/fr1Wr16tWbPnq3p06d7fhMvrW/fvpo4caJq1cqOQYKSISg+7/13/vnn67XXXktYV7t2bR155JE6/vjjdfjhh6tZs2Zq1qyZmjZtql27dmnTpk3atGmTFi1apLlz52ru3LnasmVLmX3m5OTopZde0oUXXpjWuBs0aKAuXbro+OOPV6dOndS8eXM1a9ZMe/bs0caNG7VkyRLNmTNH06dPL3P2/bZt22rq1Kk65JBDKh1jdWFmEefcPgtcVvuZ8AFkt549e+q5557TVVddlTQJKy4u1ieffKJPPvkkpf66d++usWPHZk3yhcy1e/duzZs3L+k8dBXVoEEDjR07Vueem3CBmJRs27ZNM2bM0IwZM1Jq55hjjtFbb72lNm3apCmy6olPGAAZ77LLLtPkyZOTLpqdKjPTjTfeqEmTJtWYteiQXUKhkCKRSJUkX+ny61//Wh999FGNT74kEjAA1cTpp5+uTz/9VPn5+crJyUlr24cddpgmT56sJ554QvXr109r26jZOnXqpLp161ZpH4cccoieeeYZzZw5U0ceeWSV9lVZxx57rN58800988wzfMGJ4Row+IZrwJAuy5cv11NPPaXRo0dr+fLllWojJydHZ599tq677jr16dMnq4ccuQYsWFu2bNG7776rSZMmadq0afrvf/+r4uLilNps3Lix+vbtqyuuuELnnHNO2l+/CxYs0Kuvvqp///vfmjFjhuc8Y8nUqlVLZ555pgoKCjRgwICsfo8l43UNGAkYfEMChnQrLi7W/PnzNWvWLM2aNUvz58/X+vXrtWHDBm3YsEE//PCDmjRpsvfC5jZt2ujEE0/USSedpJNOOknNmzcP+hB8QQKWWbZu3apIJKI5c+Zo8eLFWrJkib7++mutX79eW7du1datW7Vnzx7Vq1dPDRs2VKtWrXTQQQepY8eOOuqoo9S1a1fl5uaqdm1/LuPeunWrCgsLNWvWLH3++ef66quvtHTpUm3cuFFbt25VcXGxGjZsqObNm+uwww7TkUceqVNPPVW9evVSq1atfIkxk5GAIXAkYEAwSMCA4HAXJADUUHzxATIPCRgAZLm8vLygQwAQp2ZeEQcAABAgEjAAyHIFBQWVXhMQQNXgInz4hovwgWBwET4QHK+L8DkDBgAA4DMSMAAAAJ+RgAEAAPiMBAwAAMBnJGAAAAA+YyJWAMhyubm5QYcAIA4JGABkuUgkEnQIAOIwBAkAAOAzEjAAAACfkYABQJYzs72z4QPIDCRgAAAAPiMBAwAA8BkJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfMRM+AGS5UaNGBR0CgDgkYACQ5QoKCoIOAUAchiABAAB8RgIGAFkuHA4rHA4HHQaAUsw5F3QMqCFCoZArLCwMOgygxilZhojPe8B/ZhZxzoXiyzkDBgAA4DMSMAAAAJ+RgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGTPhA0CWY/oJIPNwBgwAAMBnJGAAAAA+IwEDgCyXl5envLy8oMMAUArXgAFAlisqKgo6BABxOAMGAADgMxIwAAAAn5GAAQAA+IwEDAAAwGckYAAAAD7jLkgAyHL5+flBhwAgDgkYAGS5cDgcdAgA4jAECQAA4DMSMADIcpFIRJFIJOgwAJTCECQAZLlQKCRJcs4FHAmAEpwBAwAA8BkJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jGkoACDLFRYWBh0CgDgkYACQ5fLy8oIOAUAchiABAAB8RgIGAFmuoKBABQUFQYcBoBRjaQr4JRQKOa5FAfxnZpJYiggIgplFnHOh+HLOgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGQkYAACAz5iIFQCyXG5ubtAhAIhDAgYAWS4SiQQdAoA4DEECAAD4jAQMAADAZyRgAJDlzGzvbPgAMgMJGAAAgM9IwAAAAHxGAgYAAOAzEjAAAACfkYABAAD4jAQMAADAZ8yEDwBZbtSoUUGHACAOCRgAZLmCgoKgQwAQhyFIAAAAn5GAAUCWC4fDCofDQYcBoBRzzgUdA2qIUCjkCgsLgw4DqHFKliHi8x7wn5lFnHOh+HLOgAEAAPiMBAwAAMBnJGAAAAA+IwEDAADwGQkYAACAz0jAAAAAfMY0FPCNma2W9E3QcaDSWkpaE3QQQA3Ee696a++caxVfSAIGoFzMrDDRXDYAqhbvvezEECQAAIDPSMAAAAB8RgIGoLxYTBAIBu+9LMQ1YAAAAD7jDBgAAIDPSMCANDGzgWbmzGxgXPnXZvZ1MFFVXHWL1w9m9mzsd9sh6FhQ9XgvV89+qxsSMCDDef0xyBSx2J4NoN8akRQF9fwi/XgvVy0z65HJz2+82kEHANQAvYIOACm7S9KfJC0POhAEivdy+fA8lQMJGFDFnHOLg44BqXHOfS/p+6DjQLB4L5cPz1P5MASJasHMOpScHjezI83sX2a2zsy2mtkHZtY7wWP2nu43sz5mNsXMNpqZi9vvyFi7y8xsp5mtNLMXzOwIj1gON7OXzWx9rP+PzOycJLF7Xg9hZpeY2buxY9kR2/dFMwvF6qdIGhPbfUzseEq2DqXaqW1m15vZDDPbZGbbzGyOmd1gZvu8zy3qBjObH+t3uZn9xcyaeh1HRZQeHjSza8zss1g/K80s7NWPmeWZ2Stmtir2u/jGzP5qZgfF7eckXR3775JSz8nX5Yit9OuiZ+x1sTn2vP3bzDonO55SZaVfkx3MbKyZrYkdZ6GZ9UsSw2Vm9n7sNbTDzP5rZveYWb2y4q/ueC9LyvL3cqLnqTLvu9jjGpjZXWb2Sex3tMXMPjazy9JxfEHiDBiqm0MkfSxpnqRRkg6SdImkt8zscufcSwkec5GkPpLekjRSUoeSCjPrI+lVSXUkTZS0smiVoQAACEdJREFUSFIbSRdIOsfMejrnikrt3zHW//6x9j6RdLikf8X+Xy5mZop+GF+t6Bpvr0paHeu7p6QFkgolPStpg6T+kl6L9VdiQ6ytkth/EXvcC5J2xNp5UtLJkq6MC2GEpJsUPasTlrQr1sfJkupK+qG8x1KGh2JxTZT0TiymfEWfszNK7xhLWF6RZJLGK7puaJ6k6yT1N7OfO+e+ju1+n6TzJR0n6XHFnotSP8ujn6LHXPK6OEpSX0knmtlRzrnyrr3XXtIsSV9J+oekFoq+Jl8zszOdc+/HHefTkgZJ+lbR3/sGSV0l3S+pl5md5ZzbXYHjqK54L/8oq97LZSj3+87Mmkl6T9IJkookPaPoiaNfSHrBzI52zt2T4nEFxznHxpbxm6IftC62PRxXF1L0Q2e9pCalygfG9i+W1CdBm81jj1kj6ai4uqMlbZFUFFf+TqzNm+PK+5eKb2Bc3deSvo4rK4jtO0tS07i6HEkHJTiOgfHHEKsfHqt/UlJOXDtPx+r6lyo/JVa2SFKLUuX7KfoHycXHW4nf17OxdpZKaleqvLakabG6k0qVN4r9HvZI6h7X1h2x/d/x6KNDBWMreT53S+oVV/fHWN3tZfUV95ocFrf/L2Llb3r0/aqk+h6/x5srcjzVbRPv5ax+Lyd5nlJ538WX7yfp7djr4figX9OVfm6DDoCNrTxbqQ/tDZIaJ6gveaNeXaqs5A0/waPNm2P1/+NR/1is/qjY/9vE/v9V6Q/HUvtPqcCH9mexfU8ox7F7fmgr+m1wjaLffmsnqG8W+5AaV6rsqVh7v06wf480f2gPSVD361jdDaXKroiVvZBg/9qSlsTq2yXoo0MFYyt5Pv+ZoO6QWN14j+PpUKqs5DX5tcfr4RtJa+LK5iiaYDRLsH9O7Hc5K93vn0zaeC9n93s5yfNUofedomcmd0ua7RHXcbHHPBT0a7qyG0OQqG6KnHObE5RPUXQI4ARJf4+rm+XRVrfYz+PMbHiC+k6xn50lfR5rW5I+cM7t8YjhdI++9jKzhpKOkbTSOTenrP3L0EnRD6qFku6JjobsY7uix1AiN/ZzaoJ9pyv6oZcuhQnKlsV+Nk8Q03vxOzvndpvZNEX/cJ+g6DdxP2Mryycer4dl+vE1JjNroOgfjTWShnr8rnbqp7+rbMZ7ed8Ys+G9nK52TlT0S4nz+J3Wif2stu8XEjBUNys9ylfEfia68HRFgjIp+mEnRa9jSKZRXNtlxVCWZrGf6ZjSoOQYOkoalmS/RqX+7Xkczrk9ZrY2DXGVSHRNVskfhZwEMXndaVhS3syjvjL2iS2W7Ek/ja3C7cTs1k9vdGqu6PVtrZT8d1VT8F7+qWx5L1e4HY/3XcnzcWJs89IoSV1G4y5IVDcHepS3jv3cmKDOeTymZN/jnHOWZPt73P5lxVCWkg+gg8u5fzIlMU0o4xgOSfCYfY7DzHL04wefn0pi8noOD4rbrzoqiX1OGb+rhKc+shDv5Z/KlvdyupQc22NlPB89A40yBSRgqG5yzaxxgvIesZ8VGQaYEfvZvZz7l7R9auzDzSuGpJxzWxW98+tAMzuhrP0VvTBdSvwt8wvF7qKL3UFVHiV3giUaYumuYM6Mlzy3PeIrzKy2pFNj/y0qVZXseck4zrktkuZLOtrMWgQdTwbgvfxT2fJeTpdZil7zVt7fabVDAobqpqmke0sXxObZuULRb0wTKtDWGEU/8IaZ2UnxlWZWy8x6lPzfOfetpP8oesHoDXH79lc5rhkp5YnYz1Hx8+jE+i0971XJMEK7+EZcdLqCJxU9Q/SEmdVPcBwHmdlRpYqejf38belEwMz2U/RupCD8S9I6SZeZWde4uqGSDpU02TlX+vovz+clg/1Z0akBnvn/7d2/axRBGMbx72MhtkawCAiKFnZCYhARxEoFDSjYiChBhAR/NIKNIoj4BwiJWCghIlaxCdhYnERJxFYQLEQCFiIRMQlnUAvH4h24y+XOXELcM+fzgW0ytzs7l53J3Ny8b3KI/QKSNkrqWnxaW3JfrtJGfXlVpJSmgUfAbknX8wexBSRtl7Rt8dlrw1qeHdv/6QVwTtIeYJJK7qB1QH9Kaa7ZC6WUvkg6QQz0rySViBWKX8QAuZdYwt9QddoFIrz7tiJh5GsiD85xIj9Ob5PV3ydWdc4A7ySNEbmDOomcOsNESDq5vnli43YHlf0egymlWSJ/1C5gAOiV9IzYk7KZ2E+yD7hGbD4mpTQpaRC4BLyR9JhK7qCvtCDje0qpLOksMAo8lzRKbLbvBg4Se3L6a04rAVeAe7kNZWAmpTRU3J0vT0ppWFI3cB54L+kp0c4OYjKwn5hMDLTuLgvjvtyGfXmVXSTafRM4LWmCeM86ic33PcBJIkp67Wl1GKYPH80cVELXR4iON0YMMPPE4H2ozjl9/CHnTs21h4joo+/AHPF1wEPgWJ3X7yAShc4A34hB9Uij+qgTkl1VdoqIYJrNdU8Rn/q6al53ONdTppKjaGtVuYgEjSViJeknMXBPAFeBLTXXEzG4vSUi7z4Cd4hViYb3u4zf10jtPVaVHchlN+qU9RB/RD/nNnwA7gKdDeq5XNWGpkLul3ouctn4Uu2pfiYbXGc8hti6ZUeBJ8B0bucn4iuXW8DOVve3v3ngvtz2fblevSvpd/nn63P7Xub39gcxLpSI1fFNrX6mV3ooN9Dsn6b4Vx1TwIOUUl9Lb8bMVsx92Sx4D5iZmZlZwTwBMzMzMyuYJ2BmZmZmBfMeMDMzM7OCeQXMzMzMrGCegJmZmZkVzBMwMzMzs4J5AmZmZmZWME/AzMzMzArmCZiZmZlZwX4D9MUKKiKYn/kAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 576x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_confusion_matrix_illustration()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ2My44MDkzNzUgMjUzLjM1NTYyNSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJylU8Fu2zAMvfMreNwujChKlnxcsCVAD8W6Gdhh6KFIXC9BmnV10f7+GDtx5NheUexgGHom+fjk9xi3MPvEWNVocKvPK/7EW32vkXGJs8/ly2ZVflvOcVWDUfwBXCYUTS7B63GXHq0XEu8z6xU3/eMvgD0oj/YsdXQFwJa7xkiBm0Id7zPKLuFdD3YZ8WluOiXFle9eldlWWaWUqo5iou+wiH4Bazz54R4p7Mme9oC5qniFeYGzBSN7LO6BxZEPeRa1lg2JFhZr+PD4VK43q+dyjfuyunvevJQfsdjilwKaRUCCpXxInMJvEIvuKMEI2wnix9/1Zkic3FkUMuFIzBxJLuEpxZTHA2sIJLFdoGE+8uFqd1fXk6ycM4V8SJvg47yBLHLU32zOnKfL7XP+wVF/if6qiJYDOYdPJf7APdrGFIqg6PjWHGfjgxrfxpzsiEUSOPUefIcb/L8FoJ+89O5EC2UYlgTvNrB41ca6Z/zJ0am2qVzp5NGEPkwmVDveF/WLhvOsf3KYRmsbdO7FvOo8ZExr3kzj2oTV58Qa3KOTiuuTey4anCF2B795Q8539YuJerGWjM9GGBZfJzo0Ay53B119iqJruIG/I/I37AplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjQ2MwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK40AANxGJMKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDWNsRHAMAgDe6ZgBMsBE/bJpcL7twn4aKQXHMjk5sGesnSwTecH9OekTfNCUZCqMNB0Zn1xaOQOVg4XXmhKr4roz0HvB5nqF5oKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM2ID4+CnN0cmVhbQp4nE1QS25EIQzbc4pc4EkkIQHOQ9VV5/7bscNU7SqGGH9ID+myVR7rU2J1iezypU2XyjJ5FajlT9v/UQwCbv/QyEG0t4ydYuYS1sXCJDzlNCMbJ9csH487TxtmhcbEjeOdLhlgnxYBNVuVzYE5bTo3QLqQGreqs95kUAwi6kLNB5MunKfRl4g5nqhgSncmtZAbXD7VoQNxWr0KuWOLk2/EHFmhwGHQTHHWXwHWqMmyWcggSYYhzn2je5QKjajKeSsVwg+ToRH1htWgBpW5haKp5ZL8HdoCMAW2jHXpDEqBqgDB3yqnfb8BJI1dUwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA3MCAvRiA3OCAvTiA4MCAvUCA4NCAvVCA5NyAvYSA5OSAvYyAvZCAvZSAxMDMgL2cgMTA1IC9pIDEwOCAvbAoxMTAgL24gL28gL3AgMTE0IC9yIC9zIC90IDExOCAvdiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9GIDE2IDAgUiAvTiAxNyAwIFIgL1AgMTggMCBSIC9UIDE5IDAgUiAvYSAyMCAwIFIgL2MgMjEgMCBSIC9kIDIyIDAgUgovZSAyMyAwIFIgL2cgMjQgMCBSIC9pIDI1IDAgUiAvbCAyNiAwIFIgL24gMjcgMCBSIC9vIDI4IDAgUiAvcCAyOSAwIFIKL3IgMzAgMCBSIC9zIDMxIDAgUiAvc3BhY2UgMzIgMCBSIC90IDMzIDAgUiAvdiAzNCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDM0MS0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCAzNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAwNzU1NCAwMDAwMCBuIAowMDAwMDA3MzYwIDAwMDAwIG4gCjAwMDAwMDczOTIgMDAwMDAgbiAKMDAwMDAwNzQ5MSAwMDAwMCBuIAowMDAwMDA3NTEyIDAwMDAwIG4gCjAwMDAwMDc1MzMgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMDkzNyAwMDAwMCBuIAowMDAwMDA2MDkxIDAwMDAwIG4gCjAwMDAwMDU4OTEgMDAwMDAgbiAKMDAwMDAwNTQ5MiAwMDAwMCBuIAowMDAwMDA3MTQ0IDAwMDAwIG4gCjAwMDAwMDA5NTcgMDAwMDAgbiAKMDAwMDAwMTEwMyAwMDAwMCBuIAowMDAwMDAxMjUwIDAwMDAwIG4gCjAwMDAwMDE0ODggMDAwMDAgbiAKMDAwMDAwMTYyNCAwMDAwMCBuIAowMDAwMDAyMDAxIDAwMDAwIG4gCjAwMDAwMDIzMDQgMDAwMDAgbiAKMDAwMDAwMjYwNCAwMDAwMCBuIAowMDAwMDAyOTIyIDAwMDAwIG4gCjAwMDAwMDMzMzMgMDAwMDAgbiAKMDAwMDAwMzQ3MyAwMDAwMCBuIAowMDAwMDAzNTkwIDAwMDAwIG4gCjAwMDAwMDM4MjQgMDAwMDAgbiAKMDAwMDAwNDExMSAwMDAwMCBuIAowMDAwMDA0NDIwIDAwMDAwIG4gCjAwMDAwMDQ2NTAgMDAwMDAgbiAKMDAwMDAwNTA1NSAwMDAwMCBuIAowMDAwMDA1MTQ0IDAwMDAwIG4gCjAwMDAwMDUzNDggMDAwMDAgbiAKMDAwMDAwNzYxNCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM1IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNiA+PgpzdGFydHhyZWYKNzc2OAolJUVPRgo=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAD9CAYAAAAMGCZcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU5dn/8c/FjgIVCYs+KOCKoj5IInWrBOtSd1ApWlpBkLjyKwpF2WRfFBe01keCCjxuuNUFcC+LxbUJLq1WHhVRQKggILIHuX9/3GdkMiSZyZCZMxO+79drXsnMXHPOd04mc805c59zzDmHiIiIVE6NsAOIiIhkIzVQERGRJKiBioiIJEENVEREJAlqoCIiIkmoFXYASY+cnBzXunXrsGOI7Ka4uBiA3NzckJOI7K64uHiNc65pWfeZdmPZO+Tl5bmioqKwY4jsxswA0HuRZCIzK3bO5ZV1nzbhioiIJEENVEREJAlqoCIiIklQAxUREUmCRuGKSKg0eEiyldZARUREkqAGKiIikgQ1UBEJVW5urg6iIFlJ34GKSKgWLVoUdgSRpGgNVEREJAlqoCIiIklQAxUREUmCGqiIiEgS1EAlrvnz52Nme91l+vTpcZdNMtO99tprU/9Hq8D06dMTyjl//vxQc4pkOo3CFUmzhx56iIEDB3LooYeGHSUj9O3bN+wIlbJ06VLatGkTdoy4OnXqlPSHoAcffJCFCxdWbSD8B866detSt25d9tlnH5o2bUrz5s1p2bIl7dq1Iycnp8rnmUpqoCJpVlJSwvDhw3n88cfDjpIRCgsLw44gMRYuXMiMGTPSPt9mzZrRsWNH8vPzOeusszj22GPTnqEytAlXJAQzZ87ko48+CjuGSEb57rvvmD17NgMHDuS4446jXbt2TJw4kXXr1oUdrUxqoCIhcM4xdOjQsGNkhOLiYoqLi8OOIRno008/ZfDgwRx88MEMGjSIH3/8MexIpaiBioRkzpw5KfmeKdvk5eWRl5cXdgzJYBs3bmTSpEm0bduW5557Luw4P1MDFQnR4MGDw44gkjW+/fZbLr74YgYMGMCOHTvCjqMGKhKmhQsXMmfOnLBjiGSVu+66i9/97nehN1E1UIkrPz8f51zKL9OmTUsoz4gRI9KSp1evXqldsIGhQ4fqpNIilfT000+n7X+0PGqgIiH76KOPmDlzZtgxpIp16tQpLR/0yruk40AY8+bNq1SmnTt3sm7dOr744gvef/99HnzwQa644gpatWqV1Pwfe+wxJk+eXMXPKnFqoCIZYPjw4ZSUlIQdQySlzIz99tuPQw89lBNOOIE+ffowY8YMli5dypw5c/jVr35V6WkOGjSIzz77LAVp41MDFckAX375JQ899FDYMURCc+655/Lmm2/y9NNP07Bhw4QfV1JSQr9+/VKYrHxqoCIp9utf/5p69erFrRs9ejRbtmxJQ6LMUlRURFFRUdgxJENceumlvP/++xx22GEJP+aNN94IZZcwNVCRFGvZsiXXXXdd3LqVK1dy7733piFRZsnNzSU3NzfsGJJB2rZty+zZs2nUqFHCj7nzzjtTmKhsaqAiaTBkyJCE3gxuu+021q9fn4ZEIpntyCOP5JFHHkm4fs6cOWk/5J8aqEgaNGnShAEDBsStW7duHbfffnsaEmWOgoICCgoKwo4hGejCCy/k9NNPT6i2pKSEWbNmpThRaWqgImly00030bRp07h199xzD6tWrUpDoswwdepUpk6dGnYMyVDDhg1LuHbu3LkpTLI7NVCRNGnQoEFCB5DfvHkzY8aMSUMikczXuXNnDj/88IRq33vvvRSnKU0NVCSNrrnmmoR2Gp86dSpLlixJQyKRzJefn59Q3eLFi9m2bVtqw0RRAxVJo7p16zJy5Mi4dSUlJYwYMSL1gUSyQOfOnROqc86xbNmyFKfZRQ1UJM3+8Ic/cPTRR8ete/zxx/nnP/+ZhkQime3II49MuFYNVKQaq1mzJmPHjo1bt3PnTp10WwQ/ij1RGzZsSGGS0tRARULQtWtXOnbsGLdu1qxZvP3222lIFJ4OHTrQoUOHsGNIBqtMA928eXMKk5SmBioSkgkTJiRUV91Pul1cXExxcXHYMSSD1alTJ+Han376KYVJSlMDFQnJ6aefzhlnnBG37s033+Tll19OQyKRzPT9998nXLvPPvukMElpaqAiIUp0LXTIkCE66bbstdRARWQ3eXl5XHLJJXHrPvzwQ5566qk0JEo/M8PMwo4hGWzFihUJ17Zo0SKFSUpTAxUJ2dixY6lZs2bcuuHDh7Njx440JBLJLJU5VVkiByqpKmqgIiFr27YtV1xxRdy6zz//nIcffjgNiUQyy/z58xOqy8nJoXHjxqkNE0UNVCQDjBo1irp168at21tPui17r2+//TbhY9wmsmtYVVIDFckABx10ENdee23cuhUrVnDfffelIZFIZpg0aRIlJSUJ1Z500kkpTlOaGqhIhhg6dCgNGzaMWzdx4kR++OGHNCSSPbFgwYKfB0il69KrV6+wn3aVWrlyJYWFhQnXX3TRRSlMszs1UJEMkZOTw0033RS3bu3atUyaNCkNiUTCs337di699NKEjyx0xBFHcOyxx6Y4VWlqoCIZZMCAAeTk5MStmzx5Mv/5z3/SkCj1pkyZwpQpU8KOIRlk586dXHvttZU6jGW/fv1SmKhsaqAiGaRhw4YMGTIkbt2mTZsSOiB9NigoKKCgoCDsGJIh1q5dy3nnnVepEedNmzald+/eKUxVtqxtoGY2yMzyy7jdmdkNIUTajZlNN7OisHNIdrnuuus46KCD4tYVFhaydOnS1AcSSYOSkhKmTZvG8ccfzyuvvFKpx06cODGtRyCKyNoGCgwC8su4/STg6fRGEak6iZ50e/v27dXipNuFhYWVGigi1cfWrVuZP38+I0eO5JBDDqF379588803lZpGfn4+V155ZYoSVqxWKHNNIefcu2FnENlTPXv2ZNKkSXz22WcV1j366KMMGjSIdu3apSlZ1bv66qsBtBk3C02cOJHp06cnXO+cY8OGDXz//fesXbuWzz//nO3btyc9/wMPPJCZM2eGdijIuA3UzKYDxwCDgTuBQ4EPgKudc59E1dXArxVeBRwEfA2Mc87NiKoxYDRwNVAPeAZ4DXgCaOOcWxrUTQTOA9oA64EFwADn3Krg/qVAE2CEmUU+gnd2zs03Mwf0c87dZ2ajgnkd6JzbGZXjfGAWcLhz7ovgtquAG4HDgFXAX5xztyewfPoC/w84HPgB+DvQxzm3234GZnYAMA6/5nwAsAx4ChjtnNseVTcY6AO0DKb5AdDLObfKzGoDE4DfAs2B74H3gO7R05DsVrNmTcaMGUO3bt0qrIucdPv5559PUzKRXV599dXQ5p2Tk8PLL79M8+bNQ8uQ6Cbcg4FJ+Df/y4FmwFNWuu3/GRgGFOKb33PAw0GziugPDAEeAC4FtgBlNalmwPhgOv2BQ4C5ZhY5YGhXfGN5CL/J9iRgURnTmYlvMp1ibv8tUBzVPP8E/A/wPHB+8PuYeN+lmtkwYAq+wXcBrg1yNSjnITnAWuAm4Df4ZXolftlFpnkFfhndBZwdTPMLYN+gZDDQAxgOnIlfPj8A8Q+mKlnl0ksvJS8vL27dCy+8wLvvasNLpunUqRPOubReKrM2mM0OPvhg5s2bx3HHHRdqjkQ34e4PnOKc+xx+Xtt8DjgS+MzMDsO/0V8Ztcb5RrDGNQKYHTS/QcADzrlbg5rXzKwNfo31Z865n4dTBY97B1gOnAK86Zz7wMx2AMsr2mTrnPu3mX0MdAfmBdOrC1wEjAmuNwoyjnXOjQoe+rqZ7QMMM7P/cc7tdoZWM9sP3+gmO+eid977awV5/gkMjJrGW8Am/AeNfsEaZEfgNefc/eVMsyPwePSaPX4tdjdmVgAUgH/BSfYZP348Z511Vty6wYMHM2/evDQkEgnXWWedxWOPPZbQ7l6pluga6NJI8wx8GvxsGfz8NbATeM7MakUuwN+A9kETPAhoAbwYM+3Y65jZOWb2tpn9AOzAN0+AIxLMG+1J4JIgD8A5QEN2NZ2T8Gt3T8dkn4tfe20ZO8Gox9UHpiUaxLz+ZvapmW0BSoDHgLr4tXyAD4FzzWyUmXWMWusm6v5ewSjk42K2ApTinCt0zuU55/KaNm2aaEzJIGeeeSann3563Lr58+fz2muvpSGRSDhatGjBI488wquvvpoRzRMSb6DrY65HvmurF/zMwW9C/AHfFCKX6fi13APwzRNgdcy0Sl03sxPwTXU58Ad8ozoxZn6VMTPIF3kX6g6845yLDPWK/CU+icke+Thf3v4ETYKfKyuRpT/+e+Tn8GvBHYHrg/siz+1h/Jrtb/Hfbf7HzMZENdKxwF+A64CPgGVm9sdKZJAso5Nuy97s0EMP5b777mPJkiX8/ve/DztOKVU1Cnctfk3xFPyaaKzvouYVuyoUe70rvql2d8G7gZklfYI359ySYF/M7ma2ELgA36Cis4P/7rOsQ7ssLmfSkVOkHwCsSTBON+Bp59zQyA1mdnRM3p3A3cDdZnYQ/vvOccAK/ObvrcCtwK1mdjhwDTDZzBY75yq385RkhY4dO9KlS5e4A4WKi4t55pln4g48Esl0bdu25ayzzqJ79+6cfPLJYccpV1U10Ln4NdBfOOdeL6vAzJbhR7deBEQP3bowprQ+UOJKf5TuUcYkt5P4GulMYGiQsz6l9xN9Bz+Y6UDn3JwEpxf9uJ5Efa8ZR31gW8xtZT03AJxzy4CJZnYlcHQZ939uZgPxa7FHA2qg1dS4ceN48cUX2bmzrM+nuwwfPpyLL744oRN0ZwqtNe9dateuTb169ahfvz45OTm0aNGCli1bctRRR9GuXTs6duwY6sjayqiSBuqcW2xmDwAzzex2oAjf3NoBRzjnrnLO/WRmk4BJZrYaeAvfPCNH/428M7wO9DezyfhdTU4Gylpv/ww4z8xeATYCi51zP5YT8Sn8iNdJ+EFIP292dc6tN7ORwD3Bmu6b+E3bR+B3jelaznNeb2ZjgHFmVgd4Cf9d5nnAKOfcijIe9jrw/8zsPeBLfPM8LLrAzKbg14rfxW8S74zfRebm4P7ngGL8ri1b8KOZawW5pZo6+uij+cMf/sCMGTMqrFu8eDHTpk3jqquuSlMy2ZvNmzeP/Pz8sGOEpiqPRHQ9fmTrFfhmMh3fTKLf2O/G755yHfAs0Di4DrABwDn3Er5ZXIL/LrQTfvNqrD/hR7DOAf4B5JYXLFiTexu/uXVmGfffjh+teg7wAn6/1B74fTrL5ZybgB99fEbwuCnAfkB5jXx0MO2xwc/t+H1Io70DnIYfnPQSfpN2X+dcZPvd2/hdZh4P5pkLXOKc0yEDq7lRo0ZRp06dhOq2bt2ahkQie7e4a6DOuV5l3LYUsJjbHDA5uJQ3LYfff3F45DYzexD4xjm3PqrudnbfPzR2fsXsGlwUfXuZo1Kdc6eWlyu4/1Hg0YpqynncFHzjLOu+XjHXN+L3+4xlUTXT8R8+yptfZE1a9jKtWrXimmuu4d57762wbvny5fzlL39hwIABaUq2Z3Jz/Wff4uLikJOIVE5aj4VrZscEI0rPMbOzg820pQ4kICLlGzp0KA0alHecjl0mTJjAhg0b0pBozy1atIhFi8o6DopIZkv3weQ3AafiNz/Owm/ivRm/a4eIxNGsWTNuvPHGuHXff/89d9xxRxoSiey90tpAnXNfOec6O+caO+fqOOcOd87dETPiVkQqMHDgQJo0aRK37u6772b16tjdrkWkqmTz6cxE9kqNGjVi8ODBces2btzIuHHj0pBIZO+kBiqSha6//npatizvKJO7PPDAA3z99ddpSCSy91EDFclC9erV49Zbb41bt23btoROzi0ilacGKpKlevfuzRFHxD+/wiOPPMKnn34aty4sffv2pW/fvmHHEKk0NVCRLBU56XY8P/30E8OGDUtDouQUFhZSWFgYdgyRSlMDFcli3bp1o0OHDnHrnnvuOd5///00JBLZe6iBimQxM2P8+PHxCyGhkbthKC4u1lGIJCupgYpkubPPPjuhA3rPnTuXN954I/WBKikvL4+8vLywY4hUmhqoSDWQ6Em3M3UtVCQbqYGKVAMnnngiF14Ye2rd3RUVFfHss8+mIZFI9acGKlJNjB8/nho14v9Lz549Ow1pRKo/NVCRaqJdu3b06NEj7Bgiew01UJFqJNGTbovInlMDFalG2rRpQ0FBQdgxRPYKaqAi1cywYcPYd999w46RsKKiIoqKisKOIVJpaqAi1Uzz5s3p379/2DESlpubS25ubtgxRCpNDVSkGvrTn/7E/vvvH3YMkWpNDVSkGvrFL37BzTffHHaMhBQUFOh7W8lKaqAi1VS/fv048MADw44R19SpU5k6dWrYMUQqTQ1UpJqqX79+QifdFpHkqIGKVGN9+vTh8MMPDzuGSLVUK+wAIhHt27dnxIgRcesSOfOIeLVq1WL06NFcfvnlYUcRqXbUQCVjtG/fnvbt24cdo1Kcc2FHiOuyyy7jsssuCzuGSLWjBioiUgmtW7fOig9Oe6JLly60bt06bl0iNdWZGqiIhKpDhw5hR5AYXbp0oUuXLmHHyHhqoCISquLi4rAjiCRFo3BFRESSoAYqIiKSBDVQEQmVmWFmYccQqTQ1UBERkSSogYqIiCRBDVRERCQJaqAiIiJJUAMVERFJghqoiIhIEnQkIhEJ1ZQpU8KOIJIUNVARCVVBQUHYEUSSok24IiIiSVADFZFQFRYWUlhYGHYMkUqz6n5eO/Hy8vJcUVFR2DFEdhM5jJ/eiyQTmVmxcy6vrPu0BioiIpIENVAREZEkqIHuJYqLi38+60XsJfr7p8LCwnLrYs+YkZubW25d9MjKiuZtZqVOqFxQUFBuXW5ubqn5VzRNPSc9Jz0nPaeqeE4VUQMVERFJggYR7SU0iEgyVeRTvt6LJBOZBhGJiIhULR2JSERCpTVPyVZaAxUREUmCGqiIiEgS1EBFJFS5ubm77X4gkg30HaiIhGrRokVhRxBJitZARUREkqAGKiIikgQ1UBERkSSogYqIiCRBDVRERCQJGoUrIqHq27dv2BFEkqIGKiKhij6tlEg2UQOVlFi6dClt2rQJO0ZcnTp1Yv78+Uk9tlevXsyYMaNSj2natClLliyhQYMGSc2zKsQ7xyFAz549mT59eurDhGj+/Pl07tw57BhpN23aNHr16lVhTbz7k1WzZk3q1q1LvXr1aNiwIS1atKB58+YceuihHHnkkdSrVy8l800VNVCRNFq9ejV33XUXt956a9hRMkbkZMk6GlHmqOwHw6pQs2ZNDj/8cE499VTy8/M555xz2H///dOeozI0iEgkze68807WrFkTdoyMkZeXR15emadblL3ITz/9xGeffcaDDz7I73//e1q0aMEFF1zACy+8kLFn7FEDFUmzDRs2MGHChLBjiGS0kpISZs+eTZcuXWjXrh3PPPNM2JF2owYqEoL777+f5cuXhx1DJCv8+9//plu3bvzmN7/hm2++CTvOz9RARUKwdetWRo4cGXYMkazy6quvkpuby+uvvx52FEANVCQ006dPZ/HixWHHEMkqa9as4dxzz+XZZ58NO4oaqEhYfvrpJ4YNGxZ2DJGss2PHDi677DJefvnlUHOogUqoOnXqhHMutEuy+4BWlWefffbn3TgkvfLz89PyGps2bVpCeUaMGJGWPFW1j2erVq0qPe/t27ezatUqPv30U+bOncu4ceM4++yzk9oveseOHfTo0YMlS5ZUyfNJhhqoSIiccwwZMiTsGKEqKiqiqKgo7BiSBrVr16Z58+YcddRRdO7cmSFDhvDKK6+wYsUKJk6cSIsWLSo1vXXr1nHllVemKG18aqAiIXvttdeYN29e2DFCk5ubq4Mo7OUaNWrEzTffzJIlS+jdu3elHvvmm2/y2GOPpShZxdRARTLA4MGDw44gErr69evz0EMPMWXKFGrUSLw9jRo1ip07d6YwWdnUQEVS7Lzzzotb89577/H888+nIU3mKSgooKCgIOwYkkEKCgoYO3ZswvWff/45s2bNSmGisqmBiqTYuHHjEjqA+7Bhw0L5FB22qVOnMnXq1LBjSIYZPHgwF198ccL1jzzySArTlE0NVCTF/vu//5vLL788bt0nn3zCo48+moZEItnhjjvuoFatxM558sorr7Bly5YUJypNDVQkDUaPHk3t2rXj1o0YMYLt27enIZFI5mvTpg2/+93vEqrdtGkT7733XooTlaYGKpIGhx56KFdddVXcuqVLlzJlypQ0JBLJDldffXXCtWqgItXU8OHD2WeffeLWjR07lo0bN6YhkUjmO+GEE9h3330Tqv34449TnKY0NVCRNDnggAPo169f3LrvvvuOyZMnpyGRSOarXbs2p5xySkK1X3/9dYrTlKYGKpJGN998M/vtt1/cukmTJvH999+nIVH4OnToQIcOHcKOIRnsyCOPTKhu2bJlKU5SmhqoSBo1btyYQYMGxa3bsGEDEydOTEOi8BUXF+t4wFKhJk2aJFS3YcOGFCcpTQ1UJM3++Mc/JnTMz/vuu48VK1akIZFIZku0gW7evDnFSUpTAxVJs3322Yfhw4fHrdu6dSujRo1KQyKRzFanTp2E6n766acUJylNDVQkBH379uWQQw6JWzdt2jQ+//zzNCQKj5kldKQm2XslOh4gkVHuVUkNVCQEtWvXZvTo0XHrduzYkdDaqkh1pgYqIqVcfvnlHHfccXHrnnrqKT744IM0JBLJTImOBajs+UT3lBqoSEhq1KjBuHHj4tbppNuyt1u4cGFCda1atUpxktLUQEVCdP7553PyySfHrXvllVdYsGBBGhKJZJYvv/yS5cuXJ1R7xBFHpDhNaWqgIiGbMGFCQnU66bbsjf76178mXNuxY8cUJtmdGqhIyE477TTOOeecuHXvvPMOL774YhoSiWSGbdu2cffddydcf9JJJ6Uwze7UQCVUCxYs+Hk3hnRdevXqFfbT3s348eMT2pVj6NCh1e6k21OmTNEZaKRMDzzwACtXrkyotkOHDrRs2TLFiUpTAxXJAO3bt6d79+5x6/71r3/x+OOPpyFR+hQUFFBQUBB2DMkwxcXF3HLLLQnXd+vWLYVpyqYGKpIhxowZQ61ateLW3XrrrZSUlKQhkUg4li9fTteuXdm6dWtC9fXr16dPnz4pTrU7NVCRDHHYYYfRu3fvuHVfffUVhYWFaUiUHoWFhdXq+ciemTdvHrm5uZU6s8qVV15J06ZNU5iqbFnTQM1sqZndEXX9t2bWq4y6+Wb2TFrDlcPMepmZM7MGYWeR7DBixAjq168ft27s2LFs2rQpDYlS7+qrr+bqq68OO4aEbPny5dx4442ceeaZfPfddwk/rnHjxqEdMzprGijQFbg36vpvgV5l1F0HaLy/ZKUDDzyQG264IW7dqlWruOeee9KQSCR1Vq5cyZNPPknPnj055JBDmDx5cqUPCH/XXXeRk5OTooQVi/+FS4ZwziV0LDPn3KepziKSSrfccguFhYX88MMPFdbdfvvtXHvttTRu3DhNyUR2WbNmTaVHtO/YsYO1a9eydu1aVq1axddff71HGfr06RPuqHrnXNIXYDpQBHQBPgO2AguBo2Pq9sGvPa4Kav4BnBVTcyrwd2BDcPkQ6BZ1/1Lgjqj5upjLyOC++cAzwe+dg/vaxcyrMbAd6BMz/wXAZuB7YCrQMIFlcBowD9gI/BDM//jgvl7B/BtE1U8E/hnULwceA1rETPNCoBjYBKwD3gM6Rd3fB/gE2AKsCXK3qyhnbm6uS6evvvoq9u+TMZeePXtWyXPs2bNnQvNLxtixYxOa9qBBgyo97XQuo8rkqa6mTZuW0DIfMWJE2FF/Fvb/aCKXCy64wG3bti0dy6LIlfO+WhWbcFsBdwFjgN8BvwBeNbN6UTVTgSuBcfhNscuAOWZ2KoCZNQJmA0uAS4BLgUeA/cqZ5xh80/oAOCm4PFhG3QJgJX5zb7Suwc/ngvmfAvwN3+AvBfoD5wLTKnriZpYfPK4E6Al0x38I+K8KHtYMGA+cF8znEGCumdUMpnko8AwwF7gA6IFfNvsH958GPAA8CpwD9Abexi/3rNOpU6c9+hCXzGX69OlhP+24+vfvT/PmzePW/fnPf+bbb79NQyKRzNG9e3eeeeaZhM8TmipVsQk3B7jIOfc2gJkVA1/i174eMLOjgMuBK51zM4KaV4GPgeHA2cAR+AZwg3Pux2C6r5U3Q+fcl2a2FqjhnHu3grqdZvY0vrGNiLqrO/Cac25tcH0i8LZz7ucd8cxsBfA3MzvGOfevcmYxAfgIODv4pALwSnl5gkw/D7MMmuY7+DXRU4A3geOBH51zf4p62EtRv3cEPnbORR//rczD05hZAVAAcPDBB1cUSzLMvvvuy7Bhw+jXr1+FdVu2bGH06NE88MADaUomEp46deowfvx4BgwYEHYUoGoGEX0XaZ4Azrmv8ZsfIwclPAEw4Omomp3B9VODm77Eb9J83MwuMrPy1jyT8SRwpJn9N4CZ5QCnB7djZvvg12CfMrNakQt+U3QJkFvWRM1sX+CXwIyo5hmXmZ1jZm+b2Q/ADnzzBP8hAvzm3V+Y2QwzOyuYT7QPgePN7G4zO83Myv0I5pwrdM7lOefywhjiLXumoKCANm3axK176KGH+OKLL9KQSCQ8v/71r/noo48ypnlCFTXQcm47IPj9AGCjc25zTM1/gH3MrK5zbh1wFlAbeApYbWZzzOyQKsj3DvANfq0T/CbiHcDzwfXGQE3gfnzDjFy2BXkOKme6jfEfDBI7zhRgZifg1xaXA3/AN+4Tg7vrATjnFgMX4TftvgSsMbPHzaxpcP8b+M3hp+G/b11jZveX0Wgly9WpUyeh4fk7duzg1ltvTUOi1IhsWheJVaNGDc4991wWLFjAG2+8Qdu2bcOOVEpVNNBm5dwWaSwrgQbBml605sBm59w2AOfcO8653+C/97wYv0a2x8csC9YOn2JXA+0OvBy1qXg9/kvpEfi15djLw+VMeh2wk10fFBLRFVgNdHfOvRhsfl5VRuY5zrlfAU3wA4bOACcFSmMAABFRSURBVP4cdf8M51wufhn+Cb+5fHglckiW6NGjB8ccc0zcupkzZ/Lhhx+mIZFIatWrV4/OnTtz1113sWzZMubMmcNpp50WdqwyVcV3oM3M7OSo70APBjqwawDOP/AN6lLgf4MaC67vdpZU59wWYJaZHUPF+3NuJ1hrS8BMYKCZnQ90wn8nG5nfJjN7FzjSOTc6welFHvcecIWZ3ZfgZtz6QElMbY8K5vEDfrN2J/zaauz9q4EpZnYxcHSi2SV71KhRg7Fjx9KlS5cK65xzDB06lDlz5qQpmUjlmRl169alXr16NGjQgObNm3PAAQfQunVr2rVrx7HHHkteXh5169YNO2pCqqKBrgEeMbPh+N0qRuM34U4HcM7928yeAO4LRtt+AfQF2gLXApjZefjRpM/jN7f+F3A1fiRqeT4DLjKzLvhNot8658ocjuicKzazL4DCIOPsmJJB+AFDO/EjYH8EDsaPlB3qnPu/cjLcArwBvGxmhfjdTk7CD3uOnQfA60B/M5sMzAJOBn4fXWBmVwfTeAX4Fjgc6MauDx+j8CNy5+OX/fH4DwWJH3VZsspFF13EiSeeyLvvljteDoCXXnqJv//97/zqV79KU7KqkZvrhxkUFxeHnEQqo1WrVixdujTsGKGqik24X+M3I47Er+ltwI9KjT4KcF9gBn4z4wv4XV/Od85F1kC/wK+ljsePvr0d30AqOjDo/UHtw/i13Hinc3gSv7l1Vuz3sUGO04Cm+N1nZuGb6jL8d7Vlcs69CZyJ38/10WAendg1MCi2/iXgZvz3sC8GtefHlH0c5LgreH7D8LsB3Rzc/w/82uYDwKv4DyEjAR2WphqrzifdXrRoEYsWLQo7hkilVcmRiJxzfwXKPW140LD6BZey7l+M36Rb0Txax1xfw679OaNvzy/n8cPwzai86b8H/KaiDOU8bgG++ZZ133SCNfGo227Hf0CIZlH3v4Nf8y1vfrPZfQ1aqrn8/HzOPvtsXn311Qrr3nrrLebMmcN555X7EhKRKpJNx8IV2asletLtIUOGaFSrSBqogYpkiQ4dOnDppRVuqAHg448/5oknnkhDIpG92x41UOdcL+dcXlWFEZGKjR07VifdFskQWgMVySJHHHFEQmef+PLLL3nwwbIODy0iVUUNVCTLjBgxgnr14u8CPWbMGDZvjj0AWObp27cvffv2DTuGSKWpgYpkmZYtW3L99dfHrVu5ciX33ntv3LqwFRYWUlhYGHYMkUpTAxXJQoMHD6ZRo0Zx62677TbWr1+fhkQiex81UJEs1KRJEwYOHBi3bv369dx2221pSJS84uJiHYVIspIaqEiWuvHGG2nWrKxzOZR27733smrVbucsyBh5eXnk5Wkwv2QfNVCRLNWgQQOGDh0at27z5s2MGTMmDYlE9i5qoCJZ7JprrqFVq1Zx66ZOncqSJUvSkEhk76EGKpLF6tSpw8iRI+PWlZSUZPVJt0UykRqoSJa74oorOPro+KeDfeKJJ/j444/TkEhk76AGKpLlIifdjmfnzp0JfWcqIolRAxWpBrp27covf/nLuHWzZ+tMeCJVRQ1UpJoYP3582BGSUlRURFFRUdgxRCpNDVSkmjj99NM544wzwo5Rabm5ueTm5oYdQ6TS1EBFqpEJEyaEHUFkr6EGKlKN5OXlcckll4Qdo1IKCgooKCgIO4ZIpamBilQzY8eOpWbNmmHHSNjUqVOZOnVq2DFEKk0NVKSaadu2LT179gw7hki1pwYqUg2NHDmSunXrhh1DpFpTAxWphg466CCuu+66sGOIVGtqoCLV1JAhQ2jYsGHYMUSqLTVQkWoqJyeHAQMGhB1DpNqqFXYAEUmdm266ib/85S+sXr067Cjl6tChQ9gRUqp9+/aMGDEibl1+fn7qw0iVMudc2BkkDfLy8pwOlyYiiUjkFHn77bcf/fv3T32YkJlZsXMur6z7tAYqIiKlJNJARd+BioiIJEUNVERCZWaYWdgxRCpNDVRERCQJaqAiIiJJUAMVERFJghqoiIhIEtRARUREkqAGKiIikgQdSEFEQjVlypSwI4gkRQ1UREJVUFAQdgSRpGgTroiISBLUQEUkVIWFhRQWFoYdQ6TSdDaWvYTOxiKZKnIYP70XSSaq6GwsWgMVERFJghqoiIhIEtRARUREkqAGKiIikgQ1UBERkSSogYqIiCRBu7HsJcxsNfB12DmqkRxgTdghRMqh12fVaeWca1rWHWqgIkkws6Ly9g0TCZten+mhTbgiIiJJUAMVERFJghqoSHJ08FbJZHp9poG+AxUREUmC1kBFRESSoAYqIiKSBDVQyUhm1sDMnJn1irptqZndUYlpdDSzkVWcq8jMplflNNPBzJqZ2Ugzax1ze36wnI8JJ1n202s1PjNrHSyj86NuG2Rm+WXUOjO7Ia0Bk6QGKtmkK3BvJeo7AiNSlCXbNMMvi9Yxty8CTgK+THegak6v1dJW4l9nC6NuGwTkl1F7EvB0GjLtsVphB5DqyczqO+e2VOU0nXMfVOX0BJxzG4B3w84RJr1WU885t40EX2fOuax5PWoNVCpkZtODTUFdzOwzM9tqZgvN7OiYOmdmN5nZ5OCwgf+Muu+iYBpbzWyVmd1uZrVjHn+Jmf2fmW0xszeBtmVk2W2zmJmdZmbzzGyjmf1gZvPN7Phgc9qfo7I5M5sf9bhjzGyOmf0YXJ42sxYx0z7GzN4Kcv/bzC5McJktNbM7zOxGM1tuZuvMbKaZ7RdTt7+ZTTGz/wTzeNvMfhlT0zh47CYz+9bMbg6mvTSq5gAze9jMlgTL7//MbKyZ1Qnubx3195gXWR7BfaU24ZrZAjN7qozndIeZfWNmFlyvF/wdl5nZNjP7yMzOTWT5pIpeq3v0Wh0ePN+NZvaYmf0ipq6NmT1vZhuCDLPM7LCYmj5m9kmwXNYEr6V2wX2lNuEGr98mwIio55wftQxuCH4fFeSqETOv84O6w6JuuyqY/zYz+9rMBiWyDPaIc04XXcq9ANOB1cASoAdwMf4NZxlQL6rO4TfTPAn8Bjg3uP23wE/A/cBZwLXAeuCOqMd2AHbgN9ucAwwM5ueAXlF1S2Melw+UAK8BlwTzHQOcDzQF7gimcWJwOTp43GHAD8DfgC7BYz8F/sGuXbvqAyuAj4Ln3CPI9B0wPc4yWwp8A8wGzgUKgI3A/VE1dfGbT5cAVwTZXwB+BFpE1b0AfA9cFTyvvwXLfmlUzbHBc+0CdAL6BtmnRM3rd8GyuC6yPKKWoQOOCa5fC2wG9o2avuGPoxy97GcHy+La4O/6YPA3bK/Xata9VlcAC4AL8K/V9cDTMa/VJcBioHuQ4V/B4/YPak4Lnt/g4LleCEwATg7ubx08v/OD68cH83kw6jk3ivr73BD8flRwvXNM7v8FiqKu/ymY/zjgTOAWYFtkOil7zYX1YtclOy7Bm5KL/CMEt7UK3kSuibrNAR/EPDbyxjst5vbewBagSXD9qeBNwaJqhibwpvQOUBT9uJj53AC4Mm5/JHgzqBN12+H4N8/zguvXBf+QLaNqTgkyTY+zzJbiv1OsFXXbZGBV1PU+wHbg8KjbagWPmxRcPyaYX7eomvr4g4QvrWD+tfANc2vkOUZNKz+mNp/SDbRp8Le9LKrmpKAmL7j+6+B6p5hpvUnUG69eq1nzWl0LNIi6rQewEzgquH5NsAwPiappGbx+BwfXBwLFFcynNVENNLhtDTCyjNqfG2hw/SPggajrdfEfKgYG1xvhP6COiJnOaGAVUDNVrzltwpVEfOeceztyxTn3NVCMH/gQbU7M9SOAg4GnzKxW5ALMBerh39QJpvOiC171gb9WFMjM9gV+CcyIeVwizgCeA3ZGZfoK/2YSOQB3R/wbwvLIg5xzb+E/1SdinnNuR9T1T4Fmkc2qQYZi4KuoDODXBCIZIj9nRWXYArwRPSPz+pvZp2a2Bf9m+hj+jebgBPNGpr8a//fpHnVzd+BL51xRVPZVwFsxf9e/RWUOi16rVPq1+rpzbmPU9b/iP1CcEDX9Rc65JVHTXw68BZwa3PQhcLyZ3R1sqq5D1XkSuCTqf+QcoCH+wwz4D3j7Ak+X8bdrjm/2KaEGKoko6x/xO+CAmNv+E3M9J/j5Ev5NPXL5Krj9oOBnizLmEe+fvzH+n3xlnLqy5AA3x2QqAQ6JkymRXBHrY65vx+eNvLHk4DdbxWa4MibDj865rTHTWh1zvT9wJ/6N9iL8G971wX31EswbbSZwjpk1Cr576oZ/E4vICbLFZh8ZlT0seq0mnqvMuuBD2kZ2LbMD2H15Edy2f/CYN/Cv3dOA+cAaM7s/+PCwp2bil8PpwfXuwDvOuW+C65G/3SeUXkbzgttT9prUKFxJRLNybvsk5rbYT9drg58FQFmjEiNvTqvKmEdZ84y2Dr+ZKfaNMRFr8c3mwTLui5xDcRVlDA5JIFdlMhThv2eLtS0qQ0MzqxfTRGPPTdgNv+l0aOSG2IEzlfQc8D/4Zvw1cCClG+ha/PdfXfZgHqmi12riucqsM7P6QAN2NfyVQLsyHtecXcsN59wMYIaZNcV/F3s3sAH/fWTSnHNLzKwI6G5mC/Hf1Q6JKolkOJ+yG/3iPZl/RdRAJRHNzOzkyKYxMzsYP5hiWpzHLca/0bZ2zk2toO4fwIVmNjhqE9fFFU3YObfJzN4DrjCz+8rZNLY9yBvbgP6G3yRXXMEmtX8APcysZWTTmJmdQtU10L/hB6p845wrb00hssn0QoLNVcGb25n4wUYR9dnVdCN6xFzfHvyMu0bqnFtnZq/hP+l/DfzbOfdxTPYBwEbn3Gfxppdmeq1S6dfqmWbWIGoz7sX4DxiR118kexvn3FfB9P8LOBm/1SH2+a4GppjZxUBFH+S2k/gWkpn475rn4l/v0fuJvoP/nvpA51zspvmUUgOVRKwBHjGz4fgX6miCEX4VPcg5t9PMBgSPbQS8jP+nOQS/9nKpc24zcBv+n/QpM3sI/4bRJ4Fct+C/D3zZzAqBTfjvQ4qcc7OByJv7H81sLrDBObcY/0//PjDHzB4Ont9/4RvTdOfcfPwb7rCgZiT+n3YMuz7176n/xQ/OmG9+d4cl+GH9HfGDje52zv3LzGYB/2NmDfFrGjfhR8nujJrW68D/C96kv8Q3z1K7GOBHBW8BeprZD0BJ1HeaZXkSeBg/WOO+mPteB14FXjez2/Brd42A9vjRroMrsRyqml6rlX+tbgkeOwm/ljwJeM4592lw/3T8ZuSXzexW/ACmkcH0p4Df3QS/OXd+cPvx+BHhFa19fgacZ2av4DcZL3bO/VhO7VNBrknAm865nzeHO+fWB8/7HjNrhR/MVgP/vXZn51zXBJdD5aVqdJIu1eOC/+cpwn8q/T/8ms5bBKM2o+pKjZyLue8c4O/4N40N+AEHYyk9SrUb8AV+5OhC/ACGCkc2Brd1Cv5hNuO/d5xHsCsF/nun24Fv8Q1nftTj2gLP4Df/bAnmPYXSIxmPA94OnvNi/BtpEYmNbIzN2St4PtGjHX8B3IPfzWI7sBw/gOOUqJr98c1sE37z1K3AVODDqJoG+DfRtcHlQfzmrJ9H1wZ1PYK/4XaCEZ/EjMKNqm0YLFMHHFnGc6wLjAqW23Z8c3+FYGSoXqtZ9Vq9E98Q/xM87yeA/WLqDgGex2/52IjfjSl6BHlkF6vVwXJZjG+ekV1tWrP7KNxc/MEVNhE1Qry8v0+wrB1wdTnP5ff4AWNb8JvN3wNuSuVrTqczkwqZP5bmMc65sEdXChCMLvwX8J5zrmfYeTKJXquVFxzQ4Bnn3MCws2QjbcIVyWBm1g0/iOef+M2kffH7AV4RZi4RUQMVyXSb8LsHHAbUxDfSC5xz74eaSkS0CVdERCQZOpCCiIhIEtRARUREkqAGKiIikgQ1UBERkSSogYqIiCTh/wNrc51AkU46IwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_binary_confusion_matrix()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Most frequent class:\n", "[[403 0]\n", " [ 47 0]]\n", "\n", "Dummy model:\n", "[[362 41]\n", " [ 45 2]]\n", "\n", "Decision tree:\n", "[[390 13]\n", " [ 24 23]]\n", "\n", "Logistic Regression\n", "[[402 1]\n", " [ 6 41]]\n" ] } ], "source": [ "print(\"Most frequent class:\")\n", "print(confusion_matrix(y_test, pred_most_frequent))\n", "print(\"\\nDummy model:\")\n", "print(confusion_matrix(y_test, pred_dummy))\n", "print(\"\\nDecision tree:\")\n", "print(confusion_matrix(y_test, pred_tree))\n", "print(\"\\nLogistic Regression\")\n", "print(confusion_matrix(y_test, pred_logreg))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Relation to accuracy\n", "\\begin{equation}\n", "\\text{Accuracy} = \\frac{\\text{TP} + \\text{TN}}{\\text{TP} + \\text{TN} + \\text{FP} + \\text{FN}}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Precision, recall and f-score\n", "\\begin{equation}\n", "\\text{Precision} = \\frac{\\text{TP}}{\\text{TP} + \\text{FP}}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": { "hide_input": false }, "source": [ "\\begin{equation}\n", "\\text{Recall} = \\frac{\\text{TP}}{\\text{TP} + \\text{FN}}\n", "\\end{equation}\n", "\\begin{equation}\n", "\\text{F} = 2 \\cdot \\frac{\\text{precision} \\cdot \\text{recall}}{\\text{precision} + \\text{recall}}\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f1 score most frequent: 0.00\n", "f1 score dummy: 0.04\n", "f1 score tree: 0.55\n", "f1 score logistic regression: 0.92\n" ] } ], "source": [ "from sklearn.metrics import f1_score\n", "print(\"f1 score most frequent: {:.2f}\".format(\n", " f1_score(y_test, pred_most_frequent)))\n", "print(\"f1 score dummy: {:.2f}\".format(f1_score(y_test, pred_dummy)))\n", "print(\"f1 score tree: {:.2f}\".format(f1_score(y_test, pred_tree)))\n", "print(\"f1 score logistic regression: {:.2f}\".format(\n", " f1_score(y_test, pred_logreg)))" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " not nine 0.90 1.00 0.94 403\n", " nine 0.00 0.00 0.00 47\n", "\n", " accuracy 0.90 450\n", " macro avg 0.45 0.50 0.47 450\n", "weighted avg 0.80 0.90 0.85 450\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\users\\t3kci\\checkout\\scikit-learn\\sklearn\\metrics\\_classification.py:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", " _warn_prf(average, modifier, msg_start, len(result))\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "print(classification_report(y_test, pred_most_frequent,\n", " target_names=[\"not nine\", \"nine\"]))" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " not nine 0.89 0.90 0.89 403\n", " nine 0.05 0.04 0.04 47\n", "\n", " accuracy 0.81 450\n", " macro avg 0.47 0.47 0.47 450\n", "weighted avg 0.80 0.81 0.81 450\n", "\n" ] } ], "source": [ "print(classification_report(y_test, pred_dummy,\n", " target_names=[\"not nine\", \"nine\"]))" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " not nine 0.99 1.00 0.99 403\n", " nine 0.98 0.87 0.92 47\n", "\n", " accuracy 0.98 450\n", " macro avg 0.98 0.93 0.96 450\n", "weighted avg 0.98 0.98 0.98 450\n", "\n" ] } ], "source": [ "print(classification_report(y_test, pred_logreg,\n", " target_names=[\"not nine\", \"nine\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Taking uncertainty into account" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "X, y = make_blobs(n_samples=(400, 50), cluster_std=[7.0, 2],\n", " random_state=22)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n", "svc = SVC(gamma=.05).fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDg1NC45IDUxMC4zOCBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUiAvVHlwZSAvUGFnZQo+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzNvU3vLMtx5rf/f4pe2ovTrKp8qcylNBoLNuCFLAKzMAxDIDkUiXsoSKRnvr6fX1R3VWZWVNeheDVDSgTvjVMnO1/iPSOenB+///rF38yP3/7xMT1+r//+98f//fh/9L+/fsyPv3/84u9+899+96vf/F9//7ePX/3xaxL9+1dJ8Vn1Tz+9/inN0zMU/et0/OM/f3394Uuj6rO/10C//frSn6yPJa7POq3LGjTOkvKzrDmuc0v/qaXHmJ6J8exv7/+m0f/r178++iEX++tLzM+ZvzylUpbHXNdnfv3hsj7+7TeP//L4w+MXf7NsC56+pmd+/0d//FvN9ff677EJ0zNNc83TWmLQUtiB4a98/asWCn1+lPTMdZ3WOSR9HaflqUWs65zXVB+/+v74xf85Pf7uX/bPa32mWIq+Xh/f6vzMS1pjWhft4PnjbzE+S0ipaLElaKefdc0hLmkq3tjf1ue0rnGZ66JNeca5LHMIdQ7Ot3PUn8clTnHO+pvlOc+xxlTi6g2c0nOZal5CLDU+vmUtYk611DkGb3CNtiwhxClM9aF/fOagecWgH3S+DvmpSaaalinkx7cQ9K/TWkuuU/ImMz2jxpvnWubl8W2en9MUtMy6LrO30PrUSS52chpdG1qWuq5rWt3Bl/kZgnhc65x1Qml9Jn2b15Jz9L7XbGNYYy4x1ZUfK2leJ62leicUp+ekLQ7zFJIWLrmZtNYqDnDHfpa51KXov0lTeeoAqhhM/O19Xcpzqpp1mqZYtS9FXFzEWFOI3hlVdqJOWpmmKxF61hJL1mL9TQ/Tc9EJLrmkaX3kKKYvIhSfExed0VyT1lnhlzk95zCVOU7r5M2FD6aSliR2rIFDijoC/e3ZPSSdkU4zlSln7XJ8pqDJzPOk83XZZZrytIhhxB/fdEB5XkIuYjCPF+Nz0hZrrsaL6RmjRHVZqyvM30J9TinGWJG7R33GZU0hTfVCmhNTDWIOcYtYLTxnbaC0V5o93hKzpBzEtXnVn3/TESVtX57LlLyFzlOUFtSRFu08e7o8J2kAqcTgbsyiA53jPAebjOZWgzZ0mrMrRt/yKsFYc81BsvmYUfpSelLPsbiCsUgnRy131mawU7M2Z5IkVRGc7/MTcU5SKihGCXVJCCF6wR09PaURQ07SHBnFp12Ji6zI7DFMXJ4aOczLJPaFvdYQJgliTd7UF1T4UhdJtHikamPExEuRSnenIo0uNTojHOs2dW3iHOZZO+lxmMYrIa5iSc1V21KyxEjM685lnZ+yYUy+THamVSZAMg5HuvtSnnmWFGsB4TEHyckqLSymdM9Ic12KRFT/gcPKM/I74pfqMYwsr8zJqm/DitKegpS85pG984zlKd6rk9SRZFirlI6UYp2qtyffqmYqPyLFWlNCvtMiWyFGj54gSdNJRpOsnCTDbNcySdeV2deL+bks2pIspS+Vq/2QPY3B3T9p87Wu0uCSaOnQRTwviystuSRXKLTbifPDfj2kIucVO1Szz7QrM5FdnDRgsH+dpJNWM+meQGOjq3ZF1kt7KF2zrFF+g6TEN0XxKWnPi8RsiWZqJK2TWMV3AFadCdpIqgsL/yxiLP1ccHXR8jSjOEnginGZXKsiayAfw/1aEoC+1S9LUmVkpNlLdTWuDltaMEmQZVCkZrSJ05IXbenqmgp2OZeQpUOn+EjLc5bN0qanydtDuZVJ5x1ljld0qEyknBLss8sr2vEk05BW2TZZcw3OXka8SZdt5YZq5lLgk6ymdlxaKMsjja6Vm6cJMZBvKfdvMcUxycuJ8k18FSrr+QzyySQLSSN+C+L0IHMk58e1APLMpVXKYvrnIddFOxSKFNfsGkY5dTIW4gHJQ8FOinHlVMkz8RY769Cl8TevT4pJ/nqUy6CzWF23i53EEw5V2uJbkYDLv09SdMm1jVJaOkkpNq024TLI+OH6aHuqO75+YKmsTTYu4nhhySQZMqcu20j2ckyY0smcKRkbMY0O1zVG0kZJhykef0RYSApA1rJ4OgPfRV6CYoClPMLCtuiQZQ2u2Ff7opHxzMXucglw7/PkGpeoZYm/5OAuHBHcXqX5pJJ8D0OjS0HUginV3+aA16zhZ1ftagu1fau4cVUMgEmVGltriK4R5UhkvCU/cVMCOARyGaKExWMYtq3UpCPC5sqQiQ2l/+fJnXki0jFPq+gAK9ZDo0fO33WlMD8VnZJmzJ7isyLuVGhUvLlU7XqUf4k5SuY9zKmEkiVN7ilpPO1aXOVjaPKw5hqQQ9991WSCbCEh0VxRrFEaL0pHTa5Y4wYqtJylzfGM5GBIH+kHpKpdh2F5yhcRD/B3HhLaJB8saR3uxuQg90I+qIaX7QwKCHPFbXSlYkImQpK5IsAI5uHJsuY5eMyohck4ykUM6NI5E2RnfV5dJz0S9SnyylkSinbJ4jNFHKtrX8zjWyUzis6kL6T3dDISisWbNiaAT3HUt0hHak6KSZbMZVzcP3nmktEoxwYlP80wsXbU1XTaYakRKdlKbkE2mz3Ks291M44t5k1iEOxwF3hBzqYbpsnpV0QmeazEi0UnkDDqRPiuWBDpBEmQOIYDkF8kd1qG1VdbQT7TItd12kJXRQty/ubshpc6bjlY60o0/Mjy1mfcUnnnvkRUHG7pxGzufKqW9ZChm909jFL/+OZSXpUgXYZynfBLk7tOudyK0LTHk+wFeyQHVmZU7rzrdklZaGkSNv3fglUnKsr2d1xTYWGXjlQxqA5M3r0iNC3XDdEJs3Q6sG3Ey1W8q4PVHvqyXBQ2Ff0nL8SLaAKFXzLrwdWhGk9LlCJMaDmJkA5AkSxrv4hyMpmkSPKhynBoLpqWryYUA4nnonz99UF6bJ6ywmfXOONzzdL5ucZNNpN0o87LV57fVrkGRdIlRgnMSjZuUpQrJVNc04zEyFpWedwP8Y1sV5gwM65TrNOpsocaWbGEdlDiVOVOyTS7cWjEx5FelqMqm5XEKVqmfOjo6lpTDfK5KykaS+5g8eVXyFT4XgjHGWQy0Z541GHBBUwXARQqU/uIyy87hfHn6Iu/VPGKuCIlZh4eWBhYRefk8rj57zLI0g4hPRLujbZR+tM7fEWFiuU1VibyTyQWMh707CdzpKTiLENPxK95hY2HtdLi2eZVbgKOodYo+Znxv6W9FML4npyclCCtIKOy7bk0v8KQRafqMrki4LrIWCnkigFenOUzTJq6b980FzkdSX+BPIF8Uom2ou8VD8YZXNG1NJDMvgIuMmKyi7IyxV2njm81H0EsEx/odX2aLOflnr2cMaIxzfSVhwzSKMsiI+R9L8NM3lbqOeP4lahNj8skY+GzovSQlIPiZf2lIIEWz8tqVT8HoXhMEYgGR71KrxORyD66mRZcYSltiaf8Mcu1VYuldGKuiyDNNkuPryU/FIDIlQxk5i6yhASGk3RnsaSSvHLZIjG5XBb3eBYC4kVDV6lXKTAdLHrCHVzHp2BLLCpdZMkxHHJS1n6srVhJZ1exIdl01oS+03n6prPin+h7zAj5JHnzVYGZvARPf1oWEQUozSImk1OrLVyz6zZ9k8VXXC3PdNYizf+XrtO3bt4ER0n2ScYPz1P/FuQb4v37e4L+kesjgZzIy8tVJD/DOlymSjoflMiCzjTvsBBr+36q/KRVYbaprIficukWLaLC7V5wKyNM7rFIvMzl0kmS7Vvck5fTK08mTXEJ+Af6fJXhXNf1IomrlWmgmBV+yCwUKdqCVim+TxY3fbgiixbGi8m4FJl9Xpk35ycXHVF6aIvk/sm/WN0guyhMWog1ZF9Xsnl4xNIUyZVM8nHSCTPuPq6ntkne+Yxb5mfC5VjJ/dBWZ2w+ZxDI4WV5CH7cLN+2klIg/kDfSfoURfnGU7sY9bVCfpncx5ItOsjEIb4MyVyKESOOnGUXIkZCCsz1bDO+rJYp12ctdmLrlLI0uZ9+/rbKdi9c+8jAFYyMJqX5rK6jtSDuhTySzI55JJN4Jyuoc1OVKGc5vgvqec3bxRi5yuL6kzkSgaWigyxSeKgUxZ5+cIBe1sgTaUGybPKkuDWZpcl9VsTOV4U2paD2iaHmVQId3cgGsZHCnMlVbjcE64qplQJ2J0OybOWiMkiEuRq1LVmLr4hWcfbmIMqiaGwFNYpUdUauQBdmmkkIyrMN3A8lcosyFl7qSZpHPLvY/aNlE6P8Ggv5XC6fucOTZ2Y26lsSJ1ZSRXG9yN6Q+cqT9li/TtZNEiU9FFzxl4OAbZXSzLir4ixZziL7mVY/gS/Dw62MpGiu5tKLb6RaWLxntOSUY7M0vn6ea7SkwEkE342Tq0WWYilLWbdbOcXxRCKuXpQq4h5h4n6rWjZUUqETluvvbmRZn+Q2J41fMbj4dTqj1c9Xa7Jy28iacy7fLPFQTUzcCN5shXyJ1XImmWR0Ltwo+UEZZQAYxRSW7fJSHDGR47hy5DJp+FrDwk0FzmeU7XINV04k4lcJpRQzMQCXqGFN9UL68dvJ3EtvRtPv4kq86cXP30z4CmQnQrRAKsDnJE5dfpGKnrLmyi+8wqFst4tT8FaaUUWysVJAsi5SGNpACanshXsrJ0eFSoKQ5IpsoSupx+XqYl7ec5a2lwUiQUjYHRQG4J247CXRkQup1ck66nN5AEUWFc/evWhdn5bilTgo5pRg6MhkUVc/zpZ1y7Lq+huRVMHmnYv1K2kxlx11LhK5WdFkeXmL8tVlDWrwj1UuNOmHSTu0sJaJhB6XY/50ql38yEuUy4jY6m9JE2f/PgQG14nL1k2Svs29lz4zU++mLLJpIY0Z7ZxiUYgjA+n63ImSEtLZWttrbJ2Z5E5M7CeJ5CnoTBZS7eSrpiKlIB/QlTx9rt/WWEQ5UmYyoVHTLr7crWS/ZlKrOBjiZcyRAg2XHQnmZF60TDEkghdxR+QULK5oSNsVSXyMmQCBC0XKT6R63TREtKBWPmaW7/TNrt7JFFzkq8walol4TJtH2h2HUAFbdVPEiRsBuR+Z8PwhPSn3Ts6sxvf9rqfFLDIZMW5+WuDyTGbavbXCkGs82dLZvOPnQsGInLrJDwHQpSRkuJ0hC5Q0F4Xf2XUatOkK31aqG4ig5Z4oxNR/ZNT8SHQl46KoQRFRIHAt2RxSKXZvdO0zpRzyMWs1KZHlldQm/8JipqZlkQOykE8idaRdEj9EP6Rj5ygJkCVPDM8dhE5YentxE/86F0VHil4kyugbNN8kIXS9DNt1Eom4rJt3jFaVXEy+f0RaUcpQhlyOX1CMJ29Hmrhc+NLT8rQse5jwp/A64M2Vmg7fVuuHyS5RhiLviqsXElnutstl1XmvckjJ3OO3y+XIXL/5zjeBhVYqH0zSIPuoE+W2dXJNNcKgz5eASmFiGprzij6zS+qeeIIYmkL2SC7+WjUZP8gUR8kU6kgVVeQtyJdMK+CoV/tIGk37QjVB3XL73LiSvHYLXRSWiKM0I+26gg5iBjm80eUBuRQWQSf5g+Y7ciFSAqnJ1Z2N4oy5ymBPxDBUOCx24eoyr5x1orlJTkt5lKoTlaeuqMEfmaIlmX1i5MVkXEeQZAb8wg+deJVQi9MTaeiFi4KV6oGL2gKduRx1OeiK7V/GbxHjJq6j/dng8yrEJbW8XRNxWZBdC4NPlKzGhcvi7U6k6MDEjK5Y2yUL+m1eSZ3CvsTiimX1C25CktowLmTtxsUud3Rk0n5ulUsinqcATKaGi8hM1ka63c+6ykfCheL6YSsuk5mMVhbj+/ezbJhmQznSJlhFjm28klPuByT2SWf5it8mCtny5KfouXSRr7hkKiOluWW8SinTxc0FDhj+SixrSnYKkTI5HZU7GSZLDVW0ipGZhc7xMiNJZlb8PZMk5JpDCkY+Q3UnzgWOxpI0zFYYwVVxpPymujbG1JVmLYdaFqaQApFHqoX4ZTFZ3IHZtxs2eKeudg2V3asLzTWHHJZJynOLelEt6HW3cEGuLTbFCi3k4yxYbtldRT5+BGbWsWYZGC7on4jgzPe+HtUfTbhek1nKuuJ0KepxLwoDd31io4jtJFhjlSgQ1158KyQZNRdy5zNXbon6SEWO7glxvy5pJqlMLjVZrRGcXlx/VPbFlpnlz8nFUKgvU4dz6u44qR05aRhT+JBbl6mQakh+3MCREK1jkdgXeQ8Y6dlllnWhxM3UvezPlqLH3LhHL0skcYyIz2YqFEBKgQb/hqZqMJLyE/dxOBekvXXw1Re3kmzesrNkJUlSkFyWwnUVSxanSBsqokDAvlnlUiJrUFzFImYhNqtcjmRywpjbRCbImwvVFQFXZ7EkgxSkmIVMjbsvVE9OlNpIIWZLvSlGl5EOl9lu8r5VS40mb3L/pcujX7ekQEcsTkpxttu6pGCQBOhFHd8ilSJZr1y4UKvNxKUJ3GKYzM09TBhl5rhZos5FEy9+zmAm6MIno+zYQu/MHbM4xzf9OBJalZxETD8FVZyX3XG7xfakw1cu/yRBOn3CIk1o9ZPjsrDUTmqx4t4H1U4K8ePsVxWSEKvUWcpgJnZUnlQ0m3WRMkCMubWcN9MuDzniormXLiuxatYy18w1ZCHslRCtV7cuMircJxQZwEisOVMNPRHQeIwYKMaWccvUfEbp3sUs8+yKUJDbSrk8N3iWSJWPkOtEGaO7UHlYiv10ntLHVtRLNQTZ9wsXh+iTFHHVxArX/mLM2eXaiB+nkTRRq1YJ1GavBOv+4HLHpEkW7sDL5suzp9IFfi1f0MzDNAV6NxBQfS6nAU3hnSj56BAnLn6lp/ABMkXjq389Rzg/cxuymUOdrvw6Yh739LkyxZmnWk1aTttifprUkn+BKraVnuLS0m66KKSSu6Lwy9e4VaNTx0ciJ1nxBJFoyVIAzueFu2Q8WukesgUEGLS2+DnjsN3SKITLyWpGFLPOheYJj7eK1eXI1ZMyIcUn/UYC2PcpZmKgWR6fzHi1sRdu9zS+ayhwaOWgZvL61TJdadZhySj6tZAkcCQ0RKqRe07NJGnb/fIzmeYkG0SOBucJJ62SVPOdPqlj2T8dR6S0iT2sVGfIcLj1sHI4rZRNrraFcoq8A7zoOizU1a/ES1TmJopXJMhlzhRxu6w1I/wLxU/zVvLFlai1L/g1fwQhpm5pZ6p2ibri73haS0qOKEv6vtpUZAgzrpl7207SX4pnpn5QXgJ8W9EaXGD419bPmUIshRFLtrurknTC83SR/KNOXhENlwTbdaQ0NP0znYT+w9c/PP7ynrL5a6JebbWdXB7dv1h7WdNaZq1xnz5vWsuoidViZbWkwuojyO+m1SlSjvI6gHlktMS1JA1o1vhCWSE9Os7H33A/ZY0CNePyTsgwydrENwv3IxPuaf9odXlYdckkjqtvnhkHxs7KGZIqlxmt+F6K2N9Obj/wTM0agYWVTk5PmVSYZueweeR2KlBlCRcr/KKiZuV6bZ3dNUoyI4WWlLlZxbviikgGKDpfU+3NfWWmKDRS1UfEkrM3b7uYJUVf4MDtXo+NzuseP49HI79GgizvfbEupGC5ov0Gaxh92qohrRwTDhEPypLld+Tfjw2XyFmk9nVBN5G2rMvRD9V9TScfTUELBpo4fp0p8Fj3C4N+JjgT9MokEpeat8K0ipF+e8SnXckzxXUEuVwgKbCduClx2dWuRq1FIZpnLwmV1svvdrXTllSuni21+dr/YFdXs7+FVPtwQZQpEiXQ5p6OvhlveGpi6MsMtKFtOYXJ6oT2iPU0m0il7CYRiivIn4pVqjc4ddYaTYZLbgJtNOJBzS0Hb+I4FgnzbBfXiQKaYLV0PhvK9BTSlRiT1eL/SpudK5iVsF2mm4LTbUML6a69bGUYmuCKmphMCJIJvIrc+tXlWDw5AjdxxtZJpI8XuguyOxP4REZCEaRsuYQ00JhFgOOJpeaRyCHLWGwXLYEWpD1cGUYmgCQ9KYs2v9o55X3SeeZ9zxUEJTMLRcpUi+FPrNnXmBVTK+NAToAMF86k1aG4qkobIls14YjjZVHPQQ2xuyGUPi0y20R8m/QrKkrTElx+0qIKLUrBgjDpTOmKSkWpKwh0BVHiLefZ6lHkskiOyl6vcDp1KR75a4u5WTOBiiWWi6d60K9B7kHESybbLo6ZSr1g7CqNSZ0MjbUkwiZsqeJldyJy8KjVxJNEY7InpFki94MXMkZJgL6Qcqfshtt8WmHa0Td7/zLby+P/oApT1nk6db2fO9f7bvSvf7xoZf/utrLr8x/vhX9//PrblyNOzP/htK8/fvv1t798/OJ/w24/fvlfvypZLRKmFpRF+boa4pe//vpf/vRv//S7P/zuD799/Pqf/vRP/+vjl79//OdfvpEBtkb+Hh1gb+yXvFrrSE79kpKC7IUS/tQvqaHvK2jG6Jv8OaL9D3HA6r/TOQtfto5xd8az/tfHEex++lWxEV1h9mkt9r9w1v8OZz3+4eeb9vK14RSMoAPnpfw5OAVSFhL9OikMmeWQhypNII1U6b17KbCly50oOKNmarYYiEzaJG+k5D0OWXotM5PylW5WYLtljQKdQnm35v3nMieYFqo9Fmssl43bk8nLYFkI+spsPvA3RV6BHGgOxR1YzB3oIqdvcrs7lVGSU7y8jdzS613ZnHnmFiY9iDDpnSYMcacSSNvMXAgt3G6TGimV2PZd699PRS6CHJTZWn1NgZG70GYv7uczW4bxkRm1HuVE5CzjX72pcG2rU7ebShyzZDAEiSx4cvclcK1m4ADyoKwufqGzTu7A4q10fdJ1nAs92zj8iv7p+FzchSq2luYVI07msaTAPWXJs8sohXrvRBNjTVtnyGz1AdQWOt8X4ySqM2kcozBiK0bYgSf60ReagRVRirvyQkki6SS6q983eOOeywUSg5jXbpdgVmmzxuqJhH1A74Cc1FC2EqYFRpuyN7oiea1KERjJcpxhmrxJtbgzp6IxUUm6FCvLUJhrtf/e6UjW5EhEgnIrtps4VkUHxeNxy9nO1Hgu5JtIbVQ6cXBcPUFe6Dkl1ihpc6C4m+V6bnLnosBHDrZ8fKaytYZoctSMeEoFQwa0B3WE5qzJI9LUtVCPyxfQMmgmqMgyHWWL3azl1ZWJrA/mwpGg4bjN1wblebWrOY9ZIqE3U1XctqWrxLSURM/e1nBXR5k9lThv3BG59Wn3FofRA7dU2sqlbG1H0oUz6XBX/IPcHZJ+Vf9HZdZTvnEu1qLjs5Y0D1VBs8LTQiOx3WlPxV1oxfomQFLsogrvIufthm319ZykZtUfcw2OI7ZSTMkNrbctWW4xqCaFaxJFlLQMyDO1ujJ3Y7QVM3AdCs+21IJcVzrsXRVtoVaVXFo3BAaAKI1sxOLNHQMIgItkPj62HDFSIiPnfExx5gSawsL9hGIp6uZpnHInUhRZF0wDbQV0HFfcbkrpPL2lLZ+QZSs4MrOFocgXJ1QszpYvtCwUCIEhlBeSLO750HJYKjbeYosE7ki2jhtPhSoam9JWgZ7wjKeJIq6lZPfjleBj4gJOHhn/Rsii31rdw6fUQ/FBTNTWWWUTreqwjm8TwbvYAHUSTshqVVeh2kKc0e1yQtONJLxAY5EyrWSHvMG14+Qq5F7R1CYuk+EQE4bi7SEVCdO8UiGxYlYWeuvAIPBYFgwhekEmbsvtkmOlCpF8rquI2GQaTRI5MJwhMk6RHl6PsSj3iorhiqyDJS7DhsiRXTshJwVPfp3kW0Ti4SWYqr7wEyp2fyK21t6ZXaf0kxP2Rq80EKR5O3L7y9X6kkFm8WVz5kpbATRMZZcoQco65ePuqV8qV+SZFij9LW6ixLfSt3IG3OGpbq2UndXlhVCg0S1X6PLizOUjTivFbRQShYX25LC4UmQbKWkPk11trDjjEz+V/cnIsQILSu62AvO65fBw6EJYva1EMqRW6H8nxCFBGDCTOBiuZASrZRPPZusjfq7SunV1jS4NXOxZQp1zL8aWgnHkOjnB3FTKO+S0yGmlgMDgybxdgXej9KECC+vHy8Td9O5RXeqrUJnDDOqJXScW80Ol0V37b8gh3KvhQCXrEadVfub//akroreGMPnnGNSwbvbfd8+sjjtzvWLoLWLGbB1Fs+u3Ur6HP7FZf5kxYBYW5uaq/8RNKN0WJCwflZo4YE2kJl120dqKNK72cjL3v1pjo/SGH4koOtOOg2kEohbOQ5B/J4Xua+kZrCmFbxOCke1Mw1Yh751R2NC1ABIr25WS9AVF7lczV7BIw6Y1Klo7BNVcyXUvxVAZXASpoGoQdamiyFbfh7L+pkmHamgdUtl0ts9zdFdJz49lN61QNZAzXBRkhr0UazQWia7HGmlqnc1Y4AWsrnNOMSg3frKK1frsMh0DGEbfCZEajYrzIjHUgwu9QDOh6/ZL+QM0hXu2JbrmWZJZ1urrFTy/PEtJ0ZK73Ylrq+mwXTxFYZXmlNagM4Gq4t9Q2q68pZWGIunYQO8uUboEtdCO4O44yGrUME+4cisNX8A9aBf9s5TVpJxF3puxlfxmKSQ8Ik/1P81uyzVHNinFoSsy1z0h2h8PCB06Eh2QLE+WKs90ttCl46qV9WmNbDOpy60KYYJ1aEbzBGImNE/gf4E5ZFAWsipW6el72ySd6U1YbM8n6zjWxriymeBbZJn2E7KiMzn8us4uI1rXFhXJbA5hAmEghVveRGg1oYOrUutGUTl30DQW+DmZZF0HCynutHV7RLmJtpG+208IIhVHiKpYF6gkemgvoif5Cit3TpVOg0JgFwwfzHVZycNwFYRv/gBoZEHY1uCqfa6ZVprHzO2b+KuADU6+ps1iLQrMV9TrdsWdKbBQqO66CU8g72g/IyVHcaCOkyZud5WEqHQxiVHg28A93izOXVfXpkSrI3hh4sRqZT4GIeC6txJOao0JO7ZKfAWMpEWqv1By89zZcj+RX7409cliZNeUU5Gc8A2n+WX5E01QAKd5U9eBUzS4ZYkn4HioKwnVVSx4kqlSAIrE6YfE65av8kQChDy55WBprVb7FkxA5r1p/2SAUCPceEaD1WJKlXIrNywvTy511w0DoNI/J0uUU3T3RA4Kl3YzvZ6bHRXjFC59XfdmoWQzzhLPpS7bbShIPYs7b9KDJB/jhtfIlaPCf+ug8kSCRl/r8zbMIPwExYglu+LD2QGkpMMA1yXJS5iCq09IYyhCpthp6+/gTt1Sf374ngooo1QA0iq3Arykz4GQ9DWtNdbO3IsHmo049BiSu0JFvRkFURJVBfqWumspMDcgs/I7yZY43OArrT9whaOS7xuIG2CqLPMta0GELw4p2XeuuV8oOdA4FrZidk1LPmp2Jw7KoiVr8Pe5+jT8x3CRoGaVmSvxyQKsLQlO/bO7JXJ5pTsKAA0bOgYNubkcrRE9c0uyqjUZlK2PmVLwRIO3GwEryMgABpOKF4NZKgyxcU+HqjQroZM/jddCmnKJdl/p5icz8TLFERaK0Qdm2SxXg8vHBNKM276tdlmCEG3iftaeFifa+spSqnmFdM1XPyuAi0QueiERXID4o0MCGXaNJo4ey+LOBmdLHgUNtcn1aeTtguVEoQDO29YyJJULfuyFfwWMC0hhcq1XegKpqA6uU0OxpTZcJpVyTqt9iXTjpr2i+5Rupgu1UH5V6ZSSPFCo4YZWK7f73L6Du4Itn0mRxZKqyynZ8C7IG1uH7ASiwhLwRPw9x6WSWaWZztBOAuBv6wxUjx+gzFZYYjDRsGICBQioYzcDUug+kRSQ3THILRDrYri4QqByPoFpSqur9VaC1kExu7eNNJcHEvGUpRgvzjXjTvjOx7dshSPiVip/qGcGomVJ4eICodBmDt9Gu22iO21d03KhhzZ0y0TNMHdg+CnrAUfTzxvg6kAKEVDbiXokEGP8KxgwtmmKIhSr1C/quwnwDf+aBCAXBfSFmtKtCyUSZMUlXsRKQG6SKidCMSyVCnZAdbMThkpAXW6eDBS5Uk8vs+iHP/kpSQPKNS2G/ApeIAGKxycGrZfoGqeNNoDTKw5IR69A79AYMO8atmZosodyxJa4XFzARMrDSEbIAEWLUAjtaS70rzApGM7S9GtFdVdLmxar23XDNnDF6IUHwbtY34NmAoLu7JvDCpRjJBLICJy8MzOGa/RZC4HXac/8PlqM/tGILXBVPyE+ChH8nO0STvsCbsRep99PHvs6oyooxUjAHU6ULwXffys0XC0KI6gkIaNJ65fhknifA2Gw0o8M7I0lvhawGA6kuMFrAtpBLjZlN4aJbb5ZjD4rRgNwCwYARX7ymWkXAJnRl0+iGHDiADoD/pUuo4lIxbPNOnIyF1zBVjx/S2wCu+RqRICuSNuBJ1bNmafq3tS1GwHjSSi8wz2NxE/oCuDC/DwvvUoLjfMzhQcEQYsM5Eq54ZXGpQ184vIfdaGpVSCjvF3ESalUNRQyQgSs1MYBrXThYStM5l4Mq0XKIdB3PYfsRhKAMwR808wbCN+sM5WrIUAJfMM1yYvkfkGuG1IxZe7vfV9YtvJJvpZqKqsal86VpiMUcdNTpRoqF82KL7COmfvjZfaNIhUAVixFihEpofnTOu58vwXIZbSFbGYytDjJFE1drta1img8eYo84ubXxwp6XaruKVGhAbgc9zGcUmZXZeSSmwKRq2LV8MAubYNTnkiyzb2JBZZvAimWOybLUZlHldzBYT/kYiVxvxqcbjGgQz/ckzs3F0A0KWcDNIB+3WXxnSgCuEheqFAHCpwGVQ3zOvubSIo5wVFSm9vtIfa8Wvulp13KQmhDvs4kNtsyxWFXVpc8JqWfljCJSFEOfshs3YSW5gM3Bh0JiuJKSbo7cZjJyqKthZp3RZL2n2skP/mdnxt4/0JCM1FgPK/1yrUkd0Dr4qrRzHjQYkLvvZvjNTD3CCxNZV/I4QagLBa/dMhStYqdUrZmDoCoZ8KptLonSr5Mw5F4KpsxWtEtJJT9lVIECuS+IubZskV15hmLeXLXar7tRKgjxb5hjSlaC1sznudI0zhCrQTN7ov1M1WDxPX93Aw7imsUZW1+cd7aLi+uKKxFwkq7q6GL8rrE7N9Of6vo9CgpnUwzAqpUuVEIrhwRLQDARS8l9xk6slK06L0rujdePCcCovv0frUgARaO0+BOnLuUxRQzsDQAVERLr06us8NTFfKGyPiWh5WUZpD1qh9EzcFuvwtI3mQSQfPkGsQ1RrPhDMmAS+zyti2UDgHr4rNLJSVEDmdiaZbJD+SS6FPxnV36c2XKaYhim7hcJQJ0PVJaEBcQuqyDmxtLyqDA1XRvkokuwGXQ+CgsEJgMMGB20/FcaE3cIgMESklBBTVkEf9cqAxwn6iTxk0HXFFcmLZ2HM8jfVI3DsyhZSIC936gi1/df9I/yR05kPRm+8iJyznKF5r3CaKEFUjl170QuFmLrzJoiuMiMYGh+eoMtOgnuEJq1yrAXRR7r8TCTYW6FKK4eZRifzxH1O/GA7KpLNwVJaoesvkMYF2R6Lbrqsk3pVi7iV4AgocNX5oHKdAYfhoA7E8xwcQ9fN1ES8eEt+fprw05nfs06xwGtplcHVVZvlHi2oYrGXjWVDcN6QodZr+ewMp3KFKza3DOgb5XWUj3lo3ZSh/VghdNLn2hSDCu/vUTF7Lk2ckQWjMDDa3zhVGy3tGZbvjV7k2oxqOca/LLJmYD8yWxSb4wAw6UaZOI0S+C4Z6S7vvVIgeydgRMdMm631OqOwPTx0srhhzMTf5UFreujaZLCkISVb/IFVURF1WE4O3OVhrCSzoBx4q3YCb3NtZqEmfukvBYJEYg6U4WuPkybVAX4DjMFqlFAFvrhf9aeGprNWTSyiUb7SGEvK7tWuxSTdNG6C3giFyyhcUvUYCPxKErvT2BUBo8Df8i3hI6Ggel/OrVjYb/HpZwtcqFLGcEtiyRG8/ApS5uYJ9XLs24U4Wt1q2LaDoae4apJN5QY4n5/QxFoPYxzW6OAelKpInTK9YRd0kWqPNzs7+84bJyqY+xivZoBXWzwY2MgeusoK/NtW4amj5wsOlcw0ijx7zQR0P5vdwYYkt6Q91KHBlRegMDeB+G0kSieKLSzjv7yENBOvnETRYZt2iAqcG/eFytsAdXmIZoZA2pI5Jy0zq0T9PhNmOgZyvCpLzFTRVzS8WjJaT+X1UzgY5BGr39/HmkiJIQYDGgP0NFSoufF5sNqJ4r9Ykq7GBXYpN81+pG3XWr0gFVaquyLIvcqXjh51T2MFIeW6wobKtNOYBjTx76kqeMc7nCtutsNbmTG55h7OkAX7arGG0o/DpbBYefzCXrT+sAtwozj5ZQIpQX18kBbZWXu2hutEsdEvtWFHaRF+PNuUVbtlicKR0ghR9XdwsBwiDbIr0DmA+IEVl2k4si9yrenpWKvHNQrKxS/i3ruCjZMQBb2R8yT1zHkXsFc/vCv5nBeU+F+2ypN8pCKy9BuWEoYDsbANyynRYoFNzK+flw+klnHp0z9wZfPpE0kKX2k0Xy9QwGenO26KQk4a0Y9ioNPeswwdK0SgsKIUpw1cQ3HTbYPIaygK8ihQQ6dbzIWVBTJytMfrjYC0P09FH07BYDGZoIKFfzy6ec7BEHl63wgwJOVWCyTAyWWnhoynXKwMMBLi1Q8/wNbMkZbzK7OggbgUkxOEorEMFuFatN9QbPSHK1N62yZfZw6rOvDWUVcFXwJ4FQstHBxiI96ornbHiOtdIbtximFHj7vMzle872NBdFIfST8mBcNsCV6rqfwGUttOhWsxLAgNE/Kift4rZSssmrfCt5H1Ax6OuxayDn62rvOMJ6JLjAPCEbuvg9JkvlWtUwpYr1aoByLfbyjQRVHtEeWpGNMpHgrCrX1n4ub6G0cKIWTRaNLNFEcFTcHV8xWMCr2KM6ywKmN4UBwZd92tNWKtFiTFtpy2z3ReWixEfSCUghen97ImaiKgeA2YugPyBAxVBRuU2hhgQ/oFVxP3cH2fwRZuDxGZXg6xqVIILTAmgLENjlIetHSylRwP7sXThxHDc23B9an4thsZU9zOy+pgAqUdjOez327AWYqmAge0NrZw17PdHfY+hORT5GfB9aPzIPOZKG4kYNeB/swhz2uL4fGb+P7tMCpA7J0WD4EW/vP4yMPwF0vy7Tq/KcXAbQuu7niCjpsWQvl2EgpX1p4/M2ZH5WbCP4rCvtytwAUSPszdquZSnFp+vpdbEn59HKA6N/NFQ/ZaBlDZVgtkeolj2/MIw+wZqYZlKMlADQoLBXEvZDAxULKo6VUCzWgVqtlGF1vo6Gh1BAgQpbME9axMBhvInw0OLESwPLljDmTg2UtLdwnzYlUXVSgNHgAok7kSldnTtA4+St0DGoXNm7yT9HqzdeF9R4fG0+pV4l7OgVw/fUTCVeN5FaMvgwquZpzfAOnnoYsI4otNmKAWRDZl4W9c++WiE27i0dDYAc1sW8WGeVVvrB+1kcB/c5lVK8lD0moW+xGlTlhnUTyfikAydwWCMwS2KnmXopcqN016/7a5vjlClInCgK3dqSuFEA0cPlVjaY10YzeF44uSAXVApePJbCnVust79k81pXC3jEkf68AxXAVJFYTQHQe5lc69sr6r7eHvEiFUrLo121FJD28sW588CSIYPwnimGbwUUZTraHvqDNwAnapPLViUGEhzNYBdbSJp3rqS4qkFczrMrBhadoEpWJsHdOe/b8KqC8zWXCYlmRGvrsDxkIFYJ1dtr0LDoowTbFH5KkbqPA4S+nwinSHBSwZ+iSm4BucxA17zNMyQuhW328INVlfAa4rp6Y6NZFR2DV2KtNNQRRamz4J0LGCsTgWS0W2q60hIvoM7+tAEntjeyqjlxM+8zEQbPO4bLScZ4Fwawpfiwi0ceepbwtMv8YUCCq457r4v+6x8vGvG/u434+vzP7efv/8oOVHAx+g8DFYi/uKpJshotTMGvf/Or3/3xd//yh8d//92f/vnxp3/+t9/88Z//5Sf9/Tdkwc/tOP3+ET4iBnxFngzJ9qRHMLxtheqrNkBmXBvADZDRefJOAvGT6LzGHrELRk/g6UAHFZrGSpEpK+cVQKj4nxnJhJywuEZOJlkTcDXWsUZ1O3QqEOWCMhkK6UjHGp23ZGRr+D5RgsvTcKJz94ibtGzOm3wDWRToFN5N3AYEkmZz5l4KOouloU30arVZcfs+ye2h2fohv5yWiCkuL7okg2fqFGQ8qzXZGZ1nPmjdFx1HBViRF11KXx666FQSG0zOi67wYWIcHd+yxvfnPETEHmvlPEokc7H9LPAzheEx3Ssxaj/NIqclGCrmtiysaaJeihflV0rXoRO1BoCXAjuSZ6z1tm1W07QalgLPjcftd6UJtCjAZfkpgrztFHmVK5HyCqyc/KaReRid6lwjr9qQZXkdegYilJ9d7e2x7Wd5fU8+WWL4QjKYliBYih59IKKMjsOy7XLmEnuhoQq6wZ0bGWzrBE4LZMu02u5Qm2luhdHJ1CzB6Chm3mBmNoxtoyQKLkjmGXmhYmD7mpbVhT53FiXG5HIeOugOG+vAFXZRZ3SxYLUQgL0sPOyx0SfDleY17WIgmWENL/pMs22wMyElasPHSsFrhMN1OjQBpPyi5+3lcbmVT17ArfObzuuM0ViHxoX0/tkJtxd64g2l5UWV/Ih9jV8pCpyW9+Thlmz8zQNcr8lbmJnYSuoG7UHrbW/kxBE69GIFjO5K+moTw2Dl8NB52YCruUFsEyUbXBQi5XIkAc/oD1BHz2NNS3wd+IxaCqZEViBeNzqPYK8U70CfLf1sdE+lXdOl16V2v76kXtBQuNOd6Sj6l7W3GhtptwzN3zwDwBx/GIFm+h8EAPP5V391AQBD+P4CgPlZpv0fAwCTwWe0zi4QMlwAmNilq+8AYLqv7wFg+s8/AsDEwZH6DADTD3wLANN9fgsAE4eQ7DMATD+VWwCYfp13ADD94PcAMP33twAw/UpvAGCGsT8DwPQf3wPAdN/fAsD0o98CwIx7fgMAE8dg5DMATBzCoo8AMCO3fAKA6U/nDgBmOJ4bAJhBkG8BYEZO+QwA0yuVWwCYfgfvAGAGpXILADMwyy0ATPf9LQDMMPodAEy/j3cAMCNrfQaA6adyDwAz6rnPADD9ttwDwAwbcwcAMwjdHQBM9/kdAEz38R0AzKC5bgBger11BwAzjH0DADPK/w0AzDD4ZwCY/uNbAJheg94CwJzM0GcAmH70OwCYQVt8BoDph74BgOk/vgWAOVmhzwAw3ed3ADCDONwBwAyifwcA0+vnWwCYUTZvAWD6pd4BwJycuc8AMP0p3QLAjI7lDQDMsNZbAJiTZHwGgBkk4zMAzGCJPgPAjOv8DABz4t0bAJhRhX4GgDmN/hkAZpz6ZwCYk6W4AYAZdvEGAGZgxjsAmJMfdQMA09uLOwCYk/v/EQCmP6M7AJizB/gRAKY3RncAMMMufgaAGWz5DQDMaCw+A8CM/tZnAJhhvz8CwPRm6BYAZhD8WwCYwXB9BoAZtvsWAKaf+w0AzDD4DQBMr/rvAGD647kDgBnUyi0ATC8QtwAwo7f9GQDmpCg+A8AMduIjAEw/kTsAmEGQbwFgRrf/MwDMKb75CADTj30DAHNytz4CwAxh3y0AzCBAnwFgToJ/AwBz4qxPADD9TG4BYEYP5A4AZtAsdwAw/dRvAGCGsW8AYHq38g4A5mSAPgPA9Gb8BgBmGPsWAKaXuM8AMGMe7AYApheJzwAwo5H9AAAzyOUtAEyvl+8AYIbRPwPADLHkZwCYkwP8GQBm8A0+A8AMY98CwIyn/hEAZpTijwAww5bcAsD0zH0HANPP+wYAZmTXzwAwY37yMwDM6IvdAMAMJvMGAOYUAn8GgBmUz2cAmDHdfAMAc/KvPgLADMrnDgDmlG7+CADTfX0LANNzyj0AzLDQWwCYk938CAAz6qDPADCDwb8DgOkHvwWAGUb/DADT8/ktAMwgcp8BYPp5fwaAOanlzwAwwzzuAGDGWOkGAGZUFR8BYIbt/gwAM6razwAwvUNzBwAzCOctAMzJpnwGgOmnfg8AMyTubgFgRuf9IwDMOcT/DADTT/4OAGbIN98BwPQq9w4AZvCabgBgThr3MwDMyYP7CADT2+Y7AJhT6vsGAKZf6B0AzMmC3gDAnDTuJwCYU/z7CQDm5GHfAMCMrsINAMxouD4CwIwZwVsAmJ4X7wBgTur8MwDMMJs7AJhBp98CwPQ7cwcA0yvHWwCYMTH0GQBmmPpnAJiBYe4AYPqJ3wHAnDTdZwCYQbvcAMCcrO5HAJhe5O4AYIaJ3wLADMx1AwBzUkafAWDGPb8BgDklHj4DwPQbcwsAM7qWdwAwQ4LtFgCmd6RvAGDO2/4RAGb4/DMAzOAC3AHA9Ou8A4DpjdctAMyY6/0MADNO5TMAzBjPfQaAGXyRWwCYYRdvAWBGZ/czAMzAXLcAMKfo4iMAzJgb/gwAM6qMGwCYwSO9A4AZTukWAGaczWcAmFNu8wYA5mRLbwBgesN+BwDTq4A7AJiTtbsBgBn84zsAmH4ytwAwJ7fhMwDMSYHdAMCcFMEnAJhTJPgRAKa3A7cAMD3/3gHADJt+CwAzxqWfAWD6HNNnAJiTv/MRAGZUpZ8BYEaZ/gwAM+zJDQDM6F9+BoAZ7csnAJhzQuczAMxplR8BYPqZ3ADADFO5BYAZ9MoNAMyQ/b0DgOlnfgcAM3LKZwCYXtjuAGD6s78DgBmWeQsA06/zMwBM74reAsCM+fPPADCja3kHADOK/WcAmCER/RkA5uShfwSAGb6+AYA5JXNvAGBGc/gRAOaUF/sMADMm6W4AYHpGvAGAGdb5GQDm5N98BoDp530LADN6QzcAMKfz/AwAc0pDfwCAGfyDGwCYYVfuAGB65/kGAObkB30GgOm58A4A5mQjPgPA9IPfAMCMaaVbAJh+MncAMOdM9EcAmNEufwaAGVPonwFg+q9vAGAGzroBgDlx1g0AzDn++AQA05/nHQDMoChuAWBGGfoMAHMK+j8DwNjnP3cH2fwfBACzcllrJYEs2QWASSeO+wQA0319BwDTD30DANOPfAMA0498AwCTRsb/DAAzTuQzAEw/k88AMP3I9wAw49F8BoAZRv8MANMPfQcA0319CwDTT+QOAOa0KZ8AYMZz/wQAc96PzwAww/d3ADDd5/cAMP3onwFg+lXeAMB0H98BwAxr/AwAM075BgDmdJAfAWD6Nd4BwJzG/ggA0319CwBz4pMbAJj+4D8DwJy28BIAZlBSNwAw3de3ADD9ftwAwPQTuQOAGTbvBgCm+/oOAGZg7BsAmGH/bgFgTjL2EQAmHUb/BwBgrvrsvS76r388t99/H9vv9dGf0bvff70jvpzH/GGwl2wXw4sM/cKN9Q/gvUjtlxby5ed0lW4hX1Zg7+hRp9qQAgirw/j+pThK5ieWEDa63F/bMAVJdP+iuqGTlTQoGKkrOraqdFKgOJ8WePt+VQSZuQmGvCpEK/b5Gp5WV72IjrO+0JgFnXA2WGlAqiQHQMGAjjUsk8FBTNwXrNvPltnca1BQMs4uJcpGD3RsWZIO5JCEm2z0JKc2BxtHOp/7tu37TGFwMoQbTV8asm507jUSq8pc4ExExRu5Uhm8GkaMBCIYhobWJ22F52AQMRRwgImxUvSC51d7yA3oGayW2QA65ItNeX3RqRaZskHEbDUM+/eZzg+wYOhOMnAU6ArxSDOBBSO7M+XXbDKIAcXgRSJ1ufU1e+IZgHgK/sxKYTZ0cDykoTdoF4qJ6/zaHLLEywaysizUqbw3E8AOkbVuuayvzyk3yaD1BNr0aC7czmohLVthqUqzgdhrm86EhxsofaoY+JWCNs6c3qJIkYpCfoBHwrrxgkG0UD8LvdCVu9GtGN9gU6piF53Pi9cmK3abN3oi2W3LTcTSBF0y4yRUZDggU8dNLjMbXQq9bKxJaYF11Rld5mY7qxjpmrF7T0ZfxOHb5wuNb8UwKYwDl9fwOlsuUqOttlLKBTlg8VaSRWxa2XowoVMfOZugwBXZ4n7olluu07b5stN540xKgmWAygv4RsbN4IKg47wAewDEjU553caJWGJUv8H5THHaBEV08dJKoN5C2Rhdrh7zLLQhAxH0Hodihw2zpiAz6+t3Z6JZg6wpXGUsr+lbXrQaZA0XQZt6oREhb7zABVEBauq1axVXdzWYGMrRNhak88cKU03OJ/NGXrvPRWva4F1yWcrrtLDSqRrcDAWWFmdDT7TsTms2vbNlal+HDujIHE1PrVjJbRwFWlVe8kYnRbKJHEg/stSbuiNbaQBDa+LeL5BcQmvSeWigT6sVcU7Z1B1BDSrf6J5WvqZvqDVS+/Fhan8Lg7G5BMC//fqSsX7L5Fy5kjRr8V306tB/+tI5EvxLpFs61P1rZl7pGO+o6/vbX3019GWa+7F3+kKhE3VFzS/KEdp/8ZhfQ/1Vu56GrrFjtEooCWk3SvB+saXO7djBWc9PPf1Y/fGL7U65+/0rgID+9usXfzO/j2l6OUV2SA32HMVoPfKcUX7qoOumckyuhbpr6Tvy0AAkZ8P9oC+RHhtwz5cH3NP6FniII1KPZkZKsyDSr1UF7qnlsOs3XqsKxLLrnKmqeFNImFjZ/E6hhp0ixDeB++lAz+dB0TAzOYqDYjpNzuxBKdw+yfjsFMrdZITWdFBAijCR3ilJeoM2sINiLcE1H1NGR1H4eExZHBPJLByEBIJbyceUUSSlW1bCge/+VjJYuTUdU07JUMTKMeVE5keB9DFlq+PkdA8K8V2knXqnJPwVSrF2Ckaj/SmA2uitO6bMNViy1MpOoRTGUF12Cn5CnPIxjqz8Oltby04hlLBa2p0CmJqs6zFl2bDZ2HOn4AOllZqBnRKAnmv2QhKXrRv7oGiYmU19U+I0WRl6DAclACkQ1nhQzJZygb1TcAcDhSVvigXB05LXg0KCOMtQHJT0jjB2isZpDytaLaqVw+wUOQeFwviDkqwwPIWWAhJHLA4lWOk8U+3IXHUsr+inIa90AxkjdORK00BM5sW2v7ZMb0Hr6ZHGXf5goHNfyTDjOLiZ0xvG7qB3KqxZ90Dfd2ig73vZ0/dNH8j76Qz0/RwH+n7iPf3gjYG+c9FA3/ltoO+c2Wv4g4cH+s7tA/0tFgN5l5+efkjaQN9lcqDv0jvQdznv6YdGGOi77hjou5YZ6Ls+6um74hrIu4Yb6LsuHOi71uzph34d6LsmHui7zh7ou3bv6YcdGOi7xRjob9MykHcb1NMPazXQd7s20HcLONB3W9nTD6s60Hf7O9B3Sz3Qd5ve03fjP5B3L2Gg7/7EQN89j8F72n2UH/KqWk+tVWEtvVV5Lb1VkS29VakNvdXADbnV1w251e4NubUFo5f58hENQVPhZXobVmB/ie/p0npbl7yCY7sehhUY14VE1WGlVg0zU5p3UMi5LLkxrIDSlBoawwpQ1JpqY1gBRM1UbR4UQknuwg7K+rQmtcOwVuBB5dceBLBY7Hh2CtWp3G8clJUAOhyGNVH+iuqPB2Uhb9NsRpJeN7TcfFA0jpzzdZ9yIpsqbp7KQaHGeJlDPShbO2Tzl6grSuQxdgqNu+SHdwoIGaBYHFOmrcKShgfFykjqckyZBuDJgDHflEBOhsugg6Jof+PPnaIgKKObDkoF4KRZlaHrYZwOCoX+WOeDQqGDpRF3SqWCPU/HlD/FOy0TN+SW5RtyKyANuRWn9tda6WvprbS29Fa6W3qrDa5itWbdA33foYG+7+VA33e9p+/HM5D3cxzo+4kP9J03evrBRQN957eBvnPmQN95uKcf3D7Qd7kY6G8BGsi7pA30XSZ7+iG9A32X84G+a4SBvuuO3q87tMxA3/XRQN8110B/q7iefOjCgb5rzYG+69eBvmvinn7o7IG+a/eBvtuBgb5bjJ5+2JaB/jZCA3m3Vic6BSzLOJ2D3gcdDb0LUhp6F9Q09C4IOuhdzHSQuwjrIHfx2EHuorfmNxuL/T81qxOpBtmO95jq95bcB5o7uQ80d3IfaO7kIdA86H2gedD7QPOg94HmTj8FmlcB6E3AehngXgXEFwH0Rbx9EZ1fxPIXkf+eIjh2ZfT/Tsz3/QdY9YKxL8TgSmoupexKKi+k+CT1kxfbH/TTOG/6+Ltv+jjPN31c14s+bsOLPG7aizxu8Ys8aoOpzyb9leqHxLXletIPL/KoH17kUT+8yKN+eJFP+uFNH/XDmz7qhzd91A8v+qAHrvTGrZ651EtXeuxC712oyQuleqGCe/0waoN2V0b9cGLH7z/AvBesfiEYV3J0KXdXcnoh14MeAHJ8SqOH3tCHcQ56/7sHvZ/nQe/XtdP7bdjJ/abt5H6Ld3KvH47fPPRDrzF+Nv0wf+GMUk1LN/mj+xdHVQxfDJ9vWuPl+o9a40UeWfpFHgXgRR7F5R1Ej9L1po/S+KaP0vumj9LuhS2ftMmN9rnUVlfa7UIbXijPC1V7oZhHrdHriHZXeq3hMOn3H2DpCwG4EJcr6bqUxivpvZD2k3ZwUs0H+TTKizz+6Is8zvFFHpe0kccN2Kjjbm3UcWs36qgsuuu+s/b469UVwG1aLrfXFTu5Z+Sd3LP9Tu6FZCcPMnXQexk86L3MHvRexnf6SSdc6ZAbnXOpo6502oUOvFCZFwr2Qh2PuqLXDO2ujLpiZNHvt+zss74vJhcydSWBF/LqS/egC6Znnez3r+jDMAe9/9WD3k/yoPdr2un9Duzkfrt2cr+3O7nXFcdvHsqi0x5/zbrCmkHmk654kUdd8SKPuuJFHnXFi3zSFW/6qCve9FFXvOmjrnjRB51wpUNudc6ljrrSaRc68EJlXijYC3Xc64pRM7S70usKh0e//wBHX/D/hbRcCdelMF4J74Wwn5RDci4/G/ppnDd9/N03fZznmz6u60Uft+FFHjftRR63+EUelUbqirTOauSvWWvUrRH3fSMKYDEvNx33i3Q006R1cGwwSNF0VFnFQAU/Xbs7xVplm+vFSL3qq17wTQE/xbBOdgovVtb1qLLiKUfgJI4qKx5rLIvmc+joZMgn+aiyihTiVzrY2iNZiuF1NpTzsX0+3wtuuOCdC067YsxLRr5i/AtBOQnWa909/dihgb7v5UDfd32g7+fT04+THOj7mQ/05ahU7ehvNurJB78N9J0zB/rOwwN95/aThXnJxYl+ZaluLNulJbyynBeW9sIwX5jxC6M/WiTH/jTdTX5X0N93nUETnUFb25fogRtC+KKamlsXAPRK3hjll9+/SKjSMPR374ah//ZPP/1/v/nwKvSfoyj3jqz56/f634/NQe1j2PZwhY7te1ssY9QQttqXo7Ym2pWjvf/bVOIYNc72gm5TuAM5rGWrTdnLfKCKJa1BpCkKMrIOw4pnjhqiaH24vL3XlRxFblaBZn90FUrRujeStc40BU2Q6e+Lj67+CfICbmZXLQVei+H7PrriKsiSVut3aWqxuMCXzbPF7IVbcYNCtL6BpswL7M+YsrUxNVVh0Z6JmbaRjyKyrfp8a25oas4iuBzLNrujQi2CtwFG6KMraIv2urZ+69HVv4msP53teeemXI4q+DptnUFNdV00oKqpboO8a/EMAxP87UdXuRd5FJqHMB5doR/kwpOoj64u0AZJoK52ZYSQeZTHBjmqDqN1li3btI8iRcaudd4GOWoaOQ3QFGw1Rwmk1A59nNZL0lRM8oLD8urROOorI09v4NE8umrMULUA1O2jK94Us8yGJYJ2OWo9A32a8fVE+FEaisq27kwj75WkdNXQg2nq9Sg8DbQlhK3jp6lT1U+u9iackfey1gh8eZ7scJoqWB4z25rSfmpqZjGV9v6ZKcW9wpY2tzCDc/JTW5BLZ9hquKc/tfW7lRdQKl0/nRWZDa7FnqfsrM4Mej8CNw+eFvCoBVTwwd+iowvkqTp4XRkku7q1GDa+V14R7WXKgwdGS1/gm8EPs9IFsHMGb4w3y6vBEfY+WQbQ02C3e8/M/tHqeXr/LNLZC8zh4KUtvOcaY367UG9fTdtWIvD2Rm/K92jgL7X29RMwPY9UDNUWKw9nV9rgfmqLM3hjlvcRbW+OWo4IjjGPQhh5L/2IgAyt2/kdhSL0qK3gVkA+6krA9AbO03jmKEPh+UeDVfupLVoBemc1AM2f2hqXQBt8eA29V8SALTDXYELe1M/AIUF0G+Mot6Eealper58f1Tl04tmLw4+umCfSLha2N9Gb2h/ObJEYDaVCcNNkwLBdZREiFwEJeXSFSKjaddk6bJu6JbQ4DytsX7+rnLAENb0q246aKMxJXrZ2uaaECoskFVxsNUfFFVYt2uNAXYEW5LJO60be67mwr2hGG/so/9pM92INiU21mHkFs1XSHaVlEPM8bUs8KtGMbI8at3VrUEEKst87qtyMnF8ncxTFGbmmsH2919BZS5/k2GZ3lNwZeUmmrZsKPSMH80Je3XR/qZN1dXf+737qHNXNw55aRgLHfQKvOIeX42jN93nAnOFhMdPD9TE5X2ALgO6QMp/8L77ZSyFLwk1x/3wyWGuglmLxfwOMt8K7I/S8umOgqXlvbVqzzs0dhJdWeM42h4uf2ZAuxK1S6NH/nZkXf8EDlCa4GMReq472PIH/RcCHAb/MTLy/mrTBzsuTlGm9GKTYE/T2brH7hb3vHoDH8H+kELrwbpI92ut9Yu22chckq/HibKWpK9sOXuLqfrKY4q/s+gULgebCA7+AIvq7zruMMpEg6l7sqb3GKjHQT12slmd06KYvUqjeF8lQBoD+p6f8ij/kJfDWFO6W+wkOe0IThnLBqmA+81xiADbbHSOZU7VK62Eq3D3lfRweNgR28II9ouHWTgY74v7KCupJRevki4nYkyw8cwZogj8IsVTk7YbkrzZl7QdvDK3gRPrMzkNOvNBZpCn91bAhKwCrV8wsuZx4c3YCD9z9lcwDgbO92Rv8xfCaNyhoishmn0UAQgFaVeef/C94wU3RRwloAH9XiSJAl0R6L+ZKZztf8DLD1abZGywZDOCL38EzlcmTLy93yl8OWVTeTJB3csEkwHcFoh/AtXwdAYZA5vHfcMFFK6+egxUJ+oP3ReFtKB7+mXHLLjgxFV64RkdccCLBxTrxzFy4UDM8cLUC0womkH96eCNS3yDYXVgRQ3vX8YdysSHyvYCv48H5eCXgpJJWe63C/xXDJ5CbrgjiYs8iTqU4CKzsK7Obn6s90MATI1c7ovgY/U0s6coEGO88K4zb43MIaLqFZ2uXC9GTe5vAXgcm90JqgBbOwInVi+USEYFmFwxWyj+7mTAXcchXihU7gkKU735heWde+dbpTfgbF4dXeXBwBVH0wuEp4E2tSWbiQjsblisXGDNv1ftHY09kxwo27MX5ykeQ4IG/fqE27ZW0wNsCFdg6l9F4ZE8aD166cooiObmZ15qvlB5P6sw5gsZ15QNm9KIiNRCaL7Z+ItQFdwb4sIu58O5IphYZfG1fHwHPIoe1gLro8/T2Mhlq/MKakBuYwVObgCv2ZzIbZouiTnlIV8Klv54l6NMVGyzE+bwWEq6c1hTsRimDtn6x+TzEx0M+K1zp7+yMIS+8YXOxad+kRZ4kFiZCLX+USAKE5yGuR0nBHnrClUu99PzDzxIOzV9/AW7n+HkbFZGU5QG0AgyuGxWtgx9QFFNO6MV9K9ZBOHmEI8ghiav7BS+1yDpL+MKHMdBE6eDS/s9ny37xGDo5h4shFFnZ48PV/wLsG/IaubHvw68s9jbBwvtpsz9G3pDGOcKLeVR7PUiivyb/Z9AypHCWJR72rPuC96zsCaepXszUcKeDYYL5E8WB3yDyeBvP/cRekiq8BlwufqUaNl6dMo9N+r+SeWuUJ8eaSLP7hOuhFcCinKvPHt94moWUezwsc79hcjOAv2Lb/S9Ap5SmzPZEpj9Rnn5lJeFqwww5Uf5dXNeLk+VyJpNOB5fpitNlLTOx7KdzUaRLZmL194NXHGOKayTxcjEIHiDYuQZ15m77cyX5Slr5YjUAtGkO8v8uTp9dlwmTcqr+pgJ6VtKyGJCpux1g0vEObU2Hs9P/CK8l2/tjU7k6uYjFBSyyXizFJN8e0ph8Hpz4EV4em8oFC9pLqNO08IbUheTzUJuhW06pP/wfRm88IxZddcx//eOpuff7ZYOsPv4RLKT+s2aEjyP/MJIj13qgGIJ1oCMLh2HjcvY//du//PGP3/74m1/9yYF0nN6XtR3U0+8f08nI/farBaB8LXWDn3yt8oVa2a6iBbhs6fvV9AAh+T+u7UeRRgtsA45nHoBtpHoHYJts5rQFtskbJG4+CmTy9phrU3mjkGOovMm85tdV3uQlDJU3CjD6ypuMR9lV3mT5qX3lTQ5hqLyRbzFU3kjgh8obQwLtKm8yd5Nd5Y0s4lB5k2PpYBhEARmtRR6QnRxgGDKPRXcwDBmkuK6vJ1Os2cEwSEkNMAw6xwGGQWcwwDBkcPk6GAb5vwMMg7zIHoYhA1fZwTDkMg8wDLmEAYYhg0jYwTDkUgYYhgzEZAfDIE9lgGHIwLV1MAyZQpEOhkH818MwyE8YYBgkOUMls9TzAMOwkpfpYBhW3sOeWiSzhtKWmjTktjClIbdlLA25LXppf62tkWnpbU1NS29rcFp6W7PT0DvV06y7px87NNCTW+ne7PpAn7wm/+YcB3p2m/wb3hjos9vk3/DbQM9uk3/DwwN9dpv8G7kY6Nlr8m8kbaDPbpN/I70DPbtN/o1GGOiz2+TfaJmBnt0m/0ZzDfTZa/JvdOFAz27dXqNfB/rs1u01OnugZ7dur7EDA3126/Ya2zLQs1e311irgT67dXuNBRzo2a3ba6zqQJ9dgLXGUg/07AKsHcb/h7yV1u9pVUxLb1VSS29VWEtvVV5DbzVkQ271aUNutW9DbnX16LO9y9KBwZ4X6sneDhDow3mOsbE0EmLeeDkszQrOOODSB4X3nXloYqeA6yxN0ViawitEa2osTeHt7bgcgD8GX61NPwB/gIo2qPzj10EhbvxEKLw9Oq0H4M8qZ5GnFPZPFFk8I1p6Pig87TTlA/Cn8JrQto87hQvHUA/An6L/jVPbblYIS8rKW0g7BQBVXmg+KKu9/rgc81ksx7wnpqAsoBbnhqBhFnuSbqdoGGrGjikHhaEyY+WYcgCRWhbmmDL3uwjRMeUgD10bvx5TjhontmdcDA6628KYiPHbGZ7d/pbnNkrLnBul5eKN0rL7a9BWMF6kVoZepFbcXqRWMp1QpFnFQN/XO9D3nenpxx4O9H23B/p+LgN9P8Gefpz1QN+5YqC/2Wcg73zW0w+OHOg77w70ncsH+i4PPf2QnIG+y9hA36VxoO9y27tXu4AP5F0TDPRdZwz0Xbv09EMPDfRdYw30XbcN9F0L9vRDXw70XbMO9LcKHsi7ru7ph1Yf6DDtGd2woffOc0PvnO2G3jnnDb1z5g965/sf5C5SOMhdXHGQuyik+c2h4P1/WlaBoIOnMEsPNtSQx4DpRR4Dphd5DJhe5FPA9KaPAdObPgZMb/oYML3oQ8B0FUjdBl6XgdpVYHcRCF7EjRdR5kVMehHBNqHue1d6P8lhvu8/wKoXjH0hBldScyllV1J5IcUnqQ8Ojl5DP43zpo+/+6aP83zTx3W96OM2vMjjpr3I4xa/yKM2eP/m60T/KvUDBTXWndDrh53cM+9O7ll9J/eCsZMHOTrovdwd9F5OD3ov1zv9pAeu9MaNnrnUS1d67ELvXajJC6V6oYJH/dBrg3ZXRv1wYsfvP8C8F6x+IRhXcnQpd1dyeiHXJz0wTaWMIGUN/TTOmz7+7ps+zvNNH9f1oo/b8CKPm/Yij1v8Io/64f2bh37oNcbPph9+5vZeeO/lO49a40UetcaLPGqNF3nUGu/Yd9Qab/qoNd70UWu86aPW8Pz+a21yq30utdWVdrvQhhfK80LVXijmXmuMOqLdlVFrnJj0+w+w9IUAXIjLlXRdSuOV9F5I+6AdspvybejDOAe9/92D3s/zoPfr2un9NuzkftN2cr/FuWnYabRGHi6Mznrkr1lrcK+e15PWeJFHln6RRwF4kUdxeZFP0vWmj9L4po/S+6aP0v6in7TDlTa50T6X2upKu11owwvleaFqLxTzqDV6HdHuSq81HCb9/gMsfSEAF+JyJV2X0nglvRfSftIOPAkbHG3yop/GedPH333Tx3m+6eO6XvRxG17kcdNe5HGLX+RRa7x/8601Rj3y16s1gnW05WXQGju5Z+md3AvATu7FZScP0nXQe2k86L30HvRe2nf6STtcaZMb7XOpra6024U2vFCeF6r2QjGPWqPXEe2ujFrjxKTff4ClLwTgQlyupOtSGq+k90LaB+1A5evpXvIgD6Ps5P5Hd3I/x53cL+lN7jfgTe13603tt/ZN7ZXF/nOHrui1x1+zrmjf7UBNpOHdjnUuw7sdq3a1f7dj5Tnv7t2OFTDwtgxmpcG+e7djtd7E9t2ONYTh3Q7e9Ozf7eDZzr42z545XSn8OChBB8BAByU9V9pPjvlEXhEm8b9TQCPo6nQSZcAtIMua0jPXmI9rPJ7JnPs8QyZpZA+w7xTJdWphqGCZHCkmbCkDE33mNZ8vfR72+f1COK5E6ULwfDE9CfVrtQN935eBvu9gTz/2eqDvpzLQ9/Mb6O+D7skHRwz0nXcG+s5lA33nx55+cO5AT+4bLY00DPTJfaOlkbCBnrw3WhqZHeiT+0ZLowcGenLfaGl0y4nu2/hbn+DSh7jyOS58lAuX5sIBunCXelvuWu6/CLopcSHKBWo0U/HvgG76C4xN/g9BFaBCLy8pgYGElj23z5S+GcwBFei+cEEFytAfMYIKlKEZ5Awq0P+GByrQj+GCCvSDeKACZextOIMKlKEj4AwqMK7mDCrQfeGCCgyr8UAFxkHOoAL9F2dQgf5HXFCB7hMXVKAfxAUVKEM7yBlUoJ+pAyrQ77oHKjAMcQYVGFbrgAp0X7igAif+OIMK9J+4oAL9YhxQgX4MF1Sg31MHVGBkjzOowPArHqjAyMpnUIFhEAdUoN9VD1RgYHYPVKBfjQcqMMrlCVRgUGQeqEC/qR6owMiHZ1CB4fw9UIHuExdUYNgRD1Rg+MQDFeg+cUEF+uV4oAL9z7igAr2OcEAFBhXhgAp0X7igAiMnnkEFBk70QAV6LvJABYbT80AFRuk9gwr0X3igAqPUnEEF+rPzQAV6LvJABQaz64EKjDtyBhXoZcIBFRg4xAMV6KfqgQoMwumACvRqxAMVGM7OAxUY9LcHKjB6M2dQgeHwPFCBnp8dUIFhrh6oQH80HqjAyEVnUIFhvR6oQM9oHqjAaZAzqMDAAx6owHDCHqjAoI08UIHRAHugAr0+8kAFep72QAVGjj2DCgwz8UAFRuE6gwoM++aBCvR874EKDJbAAxXod3Z2QAWG5bigAuOmnEEFTo7LGVSgHD2mf2k09B8FKrDS0SHWpOrT4sdzVFQHP+AMKlAH4TyDCvRjeKACpzEGUIH+z11QgXGIM6hAPw0HVGD4FQ9UYNyOM6hAP4gHKtCP4YEKdF94oAL9j3igAsNaPFCB7hMPVOC0lBOowPArHqhA94kLKjD+zAlUoN8wD1Sg+8IDFRgm6oAK9F94oAKnLT2DCoycfgYVOJ/LCVSg+8QFFRgG8UAF+m13QAVO6x1BBfoPPFCB7gsPVKDfDg9UoP8RD1RgWKsHKtB94oEKDOxxBhUY1uqBCoxMeAYVqD+Lwv9zkMub/qwGufxoUGuBy5t2tga4vGl+a4HLm165Fri8aa1rkcubTrwWubxp3GuRy5s+vxa5vGkLbJHLjybCFri8aTlsgMubBsUWuLzpZ2yBy5v2xwa4vGmWbJHLm97KFrm8acVskcubzs0Wubxp9GyQy4+u0Ba4vOkhbYHLm5bTFri86VBtgcubhtYWuLzpf22Ry5t22Ra5vOmubZHLm2bcFrm86d1tkcuPTt8WuLzpC26By5s24ha4vOk6boHLmyblFri86WlukcubFugWubzpmG6Ry5sG6xa5vOnHbpHLj+7tFri86fVugcub1vAWuLzpJG+By5vG8xa4vLnoaJHLm3uRFrm8uUZpkcubW5cWuby9WG2Ry5vr1Ra4vL1kbYHL26vWFri8vXBtgcvba9cWuby9fG2Ry9sr2Ba5vL2IbZHL2+vYFrm8vZRtkcubq9kWuLy9oG2By9tr2ha4vLusbYDLmwvHFrm8uZ9skcub68wWubzp3GqRy5tGrwa5/OgKa4HLmx6yFri8aTlrgMubBrUWuLzpZ2uBy5v2txa5vOmWa5HLm+a6Frm86cVrkcub1r0Wufxo9GuBy5u2wBa4vOkibIHLm6bDFri86VFsgcublsYWubzpgGyRy5uGyRa5vOmvbJHLm3bMFrn8aN5sgcubVs8WuLzpDD2Ay5s20ha4vOk6bYHLmybVFrm86WltkcubFtgWubzpmG2Ry5sG2xa5fGvFPYOW/wBo0xlv6KpDX2M2Pcnfvf5ffXKDX9R/0fzlq/F+GKBJpvfJ2c6vhtw/E6RJ0WF538z2wE9J0b6seOFRmCoOF/sw2q9fl7r/7z7GfrH79f8DyjAc9AplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIyODMxCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCR8D4f550ukruv60NnWywGIT0wH1iIqMWJ4KvxIcGpcMk8GwVhHsw2RFyhOQETYaygyRxDQ0GpcKmY5nvyaZ10kqsvNF+2Xc0Zp10ii1Fh3Yh/+f1Ityj4BrrGTwPYDHI2kql7JkwWmWmrvKo6LUf0+E9D0SrxeX1Bq7w2kc3qSgqS+r+RHc02P6Rt/se3x+ZZTgkCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJxFUktyxTAI2+cUXCAz5mfj87xOV+n9t5VwOt089AwICTI9ZUim3DaWZITkHPKlV2SI1ZCfRo5ExBDfKaHArvK5vJbEXMhuiUrxoR0/l6U3Ms2u0Kq3R6c2i0Y1KyPnIEOEelbozO5R22TD63Yh6TpTFodwLP9DBbKUdcoplARtQd/YI+hvFjwR3Aaz5nKzuUxu9b/uWwue1zpbsW0HQAmWc95gBgDEwwnaAMTc2t4WKSgfVbqKScKt8lwnO1C20Kp0vDeAGQcYOWDDkq0O12hvAMM+D/SiRsX2FaCoLCD+ztlmwd4xyUiwJ+YGTj1xOsWRcEk4xgJAiq3iFLrxHdjiLxeuiJrwCXU6ZU28wp7a4sdCkwjvUnEC8CIbbl0dRbVsT+cJtD8qkjNipB7E0QmR1JLOERSXBvXQGvu4iRmvjcTmnr7dP8I5n+v7Fxa4g+AKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkLl1BDEMQ3NVgRJ4gDrqGT9Hs/2nC2m83kD6eIR4iD0Jw3JdxYXRDT/etsw0vI4y3I31Zcb4qLFATtAHGCITV6NJ9e2KM1Tp4dVirqOiXC86IhLMkuOrQCN8OrLHQ1vbmX46r3/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatq/CLsilLZ9XE5lnLp7B7TCZytX+30DqOc6gAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTIgPj4Kc3RyZWFtCnicMzYzVDBQMLFUMDI2UTA2NAJiE4UUQy6gCIiVywUTywGzQKpyuKDKc2CqcrjSAOkJDcAKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MiA+PgpzdHJlYW0KeJwzNTBQMFDQtVTQNTI2VTA1BLINzUwVUgy54OxcCBMkn8MFUwlhgaRzECpzuNIAVJcPHQplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIgPj4Kc3RyZWFtCnicNYyxEcAwCAN7ptAINlhg75NLRfZvQ3xOAy8dD5eiwVoNuoIjcHWp/NEjXbkpRZdjzoLhcapfSDFGPagj497HT7lfcBYSfQplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODggPj4Kc3RyZWFtCnicNYy7EcAwCEN7T8EIBouP98mlSvZvg+3QgKR394KDOkHyuBspnC5u2Vd6G4+TniYAsfRMQ+3fYEXVi1oULV9uY9BiKr4/+iQglnXyXjj0kBLeH8UXHXsKZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDUgL2h5cGhlbiAvcGVyaW9kIDQ4IC96ZXJvIDU2IC9laWdodCA2NyAvQyAvRCA5NSAvdW5kZXJzY29yZQo5NyAvYSA5OSAvYyAvZCAvZSAxMDMgL2cgL2ggL2kgMTA4IC9sIDExMCAvbiAvbyAxMTQgL3IgL3MgL3QgL3UgL3YgL3cgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDI1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDI0IDAgUiA+PgplbmRvYmoKMjUgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNyAwIG9iago8PCAvQyAyOCAwIFIgL0QgMjkgMCBSIC9hIDMwIDAgUiAvYyAzMSAwIFIgL2QgMzIgMCBSIC9lIDMzIDAgUgovZWlnaHQgMzQgMCBSIC9nIDM1IDAgUiAvaCAzNiAwIFIgL2h5cGhlbiAzNyAwIFIgL2kgMzggMCBSIC9sIDM5IDAgUgovbiA0MCAwIFIgL28gNDEgMCBSIC9wZXJpb2QgNDIgMCBSIC9yIDQzIDAgUiAvcyA0NCAwIFIgL3NwYWNlIDQ1IDAgUgovdCA0NiAwIFIgL3UgNDcgMCBSIC91bmRlcnNjb3JlIDQ4IDAgUiAvdiA0OSAwIFIgL3cgNTAgMCBSIC96ZXJvIDUxIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjYgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMyA8PCAvQ0EgMC43IC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuNyA+PgovQTQgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4KL0E1IDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuNCA+PgovQTYgPDwgL0NBIDAuMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDE0IDAgUiAvSTIgMTcgMCBSIC9NMCAxMiAwIFIgL00xIDEzIDAgUiAvTTIgMTUgMCBSIC9NMyAxNiAwIFIKL000IDE4IDAgUiAvTTUgMTkgMCBSIC9NNiAyMCAwIFIgL003IDIxIDAgUiAvTTggMjIgMCBSIC9NOSAyMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDEwMCAvUHJlZGljdG9yIDEwID4+Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9IZWlnaHQgMTAwIC9MZW5ndGggNTIgMCBSIC9TdWJ0eXBlIC9JbWFnZQovVHlwZSAvWE9iamVjdCAvV2lkdGggMTAwID4+CnN0cmVhbQp4nNWc8XaruK7GP8lA0u51zrPcN71Peu7M7Gm7kwD67h+yjRMIAUK652h1daWJbcwPSZZkN/I/zf/i5SL7DcX9hlot+vpL7Ehq99HWSfXi8V9xb+WY36poL4X1mBRHNyvr8N60fi27V2vWXRljKt9fiSyLd3sVstfBunu79zCN2/zTkL0I1lOkJhuvBye78/ptZrhWllDeqolL5RWw1qkV77SXa72416xsPDLenZXrN2vWDILxR3Z/HE2NBSRfpWK7w1qhVjOkprgMjTn6wNLbCnkdr31hPTXBEaA4WkaT4d601NRaAANfx+v3xVnXZIv7F4wAWfkRr7oL2Cc/pYAWvMrxNf1pTzzRHWHNTWJ+Lbti4e0hN4DKd25ACwgyAJaQGRiKBlqAU3Azr71gbX9cBQJgwCRZg+KfEBZ6QSbNEgKiIEBlxKiIq6PIFSmXzbx2gfXgwjOuvSRVYppkRMZmLK2YfvNUYQCdg4AGlMq1S1D/cp+1IJi8ImVMLyCZkeEKExNQd0wqVJD0MVTYU9yJxWvnh/lk3PU8rOddVX7tpISQHuJ6ZEm5nJGNlEtAJRUM4p7dBCKAIq+HD/ksLV08CWsLqWv3nG87koo/iZoVepQUMPGK8boY3AAhYkqhKNlzamo+I7tStcmbmp76q8zwofVltXLjIWFAScogBi0xlb+Ncen0pVEEMnCMw+Z7ZgEgkZr3s9O8XgJrhtRYrdILITST6qHZ6Ea9AE9riqjzJi5zUhbDCNE0o5LUzSRHEewEr2dgTT+cJaRuvJWrFeN6lwyQGWXMk7MDIsREmF4LqKAAAkrxQodLDHZ3E9Pmwaci/lte3xTB30sDi/fT2lf6I/8AFBlADG2KNVEECqtgKhSYSOmycmh2kw9E0bRQPMyQXh86LKnEX6eBAoqIq6gKBQyuO8IASlIoAibi0akIAVQwBVWsirqWfBYBoI/pIwqFBWJ6FKHP89oZ1qpCaBZBjMJ9qgIoPLaExwQVrBILsACqDAiSPfogAKiACgF64G4JkJOyIWeKUb6AAg867kytsMTXatZDtZK4UsFnLsK4umEgVaOvxRrp6oQs8/IIllCOMmRSeogAvQf5KSjJj9MEABWCgdcD5fr9ZWUFTKAEQIOoRMcuwgpWSX9Af5Cuke4ofS1dA1MxVwRLYYR5HAvNr3toB+2ohPrqkZbadF1CAJPM67HsDCu5mgeiqVwnSc99rgGkswMVVokd0B+lO0r7pt2btEdpD9LX6BVUIZMG9dCe2qbfHcMF4YIgqIyeFQk55AOp8gUQJl6ikMnaTmmJv02ztFiVsnIZTFIJoRI2sFr6g3Rv2v2Qyw+5vOvlTdqD9BX6ED09PC5rGVrqBdWJ4cT6xEpZA+ghHRQxuJU+Waum35KcV57bPUt8LSwPHe996oWnUrkUYiCAAAaYilVijfRHad+k/aGXf8n5R+TV+doHwCAdtGU4szqx+mL9xf7TGgBGaaEVtENADu4pIjSI65cQJmkhmJXf77OyuAlrei1AACtYgNWwg3Tvcvmhl3/L6UehX5I068xwYv3F+tOahr2CNJjoBaHlEEl4fg6KCAnI1Xr3oCqxP6wbtzVWrhwoTXZ32xQOD1qFCqulb6R3/fq3nn/I+V3aWizAAHTQC8MXm09rDtKpkZCOepFwRnUR8xA/o3Be7hxZ+ClLWx439+Q9NsNaUWnMvEaTuBJPelJYhBAXOEl9EWA1+qN0P8R5XQ7SNdIL0FPOqL7scpCjGo3SSjhp9Yt1zT7ANCZUQFHbSa+Zns6DtWkbrNU12QeYIEhrvztgBTtCoR20p5ioq5oHqAfp3qX9l57fpW2kU7CHnlkd0ClplIuGX6w/pWmkq8SCmJJ6PW+uv421sBaNvzCA8LYEDDBGUrnmB4EitOhbhA7aU33hV2GANdIdpXuXy1G6INZTD+hU2ZmetH5j20hXo/eForze1kqpAFwOa/uWxFjKhDZW/jwISJUsibsNuCB4TNAitAw91TikRLVYI30lZjABW4SD9A26Cik9HCoXgx0W6VF8f+H5x3lYewKaFKYSTSxmQXqoF/ZUqGQn4cxwYXVmaKGtx+XQnPSlicbKDIYCYQzZ+1xxTdXXmDPPrn2TodYY1ssBuWRfjlyxY7wTS5WrTrSjdhJcv06sLqzOrM6sLgz+E2DO5YLI9MJwQWzTInQMHbVj6IdqNZCWvFWeq4T1TZjKoKG0wRQxxvctRZsdtY1oqi9Wv1j9Yv1pzVG6QDNIRTPImdXfPHzY4YOHD2u+2Pxi/Yu1U+ugHULeMfLrkAJZ7sTEYe2GaVuJxlOfWOq7Ng5STKSLeUx1Yv1pzd9yOEgXjD3lpHVAhPVhzR/2/oe9/Wlvf9nxbx4+rflifWJ9YeipHYLPUK/qWkulepLUNjo3YzgiESo921VjLI0iBujiAfqnNT/l0FivsJ5y0urITmCEnlh9WPOXHf/P3v8TkR0/6LCiSfqej6Ra61peG4PSPRgBqZ4loMAUypgkmgoA+HJGohNtqSdWn2wa6wNokDOqD7Y1ehX21DPDB5uf9vanHf+wt//Y+5/29rcdPq05sTqz6qGWCvblHJb/K8BqWHthylLWs3yLVDkUPzUldJ2EE6sPOwjgIeiHHY7SVmICdNAzqy+rP3j4aYe/7PiTx5/mZticWaUFNB2DSGqbzCr+mcFtrDrsS2eUJ8Inr+JFTFEIi0qxwETQQ1qGE2oBzKSlfkl9lK6W3mm20NbtlM2nNR9sPuzwxfoXazdA3ytS9+lJs0QoRak+FT/u3vA0rN3V547EhTvX/Cq/OAem4jtkkI56QtVDWupJqkr6XDI1oKe2CCdWv1ifWP+y6sT6jOrC0KXQ39OKpFBXpdGNQelmTJxI1ifa+Ivy7FWuvQVvAjCtiOWutWc8nZOiBVBk2JXoqKmkFVpWZ1QttWXok/Vd7ycOP/Fqy5a5K1gbSI2CJr/wxEAzVUApWxXdtTzfELcyQh7bo3DfsOghPWPR3X87JqZkwN2fn7fx3846OK9rh3VPBlhPkhq/f1WoLVqWanXTL50OTd4eMWok0UMspdMW02/1QCOfkOhTzmTMhZ2oUArzA1xBGGADJoEWrjMa6fzuziucFIeU4q5O3eS0KKdLatrm85MQpe4YJIMr8r4r7ZZU1QkwZ+Q/vsMmsFKtltzQ9krpqq3mLOPjoxgStKso0XmVja3Y4OoQ+sSLkWZWJaayBDMpL0/nbUfXLJFc5PIXc2qFmdBhfHTiRuY3Ix5KqpbkEShFVbc4vpHXhGiPvD7DZRPncTMmBpjXC7NmqdB3OtwA42HUZXN+rFkzWvokr1I8+cg7w+VHrozxnIxEp+3b7mUE4K99jbs2vfQnGMS9lfnBXBny98dqhRlYCy15htcChzWUABFPs0Re9waUxMJDJlC1KPDHxS4qFMO1QgXQ/VSyvmERXHizO+zuzOvXcu2zxKt8wMlpxSU/0GK6KCaECq89uqPMvCwkuJpGgHurNPZyUthrK2ysRMtnMPSIZ/VyqB3Fk0cwemXCIFCKk2LRPwecydzyKSVXqGh6JalVM4yw1mwxzNzuoi2vcfvhjWtepSiQYi8o2IuEdLI030IZnWdM+RBSGBzc4NFXPdRBs/biNd8gH3HIYUI+JFI2GyVP1NyhqEyUGxKS3BaAG0zJQ6FUqOk0Y/lhtl14jWXKbTElhiSkPCQy2d3PQIwrE+WZrHysFFdH2iYwYfahrjifldtto7bEDMvzRix4zYin2bkyMfw3xfWw3lIE15iw1u5Wn6K5ab3uH8FHFYh7a2IuOWAqDx91GJDJKBzzBgOyPJdlCrVElq6GSyz0pgIxw6v0U5KymbL9pB3k+w9Ina/Hv2mGJzAt3De8K/O8lgRTU7xwE1jdjjoxCLK/m+lSWuiTCpXlu89n3fDC1FI4luL4v8sDn3hzxVUzzDJWrmrI+Rd0vvvRmgzxxn8VyG5l7PXXfinT8uLtksZV7PJU/WB133HE/4qvplpFaonkSW7V1Sco7+VKJkfenRSufdacfq36sg+syXjmx1klz9Af9324Gq6wx73uEFuR7aiY31ei2UvWIluy+fbwcqtk61mH/dTqRlZVX+9lV/MjLMH0rf808MxjX1ut3v3J3QuRv+HbJP/LZP//N9ywVbHKNHbcCtlRxrCWLogP7+fJu903qlh60dkbeqrqkNVhFy7zH30DtYdfIbVP1WHtSZANspeiPRNtTDr4V2Uhk7Jq9kvymL2uNZZ1q6HIiq87WxTObJp9OtCwru/zEf89M5xz8y/a19gg8x5tl+poOd7W0EHi6M/I9yd3D2We14wZLsoJVhnmf4XMaMC8Zi2Oue4Y5sNjI5ND3U7i203+nn49dPBLZ7qLfk0O8ls0d/IJLVkNuRDZkwvlTPd/iKUvDx028lpaMv1n4ChlrFyr4qylKjYvSwq4/0zZEDrEsyz3Ph47+5ypvG6HYmYypcx/DeFEEfHa02+uZ83d9rSfXrz87SUTPmH2Wg8Tz2eKf3uY5DeSmnk/nr5dvDG+Te6XVhZQeJ4UR+e6N8uSBfr5svJGXruQ+uZLv7YGv8oWNl5iW91i0wR22d15UKJ4kTy5tj6snYxnvpdmvTwmWJEe7NHy1fuGTx3F+V0yrjV921dvPs/r2aLjNqtf2Gt3B7/ZHnMutTrcXfjp8/KK1XAtr3HKuYXX6xPMJ/45c35cAAtMcgbK71lh7wvx4iNHmYXcef9h972olFfcMGbs/v+IY3b4CmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKMzU1NgplbmRvYmoKMTcgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgMTAwIC9QcmVkaWN0b3IgMTAgPj4KL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0hlaWdodCAxMDAgL0xlbmd0aCA1MyAwIFIgL1N1YnR5cGUgL0ltYWdlCi9UeXBlIC9YT2JqZWN0IC9XaWR0aCAxMDAgPj4Kc3RyZWFtCnic1Zzxdqu4rsY/yUDS7nXOs9w3vU967szsabuTAPruH7KNEwgBQrrnaHV1pYltzA9JlmQ38j/N/+LlIvsNxf2GWi36+kvsSGr30dZJ9eLxX3Fv5ZjfqmgvhfWYFEc3K+vw3rR+LbtXa9ZdGWMq31+JLIt3exWy18G6e7v3MI3b/NOQvQjWU6QmG68HJ7vz+m1muFaWUN6qiUvlFbDWqRXvtJdrvbjXrGw8Mt6dles3a9YMgvFHdn8cTY0FJF+lYrvDWqFWM6SmuAyNOfrA0tsKeR2vfWE9NcERoDhaRpPh3rTU1FoAA1/H6/fFWddki/sXjABZ+RGvugvYJz+lgBa8yvE1/WlPPNEdYc1NYn4tu2Lh7SE3gMp3bkALCDIAlpAZGIoGWoBTcDOvvWBtf1wFAmDAJFmD4p8QFnpBJs0SAqIgQGXEqIiro8gVKZfNvHaB9eDCM669JFVimmRExmYsrZh+81RhAJ2DgAaUyrVLUP9yn7UgmLwiZUwvIJmR4QoTE1B3TCpUkPQxVNhT3InFa+eH+WTc9Tys511Vfu2khJAe4npkSbmckY2US0AlFQzint0EIoAir4cP+SwtXTwJawupa/ecbzuSij+JmhV6lBQw8YrxuhjcACFiSqEo2XNqaj4ju1K1yZuanvqrzPCh9WW1cuMhYUBJyiAGLTGVv41x6fSlUQQycIzD5ntmASCRmvez07xeAmuG1Fit0gshNJPqodnoRr0AT2uKqPMmLnNSFsMI0TSjktTNJEcR7ASvZ2BNP5wlpG68lasV43qXDJAZZcyTswMixESYXguooAACSvFCh0sMdncT0+bBpyL+W17fFMHfSwOL99PaV/oj/wAUGUAMbYo1UQQKq2AqFJhI6bJyaHaTD0TRtFA8zJBeHzosqcRfp4ECioirqAoFDK47wgBKUigCJuLRqQgBVDAFVayKupZ8FgGgj+kjCoUFYnoUoc/z2hnWqkJoFkGMwn2qAig8toTHBBWsEguwAKoMCJI9+iAAqIAKAXrgbgmQk7IhZ4pRvoACDzruTK2wxNdq1kO1krhSwWcuwri6YSBVo6/FGunqhCzz8giWUI4yZFJ6iAC9B/kpKMmP0wQAFYKB1wPl+v1lZQVMoARAg6hExy7CClZJf0B/kK6R7ih9LV0DUzFXBEthhHkcC82ve2gH7aiE+uqRltp0XUIAk8zrsewMK7maB6KpXCdJz32uAaSzAxVWiR3QH6U7Svum3Zu0R2kP0tfoFVQhkwb10J7apt8dwwXhgiCojJ4VCTnkA6nyBRAmXqKQydpOaYm/TbO0WJWychlMUgmhEjawWvqDdG/a/ZDLD7m86+VN2oP0FfoQPT08LmsZWuoF1YnhxPrESlkD6CEdFDG4lT5Zq6bfkpxXnts9S3wtLA8d733qhadSuRRiIIAABpiKVWKN9Edp36T9oZd/yflH5NX52gfAIB20ZTizOrH6Yv3F/tMaAEZpoRW0Q0AO7ikiNIjrlxAmaSGYld/vs7K4CWt6LUAAK1iA1bCDdO9y+aGXf8vpR6FfkjTrzHBi/cX605qGvYI0mOgFoeUQSXh+DooICcjVevegKrE/rBu3NVauHChNdnfbFA4PWoUKq6VvpHf9+reef8j5XdpaLMAAdNALwxebT2sO0qmRkI56kXBGdRHzED+jcF7uHFn4KUtbHjf35D02w1pRacy8RpO4Ek96UliEEBc4SX0RYDX6o3Q/xHldDtI10gvQU86ovuxykKMajdJKOGn1i3XNPsA0JlRAUdtJr5mezoO1aRus1TXZB5ggSGu/O2AFO0KhHbSnmKirmgeoB+nepf2Xnt+lbaRTsIeeWR3QKWmUi4ZfrD+laaSrxIKYkno9b66/jbWwFo2/MIDwtgQMMEZSueYHgSK06FuEDtpTfeFXYYA10h2le5fLUbog1lMP6FTZmZ60fmPbSFej94WivN7WSqkAXA5r+5bEWMqENlb+PAhIlSyJuw24IHhM0CK0DD3VOKREtVgjfSVmMAFbhIP0DboKKT0cKheDHRbpUXx/4fnHeVh7ApoUphJNLGZBeqgX9lSoZCfhzHBhdWZooa3H5dCc9KWJxsoMhgJhDNn7XHFN1deYM8+ufZOh1hjWywG5ZF+OXLFjvBNLlatOtKN2Ely/TqwurM6szqwuDP4TYM7lgsj0wnBBbNMidAwdtWPoh2o1kJa8VZ6rhPVNmMqgobTBFDHG9y1Fmx21jWiqL1a/WP1i/WnNUbpAM0hFM8iZ1d88fNjhg4cPa77Y/GL9i7VT66AdQt4x8uuQAlnuxMRh7YZpW4nGU59Y6rs2DlJMpIt5THVi/WnN33I4SBeMPeWkdUCE9WHNH/b+h739aW9/2fFvHj6t+WJ9Yn1h6Kkdgs9Qr+paS6V6ktQ2OjdjOCIRKj3bVWMsjSIG6OIB+qc1P+XQWK+wnnLS6shOYISeWH1Y85cd/8/e/xORHT/osKJJ+p6PpFrrWl4bg9I9GAGpniWgwBTKmCSaCgD4ckaiE22pJ1afbBrrA2iQM6oPtjV6FfbUM8MHm5/29qcd/7C3/9j7n/b2tx0+rTmxOrPqoZYK9uUclv8rwGpYe2HKUtazfItUORQ/NSV0nYQTqw87COAh6IcdjtJWYgJ00DOrL6s/ePhph7/s+JPHn+Zm2JxZpQU0HYNIapvMKv6ZwW2sOuxLZ5Qnwiev4kVMUQiLSrHARNBDWoYTagHMpKV+SX2UrpbeabbQ1u2Uzac1H2w+7PDF+hdrN0DfK1L36UmzRChFqT4VP+7e8DSs3dXnjsSFO9f8Kr84B6biO2SQjnpC1UNa6kmqSvpcMjWgp7YIJ1a/WJ9Y/7LqxPqM6sLQpdDf04qkUFel0Y1B6WZMnEjWJ9r4i/LsVa69BW8CMK2I5a61Zzydk6IFUGTYleioqaQVWlZnVC21ZeiT9V3vJw4/8WrLlrkrWBtIjYImv/DEQDNVQClbFd21PN8QtzJCHtujcN+w6CE9Y9HdfzsmpmTA3Z+ft/Hfzjo4r2uHdU8GWE+SGr9/VagtWpZqddMvnQ5N3h4xaiTRQyyl0xbTb/VAI5+Q6FPOZMyFnahQCvMDXEEYYAMmgRauMxrp/O7OK5wUh5Tirk7d5LQop0tq2ubzkxCl7hgkgyvyvivtllTVCTBn5D++wyawUq2W3ND2SumqreYs4+OjGBK0qyjReZWNrdjg6hD6xIuRZlYlprIEMykvT+dtR9cskVzk8hdzaoWZ0GF8dOJG5jcjHkqqluQRKEVVtzi+kdeEaI+8PsNlE+dxMyYGmNcLs2ap0Hc63ADjYdRlc36sWTNa+iSvUjz5yDvD5UeujPGcjESn7dvuZQTgr32Nuza99CcYxL2V+cFcGfL3x2qFGVgLLXmG1wKHNZQAEU+zRF73BpTEwkMmULUo8MfFLioUw7VCBdD9VLK+YRFceLM77O7M69dy7bPEq3zAyWnFJT/QYrooJoQKrz26o8y8LCS4mkaAe6s09nJS2GsrbKxEy2cw9Ihn9XKoHcWTRzB6ZcIgUIqTYtE/B5zJ3PIpJVeoaHolqVUzjLDWbDHM3O6iLa9x++GNa16lKJBiLyjYi4R0sjTfQhmdZ0z5EFIYHNzg0Vc91EGz9uI13yAfcchhQj4kUjYbJU/U3KGoTJQbEpLcFoAbTMlDoVSo6TRj+WG2XXiNZcptMSWGJKQ8JDLZ3c9AjCsT5ZmsfKwUV0faJjBh9qGuOJ+V222jtsQMy/NGLHjNiKfZuTIx/DfF9bDeUgTXmLDW7laforlpve4fwUcViHtrYi45YCoPH3UYkMkoHPMGA7I8l2UKtUSWroZLLPSmAjHDq/RTkrKZsv2kHeT7D0idr8e/aYYnMC3cN7wr87yWBFNTvHATWN2OOjEIsr+b6VJa6JMKleW7z2fd8MLUUjiW4vi/ywOfeHPFVTPMMlauasj5F3S++9GaDPHGfxXIbmXs9dd+KdPy4u2SxlXs8lT9YHXfccT/iq+mWkVqieRJbtXVJyjv5UomR96dFK591px+rfqyD6zJeObHWSXP0B/3fbgarrDHve4QW5HtqJjfV6LZS9YiW7L59vByq2TrWYf91OpGVlVf72VX8yMswfSt/zTwzGNfW63e/cndC5G/4dsk/8tk//833LBVsco0dtwK2VHGsJYuiA/v58m73TeqWHrR2Rt6quqQ1WEXLvMffQO1h18htU/VYe1JkA2yl6I9E21MOvhXZSGTsmr2S/KYva41lnWrociKrztbFM5smn060LCu7/MR/z0znHPzL9rX2CDzHm2X6mg53tbQQeLoz8j3J3cPZZ7XjBkuyglWGeZ/hcxowLxmLY657hjmw2Mjk0PdTuLbTf6efj108Etnuot+TQ7yWzR38gktWQ25ENmTC+VM93+IpS8PHTbyWloy/WfgKGWsXKvirKUqNi9LCrj/TNkQOsSzLPc+Hjv7nKm8bodiZjKlzH8N4UQR8drTb65nzd32tJ9evPztJRM+YfZaDxPPZ4p/e5jkN5KaeT+evl28Mb5N7pdWFlB4nhRH57o3y5IF+vmy8kZeu5D65ku/tga/yhY2XmJb3WLTBHbZ3XlQoniRPLm2PqydjGe+l2a9PCZYkR7s0fLV+4ZPHcX5XTKuNX3bV28+z+vZouM2q1/Ya3cHv9kecy61Otxd+Onz8orVcC2vccq5hdfrE8wn/jlzflwAC0xyBsrvWWHvC/HiI0eZhdx5/2H3vaiUV9wwZuz+/4hjdvgKZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iagozNTU2CmVuZG9iagoxMiAwIG9iago8PCAvQkJveCBbIC01LjUgLTUuNSA1LjUgNS41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZA7DgMhDER7n2IuMAjWmF3alLlGmihS7t+GVaQRq6VBYD+ePwUfy3jaOBj4Wkm+tVza+dpS9P3oHayp7l7aAU/hEV5B3V6mLPUjQJkCeUABBcQLl2yyKin8YoyBzDV457nS8l6dU2/8d8t5AC4G5HITXKyMVzfPxt9mD/sBWclHzwplbmRzdHJlYW0KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTUuNSAtNS41IDUuNSA1LjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYlOFXC5dUwUgyuGCUhlcXE5cAGxXBhQKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQkJveCBbIC01LjUgLTUuNSA1LjUgNS41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZA7DgMhDER7n2IuMAjWmF3alLlGmihS7t+GVaQRq6VBYD+ePwUfy3jaOBj4Wkm+tVza+dpS9P3oHayp7l7aAU/hEV5B3V6mLPUjQJkCeUABBcQLl2yyKin8YoyBzDV457nS8l6dU2/8d8t5AC4G5HITXKyMVzfPxt9mD/sBWclHzwplbmRzdHJlYW0KZW5kb2JqCjE2IDAgb2JqCjw8IC9CQm94IFsgLTUuNSAtNS41IDUuNSA1LjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYlOFXC5dUwUgyuGCUhlcXE5cAGxXBhQKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvQkJveCBbIC01LjUgLTUuNSA1LjUgNS41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZA7DgMhDER7n2IuMAjWmF3alLlGmihS7t+GVaQRq6VBYD+ePwUfy3jaOBj4Wkm+tVza+dpS9P3oHayp7l7aAU/hEV5B3V6mLPUjQJkCeUABBcQLl2yyKin8YoyBzDV457nS8l6dU2/8d8t5AC4G5HITXKyMVzfPxt9mD/sBWclHzwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9CQm94IFsgLTUuNSAtNS41IDUuNSA1LjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYlOFXC5dUwUgyuGCUhlcXE5cAGxXBhQKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQkJveCBbIC01LjUgLTUuNSA1LjUgNS41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZA7DgMhDER7n2IuMAjWmF3alLlGmihS7t+GVaQRq6VBYD+ePwUfy3jaOBj4Wkm+tVza+dpS9P3oHayp7l7aAU/hEV5B3V6mLPUjQJkCeUABBcQLl2yyKin8YoyBzDV457nS8l6dU2/8d8t5AC4G5HITXKyMVzfPxt9mD/sBWclHzwplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CQm94IFsgLTUuNSAtNS41IDUuNSA1LjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYlOFXC5dUwUgyuGCUhlcXE5cAGxXBhQKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQkJveCBbIC01LjUgLTUuNSA1LjUgNS41IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzIKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZA7DgMhDER7n2IuMAjWmF3alLlGmihS7t+GVaQRq6VBYD+ePwUfy3jaOBj4Wkm+tVza+dpS9P3oHayp7l7aAU/hEV5B3V6mLPUjQJkCeUABBcQLl2yyKin8YoyBzDV457nS8l6dU2/8d8t5AC4G5HITXKyMVzfPxt9mD/sBWclHzwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9CQm94IFsgLTUuNSAtNS41IDUuNSA1LjUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDNQyOIyUPACYlOFXC5dUwUgyuGCUhlcXE5cAGxXBhQKZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1NCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzQ0LTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDU1CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDQxMzkwIDAwMDAwIG4gCjAwMDAwMzExNTIgMDAwMDAgbiAKMDAwMDAzMTE4NCAwMDAwMCBuIAowMDAwMDMxNDUzIDAwMDAwIG4gCjAwMDAwMzE0NzQgMDAwMDAgbiAKMDAwMDAzMTQ5NSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDIzMjk2IDAwMDAwIG4gCjAwMDAwMzkyNjAgMDAwMDAgbiAKMDAwMDAzOTUyMyAwMDAwMCBuIAowMDAwMDMxNjQ4IDAwMDAwIG4gCjAwMDAwMzk2ODYgMDAwMDAgbiAKMDAwMDAzOTk0OSAwMDAwMCBuIAowMDAwMDM1NDU0IDAwMDAwIG4gCjAwMDAwNDAxMTIgMDAwMDAgbiAKMDAwMDA0MDM3NSAwMDAwMCBuIAowMDAwMDQwNTM4IDAwMDAwIG4gCjAwMDAwNDA4MDEgMDAwMDAgbiAKMDAwMDA0MDk2NCAwMDAwMCBuIAowMDAwMDQxMjI3IDAwMDAwIG4gCjAwMDAwMjk4MDcgMDAwMDAgbiAKMDAwMDAyOTYwNyAwMDAwMCBuIAowMDAwMDI5MTcyIDAwMDAwIG4gCjAwMDAwMzA4NjAgMDAwMDAgbiAKMDAwMDAyMzMxOCAwMDAwMCBuIAowMDAwMDIzNjIzIDAwMDAwIG4gCjAwMDAwMjM4NTYgMDAwMDAgbiAKMDAwMDAyNDIzMyAwMDAwMCBuIAowMDAwMDI0NTM2IDAwMDAwIG4gCjAwMDAwMjQ4MzYgMDAwMDAgbiAKMDAwMDAyNTE1NCAwMDAwMCBuIAowMDAwMDI1NjE5IDAwMDAwIG4gCjAwMDAwMjYwMzAgMDAwMDAgbiAKMDAwMDAyNjI2NiAwMDAwMCBuIAowMDAwMDI2MzkwIDAwMDAwIG4gCjAwMDAwMjY1MzAgMDAwMDAgbiAKMDAwMDAyNjY0NyAwMDAwMCBuIAowMDAwMDI2ODgxIDAwMDAwIG4gCjAwMDAwMjcxNjggMDAwMDAgbiAKMDAwMDAyNzI4OSAwMDAwMCBuIAowMDAwMDI3NTE5IDAwMDAwIG4gCjAwMDAwMjc5MjQgMDAwMDAgbiAKMDAwMDAyODAxMyAwMDAwMCBuIAowMDAwMDI4MjE3IDAwMDAwIG4gCjAwMDAwMjg0NjEgMDAwMDAgbiAKMDAwMDAyODU4NSAwMDAwMCBuIAowMDAwMDI4NzI5IDAwMDAwIG4gCjAwMDAwMjg4ODkgMDAwMDAgbiAKMDAwMDAzNTQzMyAwMDAwMCBuIAowMDAwMDM5MjM5IDAwMDAwIG4gCjAwMDAwNDE0NTAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1NCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTUgPj4Kc3RhcnR4cmVmCjQxNjA0CiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAH+CAYAAACfjJ/BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXxcdb34/9dnkky2Zu3epEm3dKF0oUnaQlEQUZALKuJGacsuXhS/P/WKV5SrV+Ve5Xu/4lUB2aRlKaIsiqhIpRRoS5ekO7QlJU3apkmXzEz2ZLbP749zZjIzOTOZbM32fj4eebSdc+acMyfNO+f9Wd4fpbVGCCGEEEIIIUTv2Qb7AoQQQgghhBBiuJPESgghhBBCCCH6SBIrIYQQQgghhOgjSayEEEIIIYQQoo8ksRJCCCGEEEKIPpLESgghhBBCCCH6SBIrIYQQQgghhOgjSayEEGIYUUqtVUr9tA/vv0Ep9Xoc+/1WKXVvb8/TG339bD04z6VKqRO9fO9NSqnNMbZvUkrd1vurE0IIMVwlDvYFCCGEOHe01s8Cz8ax31cH8jqUUjcBt2mtLx7I8wghhBDnivRYCSGEGHaUUtIwKIQQYkiRxEoIIYYwpdQFSqldSqkmpdTzQErItquVUnuUUi6l1Fal1MKQbVOVUi8ppc4opeqVUr8xXw8OZVOGB5RSp5VSDUqpfUqp881tYcPylFK3K6WOKKUcSqlXlFJTQrZppdRXlVIVSimnUupBpZSK8ZnmAb8FLlRKNSulXCGbc5RSfzU/73al1MyI83xNKVUBVJivzVVKbTCv67BS6osh+1+llHrfPFaNUurfIq7j2+Znr1VK3RzyepZS6inz3lUrpX6glLL8famU+oRS6pB5/34DRP3cQgghRjZJrIQQYohSStmBPwFPA7nAH4HrzG1LgN8BdwBjgUeAV5RSyUqpBOBVoBqYBuQBv7c4xSeBjwKzgWzgS0C9xXVcBvw38EVgsnncyONdDZQCi8z9roj2ubTWB4GvAu9qrcdorbNDNl8P/CeQAxwB7ot4+2eBZcB5Sql0YAOwHphgvvchpdR8c98ngDu01hnA+cDGkONMArIw7s2twINKqRxz26/NbTOAS4A1wM1EUEqNA14EfgCMAz4EVkT73EIIIUY2SayEEGLoWg4kAb/UWnu01i8AO81ttwOPaK23a619Wut1QIf5nqXAFOA7WusWrXW71tqq4IIHyADmAkprfVBrXWux3w3A77TWu7TWHcD3MHqbpoXs8zOttUtrfQx4E1jcy8/8ktZ6h9baizEXLPI4/621dmit2zCSuSqt9ZNaa6/WehdGovP5kM93nlIqU2vtNLeHfvYfm/f1b0AzMMdMSr8EfE9r3aS1rgL+H7Da4lqvAt7XWr+gtfYAvwTqevm5hRBCDHOSWAkhxNA1BajRWuuQ16rNPwuBb5vDAF3mcLqp5numAtVmchKV1noj8BvgQeCUUupRpVRmlOuoDnlfM0bPVl7IPqEJRSswJp4PaKG74xwP+XshsCziHtyA0RsFRu/eVUC1UuotpdSFIe+tj7g/gXONA+yEfF7z76GfNWBK6PWY36fjFvsJIYQYBSSxEkKIoasWyIuYr1Rg/nkcuE9rnR3ylaa1fs7cVhBPgQet9a+01sXAfIwhgd+x2O0kRhIDgDkEbyxQ06tPZZ66H953HHgr4h6M0Vr/K4DWeqfW+jMYwwT/BPwhjuOfxejNKgx5rQDrz1qLkcQCxpy10H8LIYQYXSSxEkKIoetdwAt8QymVqJT6HMYwP4DHgK8qpZaZRSjSlVL/opTKAHZgPPT/zHw9RSnVZe6PUqrUfH8S0AK0Az6L61gP3KyUWqyUSgb+C9huDpPrrVNAvjmPrLdeBWYrpVYrpZLMr1Kl1DyllF0Za3ZlmcP0GrH+bGG01j6MBOw+pVSGUqoQ+BbwjMXufwXmK6U+Zyax36Czt0wIIcQoI4mVEEIMUVprN/A54CbAiTH35yVzWxnGPKvfmNuOmPsFkoNrgFnAMeCE+d5ImRgJmhNjuFs98D8W1/EGcC/G/KVaYCbw5T5+vI3Ae0CdUupsbw6gtW7CKMDxZYxetTrg50CyuctqoEop1YhRLGNVnIe+CyPRrAQ2YySWv7M4/1ngC8DPMO5dEbClN59FCCHE8KfCh+4LIYQQQgghhOgp6bESQgghhBBCiD6SxEoIIcSAUEr91lwAOPLrt4N9bUIIIUR/k6GAQgghhBBCCNFH0mMlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYCSGEEEIIIUQfSWIlhBBCCCGEEH0kiZUQQgghhBBC9JEkVkIIIYQQQgjRR5JYjQBKqd8qpe7t7337SilVpZS6/FycS4iRRim1Vin10z4e4wal1Otx7HfO4kJvzq+U+pFS6pk+HP9SpdSJ3r6/h+fqddxTSmml1Kwo225SSm3u29UJ0T2JPWHbJfZI7OkRSawGWX8kH1rrr2qtf9Lf+55LsX6ohRC9o7V+Vmv9yTj2G9S4EHr+/ngQGY3xRCm1WClVrpRqNf9cPNjXJEYviT2jl1IqWSn1O6VUo1KqTin1rRj7KqXUT5VSNUqpBqXUJqXU/HN5vf1NEqshTimVONjXIIQQo4lSKmGwr6EnlFJ24M/AM0AOsA74s/m6EGKYGG6xJ4ofAUVAIfAx4G6l1JVR9v0CcAvwESAXeBd4+hxc44CRxGoQKaWeBgqAvyilmpVSdyulppktHrcqpY4BG819/2hm/g1KqbdDM/rQbvtAi4tS6ttKqdNKqVql1M293HesUuovZqvDTrNVIWp3sFJqtVKqWilVr5T6fsS2pUqpd5VSLvM8vwn80ldKvW3utte8D19SSuUopV5VSp1RSjnNv+f39Z4LMVQppS5QSu1SSjUppZ4HUiK2X62U2mP+DG1VSi0M2TZVKfWS+fNSr5T6jfl6cAiH2TL4gPmz3qCU2qeUOt/cFjb0Ryl1u1LqiFLKoZR6RSk1JWSbVkp9VSlVYf5sPqiUUhafJ0Up1aaUGmf++wdKKa9SKtP890+VUr8MPb9SKh34OzDFjAXNIee2K6WeMu/Pe0qpkij3sUs8CdkWKy4+rJT6m1KqBfiYMlpd/0cpdUwpdUoZQ4ZSzf3HmTHJZd6jd5RSob9PF5v3t0Ep9bxSKiXkXFHvbcTnGGtub1RK7QBmWu1nuhRIBH6pte7QWv8KUMBlMd4jBCCxR2JPl8/Rk9hjZQ3wE621U2t9EHgMuCnKvtOBzVrrSq21D6Nx6Lwenm9IkcRqEGmtVwPHgGu01mO01veHbL4EmAdcYf777xgtABOAXcCzMQ49CcgC8oBbgQeVUjm92PdBoMXc50bzy5JS6jzgYWA1MAUYC4QmQj7gm8A44ELg48Cd5n34qLnPIvM+PI/xf/NJjBaPAqAN+E2MzyzEsKWMRoY/YbTU5QJ/BK4L2b4E+B1wB8bP1iPAK+Yv4ATgVaAamIbxs/x7i9N8EvgoMBvIBr4E1Ftcy2XAfwNfBCabx4083tVAKbDI3O+KiO1orduBnRixDPPc1cCKkH+/FfGeFuBTwEkzFozRWp80N3/avI5s4BWixIMo8QS6j4srgfuADGAz8HOMe7UYmGW+7z/Mfb8NnADGAxOBewAdcqwvAldiPDQsxHyoiPPeBjwItJv73WJ+RTMf2Ke1Dr2GfebrQkQlsSf4Hok9nXoSe8KYn2sKsDfk5b1Ej0W/B2YppWYrpZIwnjNfi/d8Q5EkVkPXj7TWLVrrNgCt9e+01k1a6w6MbtZFSqmsKO/1AD/WWnu01n8DmoE5PdnXDJjXAT/UWrdqrd/HGF4SzeeBV7XWb5vXeC/gD2zUWpdrrbdprb1a6yqM4HyJ9aFAa12vtX7RPHcTRtCJur8Qw9xyIAmjx8GjtX4B48Eg4HbgEa31dq21T2u9Dugw37cU4xfZd8yY0a61tupZ9mD84p4LKK31Qa11rcV+NwC/01rvMn+WvwdcqJSaFrLPz7TWLq31MeBNjAcAK28BlyhjSPNC4Ffmv1MwHo7e6e7GhNistf6b2ar5NMaDVU90Fxf/rLXeorX2Y9zb24Fvaq0dZgz6L+DLIceaDBSax3snIqn5ldb6pNbaAfyFzvsTz70lJP7+h/k9PUDs+DsGaIh4rQHj+y1ELBJ7uiexJ35jzD9D41GsWFSL8b04jNGA/gWMRvhhSxKroet44C9KqQSl1M+UUh8qpRqBKnPTuCjvrddae0P+3Urnf/Z49x2PMbTkeMi20L9HmhK63Wz9CbZIma0RrypjOGMjRqCIdv0opdKUUo8oY2hhI/A2kK1GxvhjISJNAWoifkFWh/y9EPi2OfzDpZRyAVPN900FqiN+jrvQWm/EaGl9EDillHo0MDTG4lqqQ97XjPGznBeyT13I32PFl7cwhqktAfYDGzAaSJYDR7TWZ2Ndc4TIc6aons1B7S4uhsa38UAaUB5yv18zXwf4v8AR4HWlVKVS6t+7udbAeeK5t4HzR8bfaqJrBiK/l5lAU4z3CAESe+IhsScKc5hiYOjkPRixCMLjUaxY9EOMRHcqxhDU/wQ2KqXSop1zqJPEavDpOF5fCXwGuByjO3ma+XqXscX96AzgJXw439QY+9eGbjd/KMaGbH8YOAQUaa0zMbqvY13/tzFadJaZ+we62AfyMwsxWGqBPKXC5gsUhPz9OHCf1jo75CtNa/2cua0gnl/0Wutfaa2LMYZlzAa+Y7HbSYyHKQDMuQdjgZoefyrYivFzfC3wltnzXQD8CxFDcUIvsxfn6Q+h5z2L0Xo6P+R+Z2mtxwCYowe+rbWeAVwDfEsp9fE4zhHvvQ3E39CYW0B07wELI/7/LDRfFyIWiT0hl9mL8/SHYRt7tFFVMTB08r+01k6M/1OhvXqLiB6LFgHPa61PaGNE01qMAjzDdp6VJFaD7xQwo5t9MjC6h+sxWjL+a6Avyuzyfgn4kdl7NBdjQmI0LwBXK6UuNsds/5jw/18ZQCPQbB7rXyPeH3kfMjCCi0splYvRqiHESPUuxi+zbyilEpVSn8MYZhPwGPBVpdQyZUhXSv2LUioD2IHxi+xn5uspSqkVkSdQSpWa70/CmDvZjjH3MdJ64GZllO9Oxog327UxhLdHtNatQDnwNTofZrZizNeI9nBzChgbY6hzPOKJq1GZQ3IeAx5QSk0AUErlKaWuMP9+tVJqlvkw2ohxH63uZaS47q1F/D2PGHNcgU3m+b9hzn35uvn6xvg+sRjFJPZ0ktjT89hj5SngB8ooQjYXY2jj2ij77gS+oJSaqJSyKaVWYwxNPdLDcw4ZklgNvv/G+A/oUkr9W5R9nsLoiq0B3ge2naNr+zpGD1kdxrji5zASvC601u9hBLD1GIHWiTHBMuDfMHremjCCxvMRh/gRsM68D18EfgmkYrTebGOYT2YUIhattRv4HMZEYyfG5O6XQraXYfxy+o25/Yi5b+AX4TUYk5yPYfzcBatRhcjE+NlzYsSTeuB/LK7lDYw5ki9i/CzPpHN8f2+8hfGLckfIvzMwhvd2obU+hBFrKs14YFm5qhs/Ijye9MZ3Me7zNmUMR/4nnfMiisx/N2M8mD6ktd7U3QF7eG+/jjGMpw7joeTJGMd1A5/FaPxyYUw2/6z5uhBRSewJO7/EHkPcsSeKHwIfYnyv3wL+r9b6NQClVIE5bDDQC/ZzjOIWezBi1zeB67TWrh6ec8hQ4cNqhYhOKfVzYJLWuqetF0IIIYQQQoxo0mMlolJKzVVKLTS7/5dilAl9ebCvSwghhBBCiKGmJ1VNxOiTgdEtPgU4Dfw/4M+DekVCCCGEEEIMQTIUUAghhBBCCCH6SIYCCiGEEEIIIUQf9Wgo4Lhx4/S0adMG6FKEEIOhvLz8rNZ6fPd7Dl2pyZk6M23CYF+GEKIfnXWdcPt0e/JgX0dfSXwSYuSJFp96lFhNmzaNsrKy/rsqIcSgU0pFXVV9uMhMm8CXP/aLwb4MIUQ/euTl29oG+xr6g8QnIUaeaPFJhgIKIYQQQgghRB9JYiWEEEIIIYQQfSTl1kcZh8PB5s3b2Lt3P35/OzZbCosWLeDii5eTm5s72JcnhBBCCCHEsCSJ1ShSUVHB+vUvsm1bJtu359PQkERWlodly6rYvXsfK1deR1FR0WBfphBCCCGEEMOOJFajhMPhYP36F3n88cmcOJEWfN3ptPPaa+M5cCAdeJG77vqK9FwJIfpXX5ZLVP12FUII0ZXEJ9GPZI7VKLF58za2bcsMS6pCnTiRxrZtmWzZsv0cX5kQQgghhBDDnyRWo8TevfvZvj0r5j7bt2exZ8++c3RFQogRSVt89efxhBCityQ+iQEmidUo4fe309CQFHOfhoYk/P6Oc3RFQgghhBBCjBwyx2qUsNlSyMry4HTao+6TleXBZht6i9xLJUMhhqjBaKG1OqfMcxBCRJL4JAaBJFbDRF+Ti0WLFrBsWRWvvTY+6j7LljWwePHC/rzsPpNKhkKMHjZ7B4m5Z7BnO0mye/G4E3G7cvA6xuN3D71GHyHE6CCxScRLEqthoD+Si4svXs7u3fs4cCDdsoBFfn4ry5c3smLFsoH6GD0mlQyFGIIGqBU4KaOB5LxqdpZlU1Y+LRjnSoqdlJYcpqOmEE9TlHmi8V6TtBwLMbINQHzqU2zqyTVJfBoRJLEa4vorucjNzWXlyuuAQIKWFZKgNbB8eSMrV143pBKUeCsZLlmynWuu+dQ5vjohRH+x2TtIzqvmqWemdolzG/45kYOHMlizqhpf5RxpHRZCnDMSm0RPSWI1xPVnclFUVMRdd32FJUu2c9FF+/D7O7DZklm8eCErViwbUkkVBCoZ5sfcZ/v2LC66aJ8kVkIMY4m5Z9hZlh0zzu0sz2bRzDO462LHhJgGq2qXtEQLMSyds9gEEp9GCEmshrj+Ti5yc3O55ppPDYtERCoZCjE62LOdlJVPi7lPWVkOpcVVfX94EUKIOElsEj0lidUQN5qTi+FcyVCIEacfWlN1lKbRJLs3rjiXaPeGHUP18KKinb8nbPYOknJPd5nE7nFMwO9Otr4mqRQmxMAaoPjU29gEEp9GK0mshrjRnFwM10qGQoxGfama5XEnxhXnvO7B/ZWVlNFASl5VlEnsh2ivmYa3KXNQr1EI0VVv49NwiU0g8WmoGPz/CSKm0ZxcxKpkmJPj5rLLTjN3bhPl5WfYs2efrG0lxCDprmpWe820mFWz3K4cSoqdbPjnxKj7lJQ4cbtywl7rSwtvTxu4bfYOUvKqupnEXkVL5dyoD2phrcU6+KIQYgD1JT71NjaBxKfRyjbYFyBiu/ji5Sxf3kh+fqvl9qFYJr2/BCoZ3nZbLVdeeYacHDc2m2bxYid33FFJY2MSDz00k5/8ZB4PPJDPww9X8etfP0pFRcVgX7oQo0Zo1awN/5yI02nH71fBX+hPPTOVlLwqbPbow5U9jgmUlrhixrnSYhcex4SB+hjdsueejmsSe1Lu6XN8ZUKIaPoan4ZDbAKJT0OJ9FgNccOxTHp/6lrJsB2PR7FuXaGsbSXEQIuj2TT+qlmn6aibarmP351Me8001qyqYmd5NmVlOZ2tyiVOSotdtNdMw+9O7uNUiviaX63O0ZNJ7O11BVGOYjE/TFtuFkJ05xzEp57EpjgvKQaJTyOBJFbDwHArk97fQisZvvLK33j44SpZ20qIIaInv9CjJVYAnqYsfJVzWTTzNKXFVSTavXjNeRCxhq+cKz2ZxC6EGBr6Iz4N9dgEEp+GEkmshonhVCZ9IMnaVkIMLf35C93nTsZXN5X2GAlYuOhNqN21HMfabrWtJ5PY/YAKa/0NHLdr86/MaxBi4PRXfPK7k2nvUWwCiU+jkyRWYlgZzeXnhRiKhlPVrL5od+VGncSek+Nm6VIHF1zgIinZT/bcvXS4cnGbJY6FEINjtMenQGxasKCBtDQfXq+N1EnHJTYNoOH9P0mMOqO5/LwQQ1FfqmZBPHMSwptHe9PSa/2ers2u1u819mt3TKSk5H0OHsoIG4o8a1YT1157kl27snnkkRlhFcdKSg7SWjM9WHHMFnJObdH829N1b2zd7O+XpmUxyo3m+BQam554YrplbHI3ZQXPJPGpf0hiJYaVvpSfdzgcbN68jb179+P3t2OzpUiJdiH6yOsYT2nJ4S4JR0CgalZL5dxBuLr+43On0FIzg9WrKikzJ7HbbJrPfe4k69dHL3G8etVRmivn4ZPWYSHOudEanyoqxnDttSd57rnYsclXOU96rvqZJFZiWIm1thVELz9fUVHB+vWByor5IZUVq9i9ex8rV15HUVHRufoYQgxtPWiY9LuT6agpZM2q6riqZsU+RfettDrGtu6OocNaZKOLtv5MW1MO7sr5nD/zFCXFVdgSvOzYMTZmMZ2y8mwWzjxNa10B/pCzBlqHQ+c1xNt+211LcOR+I7VlWIxSEp8sXw+PT8cpK8/pNjYtmHmatroCAIlP/UQSKzGs9Kb8vMPhYP36F3n88clSol2IAWBUzZrDoplnhmzVrP7ic6fQXFdIc10h4+fuoqzMeghRQKDiWKv58CKEOLdGY3xKza6POza1SWzqV5JYiWGnp+XnN2/exrZtmVKiXYgB5Hcn467Lj1lSvbsW3FjzD6zaTWPNOYi1LVS3raUxGl97UnHMj8IWdl7jwDaLz6N0yEnNzfG2AlsJfe9Iax0WIh6jLT71NDYBEp/6iSRWYljqSfl5KdEuhBgI7jgrjnmGecUxIcTwIrFp8MgdFSOelGgXIk69bHSMNuY/9mG7ttx2bf3tul938xDibvXVXY9h3Zoc/bO1usbFVXGs3TW2yzUk2dux554mJdtBkt2Lxxya5HZMAHf0hyEhRi2JT1HPHyne2NRmEZsS7O2k5J4Ki00drlw8jvH43ckjoE9pYEliNURIxbqBIyXahRADoaV+MiUl+2NWHCspduGsnB/2enKGi/S8SsrKsikrnxZWBrm05BAdNYXBEu1CCNFT8cam+srzw17vLja11UzD15R5rj7GsCSJ1RAgFesGVl9KtAsx4vV+aHwvdG3Nta6i1bmfP445CbFafKMfw6pF2qJil+66LbCei68jFceJIlavqqCsPKtLxbGS4gZcNbPwuFOD702wt5OeV8nTz0Qvg7xmVTW+yjkjalK9EL0i8anL8cIOEyU+xR2bOlKxKeMg8cWmKlolNsUkidUgk4p1A6+3JdqFEKI7rY05uI8sZN7MWkqKq4JDZ1pd4zj74fl43SnBBxeA1NxTlJVlxyyms7M8m0Uzz+Cuiz03VAghognEprkzosemUBKb+ockVoNMKtYNvN6UaBdixBvgluB4D2/VSuu3bDm2aP21mIfQuT36MUL5tdW6Mt2tJxP+Hp87Dc/JGThOzgj2ZoUmU53ltCAlu56y8mmWRw0IlEHuqJsaPJ4Qo4rEJ2P/PsYnnzuNjtqZOGtnmFuix6eexqbQ44lOklgNssiKdTk5bpYudbBgQQNpaT5aWxP44IMx7N69RxKrPuhpiXYhRDibvYPE3DPYs51hxRa8jvH4Ilo+RXT2HpRBFkLER+JT30ls6h+SWA2w7opShFasmzWriWuvPcmuXdk88cT0YK/KkiVOOjo8VFRUyFyrPuhJiXYhRqReNi4mZTSQnFfNTssJzYdpr5nWTbGF6BW2upuvENkSHLqEilXrr9V8Bqt5CJHHDz1v95W4Is/auT247ov2d+4X2FHruMsge/uxDPJIWBtGjAISn7puO4fxaTBiE4y8+CSJ1QCKpyhFoGIdwLXXnuS557pOGnzjjYkcPpyB3T4y51pJRUQhhi6bvYPkvGqe6mZCs69yrkxojkOba2xcZZDdrpxzeFVCDE8Sn/qPxKb+IYnVAIm3KMV5581m2bI6tPaxa1fsSYMjca6VVEQU4hzowzD4xNwz7IxrQvNpOuqmxjxVd2vCWM01iGwJDp/foLrs39PWX6vr0xbnsNrP6rXAnIPwz2CwAa31kygpORCzDHJpsYuWyrkWZ+mZkdYSLEYoiU9d94txfQMVn+KJTSXFLlr7ITYZ5x2Z8UkSq34U2vPidrezffvYbhOl885TLF/eSGurl8cemx62T+R8q7a2BHbudIyYOUH9WRFxOPR6DYdrFCKSPdvZZUKzVWxKTNB4HBPwSatwTF53Cg01s1i96ghl5dkWZZBdtNdMk9Z1IeIQGZ+izVO35zQHCy4Ia/HEpraa6RKbuiGJVT+J7Hm59dajlJXF7i7dvj2Liy76gJUrr+PZZ9eHTRqMNt+qpMTJr3/96IjoyYm3ImJOzh9oaGiImowMh16v4XCNYoTpYStwtMnfSRETmmPFptJiYwFJYz5DfJWrrFpf/RYtvP7gNluXI1lVzgpl1aobv5CSfl3+Fn3vWNfR1piDv2M+5888FVYG2e3KpblyHtrdOcchcK7Qe2KLcZa4W4F72kswMhuXxWDpwf+/WIUpQuNTrHnqKD9JGQ24g3OtJD5ZXUdbYw6e9gWcH7F8RIdrLM2V8/C5k8Pij8SnriSx6gdWPS9pab64qqv4/R0UFRVhsyUHJw3m5LijzrfasGEiBw9mMBLWtoqsiGhl+/YsFi+u5JFHZlgmI2PHjh3y64DJWmViqIs5+TtXsXChiz17cuKKTZ3zGYZ3Ja4kexuZY2vIzDmD3e7F7U6k0TmBhvq8sAV/e8vnTqG5rpDWuoLgawnmoJxYDyZCjCbdFabwem1xz1Nfs6oK7wiYazXQsclrxqbmusKwWJSAP8a7RIAkVv3AqueltTUhruoqNpvxA7548UKWLavitdfGs7Wm0tsAACAASURBVHSpY1TMtwqtiBhNQ0MSdrs/eB8jk5F58+YM+XXAZK0ycU71oqequ8nfq1Ydo7o6Pa7YFJjP0B6SMFhdmtUcBqsdreYpBHTXEhxgtdZKrHemZjoYl/8BZWVZXR7mSkp2c+bEbFoac8OuKXAOq+N2brO6jq6tv919qr60+sbTOm65No0O20GI3ulhT1W3hSlWH+PiFWdxe2w9iE3WQwKHQ3xKy3QyNo7YFHlNEp/OHUms+oFVz8v+/VksWeLkjTeiV1dZtqyBxYsXAnDxxcvZvXsfBw6ks2BBA088MT3q+yAwjHDfsH4QD1RE7C75bG1N6PJ6IBnx+99n+/ZpMc8z2Pcq3p654f79FMND5LAat9vGzvKcmA8k5eXZfOxjp5kxoyUsNsWaz2CVWA0HifY2xuV/wNPP5Ed9mFu96gPcRxbhdlvfs8BxMsbWMiakVbnNNZbW+kl4B6k3L9qQKo9jwrBvxRcjQ+j/UVuCl+07Ys9V31mWQ2mJE69Phc1Tjx2bhudcq0R7G2PjjE2xeq6MHq+TYbGpxTWO9vqJgxabYOTEJ0ms+oFVz8uOHbncdttRDh+OXl1l+fJGVqxYBhhrLK1ceR3wIn5//MMIB1NfizEsWrQg2EsXzZIlTvbvt15/Yvv2LJYtOzPk71W8PXOD/f0UI5/VsJpvf/uDbueDlpXlcue/fkhCou7RfIbA2jHxNlJbrvES/LPrOjGxhLW0WrRgRmvBzRp3krKyrJgPc2XlWZSU7Mae5MftTqTZOZ7m+sl43SkoBamZTnLzKqK0Kh+gsWYWnqbMrtcZ30ezFrPamPG9T82rijKkKnRunPWVqPBm+n64YCHCRcaneOaql5XlUFriIjXV18PYlB08xnCJT72NTU31k4OLJKdldR+b2puyLXuxJD7FRxKrfmDV8+J02nn55Slcf/1xdu3KZteunJA5Qg0sX97IypXXhSUgRUVF3HXXV/jf/324R8MIB0N/FGMI7aWLlnwuWeLi8cete+8aGpLwelW/3Kva2lpuvuEG1q5fz6RJk2Lu21Px9swN5vdTjHzRhtWEPpBE09CQREKi7uF8hqP4KucNq5ZGgLTss12qIEYqK8th0SIXP//5vJCHkn04ThTh6UglN6+im1blI7gqzws+7Aw0m72D1LwqWetHDFlW8SneueqJST487oQezbUajbHJ3R5fbPJUng/u6M8r/W2kxSdJrPpBoOdl+/asLl3Phw+PIT3dyx13VJKc7CchIYXFixdGLZmem5tLcfEF3fbkhA4j7E5/l/nur2IMob10RoKWFUzQSksdLF7cwEsvTYmakBjJiI1lyxr6fK/uv+8+dmzdyv333ccvfv3rmPv2VDw9cz35fgrRG9HWe4l3PqjXHJZRUuzElqD7YT5D9OZEq0bfYItkaPOuRfNwYHNoC2ZgAnZYUQhFl9cUGntEFUQrDQ1JpKX58PtVl2E47Y05cbQqZ7Nw5ila66YSOtA51lyHMBabO1vTu95Xe9xr/ZyhvW4q2qKV2mq+xlCa1yCGN6v4NFixCYZmfDpXsWnBzDra6ozpCxKfek4Sq35g9LzsZuHCesrLc7p0PRcXO0lJsXHXXV+LK5GJpycndBhhLANR5jtQjKGlJZErrqgLSyT3789ix47cuIsxBHrplizZzkUX7cPv7zArJGaxcWMWR45kRH3vsmUNLFw4n4SEw326V7W1taxbu5Y3LryQy9eu5e7vf79Lr1VfktP+/H4K0VtW61FBfPNBS0qcwbHupSWH8Prpsu5epLKyHEqLq875fIZEeztjxtaSnt05f6DVNY7W+klxtXZ63Im9mvsZeCgpLXVQVj4j5jkC96b1HN2b5GxHXC3dg/H9EgKs49NIi03Qt/h0rmJTSXFVMLE6F0ZafJLEqp/4/Yr16wuidj3fcktN3MeK1ZMTbRihlYEq8713737q6nK47bajlmOYb7vtKBs2TGDPnviKMeTm5nLNNZ8K29fhcOB0Pkp5eWvMZOSyy77MokXn9+le3X/ffdyYn88F2dmsycvr0mvV1+S0v76fQkQVx7j+yPWoAuKZD1pa7KLFHIbRXjONjBkfxjdEx+6Nuj3Qqhja0hhonfWHtT5G6jo3IbBPaqaT7LwjUeYP7Ke1ZkZwHRurVmKlNO4Go+V7wz+jP8xFm/tZVpbDRRfVx31vklR4+WIbmpZ2B2+WP8DHir9FekpOzApb4dsC6+h0CnyyaN97q2vSgApbuyd6NTEh4tLL+DRYsQmGZnzqjE3jgA4g8BkSATuQ0C+xKckiNgWuReJT9ySx6gebN29jx47Y3Zg7dmSzZUv85bSj9eSEDiPsrhdloMp8+/3tfOITp2OOYb7++uP4/b64jxmpJ8lIbm5u2L3y+TrQOgGtNeDj979/KWrvUqC36r2PfASAu6dP5/yQXqv+Sk7j+X4KMZBCWzsjK2a1tyewatUx9u/PZOvWcRGL/rpor5kWbE31NGUF5zPEM0QnHgn2dlJyT5Ga7TArFXZW0PPHuS5Lor2d7Lwj3cwfqMRXOS/m3CavYzylJYc5eCj6w1y0uZ89mfcZ7d7s/uAFzjoPs+eDF1ix8PZYHzlu8bZ0x/v9EqK/Bf6PAkM6NnncibSasakncyR7E5/a3c3U1e+nzvkBjsZjNLTW0NJRD7RHu1q2bk2mo2MMkAF0/ul0jmHr1mZSUmppbc0C0kK+0oFUwNbtvZH41L3hcZVD3ECV07bqyQmIpxdloK7L50vodgzzrl3ZXHSRK+5jWikqKmLNmi+Rk/MPios/JDFR4/UqJkyYwDXXfInp0zsfbAL3au7cWaxf/yLbt0cmY9a9S4HeqskpRiCbnJIS1mvVn8lprO+nEAMtMAfhaFVa1IpZS5cacxsTEnRw3kKLxYRhtzO3214dY4iO0WDQOQ6+q+QMF2PyKimzqAZVUnKAhppZtDdmWxZ6CvzdhmbMWKNiVqwhymXl2SyeWYfnVH5wscsEFTHXwWND1eaxZvVxo0JVWU7YPVqyxMXLL1vP/czK8uD3qbjuja8hC7sKb3xqanNw6NhG3l5xEZds2cgFs68jLcW4h4HWX5u9g8ScyJLEuXQ4JuBzJ4e1sAc+Wbsrvu9Xhyu3y/co0Dqs6TphYShV4hLDm9uVw+WXn2LatFbL2FRa6mThwgaSkvo3NkH0+GTPaCA9RmxqrJlFW2N22Hv7Gp/OK6jm8K6jHDq+iRP176N1Txbl9dHW1gq0Aqe7bN2wIdZ7FZBGR0caT63LJCNxClnpkxiXWcCknFlkpU2gud0ZMz4Fy6Vnhccmt2MCXvP7NBrikyRW/SCynLbV+gkHDmTh90drZeiZWL0o27dnkZ7ewbp1z5EYUho5mt6U+VZKsWtX7BKou3blsGJFQ8x9uqvEV1FRwSOPPMlz616ixXMXTU3jgz1WTufzXZKknvYuRfZWBYT2WskaVGKk8DrGU1p6iAuWOGMOW16z+jgNFbGrLwXmM8Tq1SktdtFcOS/s9cjfaQn2dsbkVfJ0jGpQq1cdwdtxPr4Oi9Zh84AJ+EnLrufM2fHdDlFOKj6D7fSk4FCXRDqTm0Qz2VItdnR1PhcWuVhafJREuw+v18apU3Yef3x61JbV0hInic3pLC11xb43JS5sVdNJUt6woTF7P3iRmwqmckF2NjcW5LPzgxe4eOFt5lYbiRmN2KdUW5YkLik5SGvNDNotyki3OSZSUvJ+zGsqKXbRVDkv6qgtyZfEQPI3ZVFUdJanniqMHpvWVNP0YRHeluhzr3sbmyD8/3iCvZ30OGKTp+N8fO4UEqzqrPcgPq1Zc4jnn9/H5nc20NbeFvNeKRRJSXYSEmygwOfz4fF4e5iERdJAC62tLbS2ngE+DNualTae1KR0rpk4wTI+JWY0R41NpSUHaTGHOfotEquRFp8kseoHoeW0Y62f4PEoKioqelwsIlK0XpTQcz/00ExuvfXogJT5Viq+8bBKxR4KGKsSXyBJevLRHfjajtLmfxW//5aYQ/B62rsU2VsVMDklhZWTJvH5z36Wy6/8lKxBJUYEvzsZX/MYdh9K6mbBTaNiVkeMScKB+QxrVlWxszy8VycwRKetxuhRTpl0HHvIMJqOYAtmCvbc05R1Uw2qrDyb+TPraKqdFvPzJdm9cQ1RTrT7iGeQsnInkXx6PLbTRjVPbfcwsfAE6eley5gaSJgSq6ZCU6Zlj1dJiYPSUie2lvQu729uc/LesTd56eOXAnBP0UzmvPEmF8y+jvSUHGz2DuxTupbLjxxK5LEo4+5zp9BcM4PVqyops/h+lRS7aKmZgW8YlDIWI5Mto4GdO3Njx6aduSya6YqZWMUXm6YB0WOTz53cs9hUN63bzxc7Ph1n06bH8PmcEe9STMmZQeG4uUzJmc7EjMlkpY4lLTkNm7IZ9w0jNrUUnmDtUxOpqQGjx6rZ/GoiK8vBgvNrcZ+20eZtptXmor7eS2OjG7+/DWgh+vBCQ0PrGRo4w3MN0OTp4DtFRazbbsSnMZlpccUmo8R916HdIy0+SWLVD0LLrV977UlefXUSBQVt3Hrr0bCu3pdemkJSUvT5OPFWnrPqRcnJcXdZuyGeijq9KfOdkBDfukwJCdF/CLqrxLd58zY2bdK0tmxh60cvYsXbbwGfA4zWWKsheD3pXSopWWzZWxVwz6xZzNzwFguXXCJrUImhL7S5LsZE8YT0VsrKpsU8VKD6UqzECoz5DL7KuSyaeZrS4ioS7d7gEJ3myrkkJLczZsbBGC2Y00mJsxpUSXFV8OElsjw6GC3CbrctriHKy5Y6SVHe4DA8u+qcxJ4UGB4Y0o8UOJ/yQuqpbG5cXc2p08nk5HpITfXR1paA05HExAkd5NaNJdHrB28CnupJrDjPydJSBwmJOvh7YP36AopmNbO09CgptROgyXhIfPuDF7mxYGrYsGSjVfhFLll0K8RRkrisPJvzZ56mpa4ACB92096Ug6dyPufPPEVJcVXIw+RYGsxkrHPojNWioF0njIdvjXeZVTHqxBGf7NnOIROb2noYm1rqCvGblSp6Fp98wFPA3/GFtPbkpE9g+czLWTj1IsaldSaRnfHJE3zNGL5sxKab1tRGxKZ0nI5sJk6YQG7dCuxTUvGj8CV5aBzfgCe9LRib9u4dw6FDNvLzTjF9+klaq33Un3Vy0lXNcUcFbm9n4vXqqVO8fuYMS3Ny2XX4BS674qq4YtOCmadx1xUGXx+p8UkSq34QKKednt7B0aNpXH11nWWP1dVX13HoULplEQtjztQL1NQkkJ3tITUVWlo8vPrqAXbv3svKlZ8P9nRFDj0EY7Jn5A9tPBV1elPmuz/WZequEt/evfsp3/YmNxcaw2JuKsznieqXcPtvCe4TOQTP6r5ECvQuReutCpicksJNBfls+Ns2liyZ2u/JqRCDIbL6UrRhy91VzArwu5PpqJsa9qCjib7gI4AtQeP1Q/aMIwBxV6nqjrIR1xDl5csiW4Ujztfm4o87H+X6pbeTmdK1ulZTczN//dOztHq/ERyeXFLiZOIEd5d9PWntrIsY2gRQVZXOwUMZ3Lj6OMkdyTQ3tLC3+m3+YPZWBQR6rYrnfI7sLFcPHvQKLLf73Ck01xXSXFcYsiaNEIPvXMQmABVjMdqy8hwyszzMnfth3FMp4olNYBWfPMADQFnnPiqTq666jCX2L5ASrJjeefzuYhMoPqjwsmvbc7R4/g/Z2ek9jk3Hj0/m+InZ3Lj6OKnV+eiOZFwtZ3low7e5bFwufzt1Cg24/X42158l0fE6S23zKStfHPPzB5Li5pDEKtJIiU+2wb6AkSBQwW7u3EZmzGjlueeMB3Gn0x5cpO2NNyby3HNTKShoYffuPWHvN4a9/YHWVi+VlWk8/vh0fvrTeTz++HQqK9NobfWyfv0fcDgcQOfQw1ALFjR0eahwOu28/PIUrr/+OB//+ClyctzYbJqcHDdXXnmG226r7VWZ74svXs7y5Y3k57dabu8uYduzZw+PPfood5vFJ+6ePp11a9dSV1cX3Keh4Qwe9zvcO2cmAPfOmUkCbwGukH3Ch+B1vS9OUmw/DntPoHdp57Zt/PLwYdSf/hT16+GjFZyuPcGSJa5ef1YhhpLQyluzZjVx221H8XoVTzxhxJwnnpiOx6PwehVJGbHnSEajAHvu6S4tmKHne+yx6fzkJ/OCC4DGkpXlweNOJAE/CfhR6OBXgvmViCYpyR9fyd5EPynKS6rykKo8pIV8jbF1sPXwn6lxfMjmw6+Qaesg09ZOpq2dlKQmTmbX8dTvttLkOkpr4/P4/WdwOtvYsCGXdU8X4JzkID25mWxbG94cJzvLcroddqlzHOz44OWw3qqAySkp3FiYx96zj5GUHN8Q7CS7N3iH/DG+Ou8iIV/KbEXu/Apsi1voAYWI07mITWAdm0LP6XIl8dBDM2lpiT82GbGoJ/FJAw8RmlTBUuABSooXk5agLePT1sN/5kRYbDLiU2pyC/UTnax7uoBtmzeT4D9CknrZGIq3YaJFbHLFF5uyHaTYPJQfeYVbp03j1QsvZNell1Kc3TmP06t9PP/8WlyuBMtjBXSWS1cjPj5Jj1U/KSoqQikoL4/dHVpens2FFzrCXn/jjU20t/tjTihfteoYGze+xec/f61lj1Fams/yl+6RIxk8/vh0li51cOutR0lP95GQkNKnMt99XZfp9htvZE2MSnwA2ze/y82F4cNiInutIofghd8XJ2kJ3yeBBvy2zvcEepfuvfe7Ydf0k5/8nAceyO8y5K/RDS+/3MT11x9n165sdu3K6dFnFWIoCVQGLCvPiTls+eWXp3DtZ6rwRVTdstk7SMo9HVGRzlicM3S/yMU+rYYqA+zbF98CoO2usd1+Nk9HvCV7oz8AuNoaeLdqG5tWXMQlW7aSnpxJTcNJjjfUcKrlLB5v6IPWO+aX4cSJVH7xvxnk5WaSnzyJpGlj2Lr9Aoxyx9a/E3aW5TB3zj7KqzezPqK3KiA4LLk4vmHJnmFSkliIUH2NTRBffLJaiLi3UynijU0QGZ82AFtCtn4auIHs7OjxqaHNFYxNH9u6jSvnXkF2qtFrVZ/Vzo6yHE6c6CDFtok3Lw6fPnHiRBo7yrLJmt3GhLNjaMrsYGdZXszr3VmWw9Lio7iPucLi0+LsbLZ+9KN8dc8enjx2DIAzZ8+SnPwMHR03Rj3eaIpNo+NTniNax1ctb/ny8MRq//732bkzduvB/v2ZJCQc4ODBD/D52ikuVqSnd7Bx4wScTnuw5dfql67Taecf/5jEjh25fPObJ7okFZFizfXq6OgIVvLrzbpMe/bs4b333uOVT3wi7PW7p09n3hNPkJhqVE/cvbuMpMxM6trbmWQmV/fOmcna6s5gETkELzAk88CBdE6f/D1JysU1kybx4knjPfn59qi9S7GGEYYmp3fe+SFJScgaVGJYCqzRlJnl6XbYcsWHaRSO7SxikZTRQEpeFfsPZKBOpjN7djNpaV782fUkZdfjPpWP2znO2DdiWI/VUGWIb7hySbELV+V5wddC5zAE5z/FubBvaYmT5MZ07MpHijm3KlV1Jkt/PfgqHxmbzTf276fJ4+aF/a/EfW+hjdbWNipaT1PBEbOo1msYLatTgQVAMTAPMB6eGhqSKN+xiZsK+mdYctQHva6ViDvLt1vsaNWYa3EIIfpNX2ITmPEp/yinTtvJ9WkSAY9P4/Q0MXFmPe0npuNpyrJcjLa3UykiYxPEE59SgWdD3nE5cAOgYsanvxx6lRsLzOkTU/PZePhvrFnyOZKUjwozUbLbnok6fWJnWS7LSyqZ40zAZo+vdz/B7mPL4T93iU92m40nLriABKV4vLoagI6OvwIlwHzL4xnl0qMkoSMsPkli1Y/iHZObmBj+38Lv98dMyGbNamL+/CZ27MjpUi3ljjsqee21iRw40D+FKrpbH6vqyHthlfx6ui7T7TfeyK0FBZZDXlZNzuO3v96J262Yn5HOnoYG7q+o4BcLFgT3CQSLCVO+3CVJMtaJ+iRO5/M89uA7vHnxxVy+ZQtfys/j3aRnuH71p6L2LoVWdrTidNrZsSOXFStau01MhRiq/O5kOmoKmTu3Eo8ngfXro1fQW7nyOIkJrXTUTcVm7yAlr4qNm8bykY/UWz7wLFt2HBS4HeO6LPi4YEEDTzzRdUHd0OHKkT3CgWpQzTUz4lqIM56FfUtLXKRWT7Z8/77a93itYjP+bsaITExOJj3BKG9R3dqGJg1oA6KVOtbAMfPrr0AmcBlwBVlZGdSeOMmvT57g1x8eiXneTLuPa7/o6vZBz1lp/WAjxFDW29gE5pzOqUfxeI35iy+9FL723NixblKnHsV3ZJ7lYrRW8Sme2NQSZ2yCzvi0fcdGGhsD5dSnADcDKmZ8qnYe5+3KzfzuE5cD8L2iWczbuIlr5l3OhLR0lN2Py9VMstrEvXMuBbo2RDc0JKGSjBil3baQe+AkxfYAWms69LcJFAjLyvLgd9s47qjkn/VV3cYngISEh/D5fgGE9yQGYlNDRBI6Ukli1Y9stuReVZCLlZAFuqitgsyGDRM5eDCDG2+sJilJ4/GoPhWq6G4dqL17PTQ7/shbUSr5dSdab1XA92fP4omjmwBNZaufjStWcPmWLdxdVIQGbt61i3+bNYunjv2Tq6+ezcqVXw9LkioqKvjLX17nlRff4capRqvNmoICWr1eak9s58ILvx+11H1/FOQQYjjwNGWRGvew5XoAknJPs/9ABh/5SH3McuZrVh/D25wRHNYT6D2KNlQZuvYIJyRoi2pQnaItwInbjvtkIWtWVXcps1xa4qS0xEVOXS52jw3wkWy2BKcoL8dcJ/nVOw+FJVWJSpGfmkr2mAncuvgKnj5VxpKGBh5efH5wnzv3vscT1TNx+28GWsjMPMVVn9zP2EoHu9pPc+D4aZqaThKedDUCfwJeJWPMCtZ88lamN08AoFXbqZlZy4O/ndGjYclRH/R02B/GPeuXhTJjLfksRO/0JjYB2MfX4vPT7XQK+/jaLrEJejaVwtORSHuU2ATdx6fk5M4iXUpdR3a2prTkVMz49OzOdV0rhk7N5+8HX+drJVeh3YoxyS+yanL06RNZWR7wKHJsbUxpNnrvX98wEbvtZZJtH+LXGq07e7hKSxzkNCdxz+XfCV5vxYx6i9jkBL4FtODznWH69PW4XDd0KXHfXDOj69qIIzQ+SWLVjxYvXsjSpUf5xz8mRN1n2TIXF1ywKOw1raPPDYg2hCbACDLjuPPO6cydO4ukpN7Ne4Lu14GqP/Uat0+bGrWSX3cCvVUAV27dytolS4LD/MAIBOdlpgJ+PjpuXDAxur+iAg3scDq55/33SbIpdrzzBkUP/2/wvYGk8JFHUnGdKuPeT34cgLuLijj/jTe4dlIeP/6P/6SkpMTyHoQOI+zPCopCDEVxD1teZgxbtmc7USfTY8ailpZETp22M3HWQZKS/Cwdq8jM8rBx44SYQ5Whs0e4+IJGzry3OGwRyVAJ9nZSck+RErL2jNuVi985lqbGFt7c8gBXXvhVimf5Oxf2dSeQ1DgGe3Uedou56K72Ru5789f4zMU1bcBdM2bw3dmzAZj75pscmA7vbdpPejfDky9c1sylk+cyP0VxVaJi22d8PPq7FBynf8C1k8fzx5MnQ37Vezl2/C3+37O7uK10FYunnG9+xujDdKyS0EAZ6cbKeXG3ngsxVPU0NgEkZrjYEWM6RUtLImfO2Jk0yUliog6LTT2ZSvGvd1ThPNTz+NR40sbGbQ9y8aI7OXPmNAA2m43v3p2BjaMx41OV8wQnGuq4d1l4g/S/F81i7sY3KfzkhTTXN6G9b3LHtPDlY0Lj09KSdqY0G69Pb4JlJQ72H/DhPLWJNy9ewce3bMHj3URg2sTSEhcTTowJW/PPOjblYAxlfBSAY8c28o1vLCAjIy0Ym1oq5+K2WL9qpJLEqh8FHs7fe29MjIfzpi4P5/Pnn0dJSQ0bNnQdxhdtCE2o0LLjvZn3FBB7HSgnNjbx/dmXAsacqPN70GtVW1vLBwcPUubx8Gh1Nak2G4Wvv47bHz58JtVmjEp+9cILjfMUFTHz9dfxa80ry5fz2e3b2fLRj/KRzZupq6sLnjuQFNafeoFbCyMKY5i9Vnt37eLVV//OmjU3dLm+vhbkEGLIiKOxLt5hywnmsOUku5fZs5ujxqLQxclfeim/y3DlEydS4poI3uHq+vMV+BjJGS7G5FVSZrn2zAds/tNbnHUepuzAq1yScCtJp835XkCa2fqbYOssO5xo9iI9uftFGjuMJ47MxEReWb6cS8aNC+53w5QC1j72GvPiGJ68rMTJolMdjLHBGJ+N4gbFjPyXuC59Kg8uXMikffv4a10dNb4E2juaAGhqb+KBdx7m+oVXccXcf8EfNkynq9Ak1PX+guDrfp0QVyNvsEHY/Etg/R2AhOAchvjWfwnforrdX4ju4lNPYxMYSzhES8a6i03xTqXoS3xqdq7jrPMw5YeeD74vM2UcyRXGz2+s+LR2xzPcUmg9fWJ1/lQee2wfXvdhkhMU644dC8amwD43Febz/Nk/sKzkI1xwqp1UmyLbDyscCWycsp5FKVO4IDubGwsKeKe+Hl/eWq759Cc570wy2T4vLbbOWU7RY9NlwN+B4/h8HZTtLOPCCV+jXXemGPF2QI2E+CTl1vtR4OH8tttqufLKM3GXN7/88ku48ELr8uWxhtAEhJYdN+YZfYp77/0uP/zhf3Dvvd/lmms+FVdCEKuAg932cpcqfaumTOH+++7r9rhgrFt1y4wZnLzyStITEnjz4osZk5BA7ZVX8q/Ti7DbrgT+gI9PcnPhzIju7Gmcn5XF30+f5tbCQi7Izub2mTPDzr13737efddPApu5d86csHPfXVTECydPct2kyTz20ENRr7GoqIi77voKd945nW9+8wT/8R+H+OY3T3DnZPi9MgAAIABJREFUndO5666vRB1GKMRw43HHV0o4UKHK406MGotCK2pFLjOxYcNEnnmmgIKCNpYtq4+5bEFJsYsOh3Vvf4K9nTF5lTz9zFQ2/DPiHP+cyJPrMjhY+Q4bV1zEe8c20dwee62qgLqm02yu3hX896z0dOaMGRO2z1cK89D6OJWtzbyxYgXrjh1jb0MDV27dyl6Xi0NNThJtb/LFaw9wicPNGHPZmVNpircS2ti3dw8/MHu//n32bBweDzZ/O7dcci25qZ2Lfz6372+8fOBVMhpTKCmOff0lJU78DVbr2AgxvPU0NkH0ZCye2HTVVXUsXepg2TLHAMUnO3v27GXjiouorHs3+B4VR6ZR7TzOsYY6biss5MqtW6lrbw/b/v3Zs3C3vwWcYKMZm+ra26ltbw+LT+6Ot1lwwhGMTQD1LU3s3b+HH8wxYtPdRUVUtrRw+HA5zc3NlteT0ZhCaYlVbLIB1wb/tXtXGX6/z2K/0UESq37Wm4fz3NxcVq36ArfeepIrrghfb8ptthDEYjVvqzes1scyGL1VgTWlAv59xgzWPflk2PpTVmpra1m3di13T5/O/RUV3FhQEDbMr3ONqirL89w7ZzZHmptZd+wY95hJU+jaV7W1tax/8hHamp7jpsKu1bUCvVbJNj/79pTHvN6+JKZCDBduZy4llr8gO5WUOHGbLbRuV07UWBTPcOWdO3PxNmWxZtVxPvGJ8Bj3iU+cYvWq47TWTMfrTolYt8SQknuKMou1ZwLqT73GmvypZstrPmWHXw5bLyUgdAUUG5odx8qD26anpXG0tZX7KyrCjr3u+HHmZ2ZwU0jcun33bnY4ndy+Zw97Gho4b0wqjo1vMLejlWzVji2pg625iaxbu5s1U/PC50YUFDA3LZ3DLSd5+DNfY9HEWcFz/fn9v/Phnj0sK3XGfMgrLXahnLnY0MGvWIuzhN6LyHtitV+48PVipD9KDKSexiYAj6dvsan19Hjajs8YkPhkt73MTQVGbLohv7PEeWObA6/fFzM+PbXzaW4pLGDd8ePscDq7xKbJKSmMS1HcUhj+THV/RUVYfJqblsaGsrfIsrUH49NDB99ldV5+l9g0Lz2NdWv38P54t7GYsnIHvyY1JrG0JFpsWo7NlglAc2sjx8/sG7XxSYYCDoDAw3lPquUVFRXxjW/cQXHxdlas6BzGl5U1nmXLGs5JUYVoBRwie6sCJqekcMOUKfz43nu58pprLcuz5+bmcv9993FjvjHEcN2xY7z38fD5T3cXFXFTYT5rqx/kpijnKRozhuU5OWFBYLU5z0trzckTJ0jgGPfOsS6METjXdXl5/PCee6iuqmLt+vU9Kr4hxEjhdYyntPgwBw/GqKBX7KKlci4AHscEkrLrLYfLxDNcuawsh9LiKpor57Fo5mlKi6tItHvxuhPpcOXSVDkPX+TE5hCp2Y4ua890Ch+mfE/RTOZs3MjFcz/NmJTsKO8xHDz9QfDvJ9ra2H7JJax4+20e+PDDznObw5P/Ejo8uaqK3y1ezC27d7Plox9lxdtv4004EXzPnvQU3t5io7VlC/euuDTsnHcXFbHu2DE69uyhauFH+c9Lb+Gnb6+jrPYwAOu2v8g9ed/jptXH2FGWw06LIhz6ZD46xv0SYrjqaWwC8LiyKSlxdplO0ZPY1Fg3FV+/x6dAo/SlAPxozmweO3oUjcbn93LSWcnUsbMtj+lqa+BU0ykedHpJsdnYasaZ0NgERnz6fqDBOcrUCSM+1QTf8yYe9uzdwx8v/1jYsYzY9AZt3s28s+VS8hb5mdpZIwS7J4Fpp9Oixiancz47y4xeuYraMiZPKIl6z0YySayGEKuEzOFwUF//25hFFZYudfVLUYX8/EksWVIWca7wwBDpezNnMvfppzn04Qz27CnoUp595crr2LltG1sOH+ahigpuLSwMS46+lJ8fnGuVakuwTIxq29s50tLCK8uXh73+3enTmf/kk/j9fj49cSIZSUkx14L5Un4+T1RXM+Vvf6PB5epx8Q0hRopAaWOrCnqBKk4dNYVotx2FRrvteE7lsWzZiS6VR+Mdrpxo9+J3J9NeN5X2uqnBOnmhLZCBSeGRr1mtPRNgNUz5xoJ8th15kcvOvy3iuJ0UxlCbgC/m5XFBdjZ3TJ+OAtr9Np6onokPuLXww7Dj31JQwC8+/DA4NPkr06fjTU5njOqgpq2Nn7z1MjV1U7m5cIplQ9GNBQW8fdbBK/ve5idzPsN/fuTL3PH3BznRdJZ2bwev73iNm+wryZzdxtJiFwlmEY6Exgzs1fm0dqRjU36U1mGfpyf6pfiWEP2sp7EJwHN2krHUwsHex6bAufszPlnFprkZYzjYZMyvPFy7i7yxcyzj098P/oObCqcF5xVZxSaAmyJi002F09jucIZNnegSn157KawnPSA0NpXveJtLVqxgtqNz/KBbeUlutcHxbDJnt7Gs2InN7sfnTsDWmMGxQyvYiZFYHT/7Xth8ptEUnySxGgZsNs3KlccoL88JK7G7ZImT4mInNlvfR3Q6HA7+8pfX2bhxPNdff5w9e7IoK8ulteEly96qAKPXaipPvPV2sEwngNY+Wlu9PPvsej756c9z29f/P7719a92mf9075w5PHvyJOfPOY8Lm5ssz3N/RQU3RVn7auWkSexwOjna2soWh4OHjx6N+TmL58+nsqqKN3pZMl6IkcLTlIWvcg6LZp4Ja6F1u3JorZzTpTSu2zkOFKxZfYydZdmUleXS0JBEW1vsin8QmBPR+183bou1ZwzWDT/3zJrFnI2bKFl+CWOmaNrMxMTXkEpGwxgSPIk42xpo9bQF3/N/ZhoPKoHe7Y0XX8yTVZtA0eX4txUW/v/snXl8U/eV9r9avVuSzWpkG2MbAWG1ZUNiSEgIaTrdkhTSQMFkITDptDPTtzNdkpJ502bemel0pkvaMkkgCQmFTAghTdM0bIGwBLwbDBgw3ldsrMWLLGt9/5CvrN0yq0n0fD58kK2rq3uvrh7/znPOeQ6vNTbypyGx50fZ2WTv38/qrBlsrzlPW0szNkcLmzTLAp6PoAxbT1egS7uPpJgEfrDwIb5/YAsAJxqLWTn3G0y0KojpdA3V7HFGHP8i+GJgtNzksEQx2JJO4drGIW5S3TRuArBaA/FTYG7656wsnqyoAOBMx2GWPTqXXpsMmTGeWGMMEqsU44CBYw1F/GvBndx3/LhflU8obtqkmc7MAweoN/W5X/ej7Gzu+OQT/mFODv9eVkRPby+bhjLwvnBzk/0IfYNzAP+hvjKrlIlX4pl4JZ4eh+uz6HFGk5aYgMglxXGlpwWb3YJUEvzaf14RCazGOFxudyqKihTuWQqxsXZMJglVVQpefXUaCxcayckpGlXpYeD3SeTkyXFcuJDIxo11zJtnZM/OM2yub2VzfU3I18dKnFjwduB59dXhAaLJia/y7cmTg5QTpvLWuTrKbUZ+X+c/hC5aLKbugQcCvu9z2dnccfAg55Ytw4nLGjn3rn/xyZ4Nu/r94Te/YcmBA1dtGR9BBLcNPKW+IIXnDksUlg41lo5gbqDesOjGYetL8FrwWC3igGU4nhB6IjwPQ3jsaV0sKMFedsZOsPQnBHyPUGXK69LUfHhoP7rep70cuvLzOknqSOJAxT4SpTKMNldvRqJU6n5tYVoa25qamJUYw8Ikld/+tzU3+2XfC9PS+Luj+2ns7+frkyaNmEEXXLjeOrWPyyY9P7lrBbPGZ3Cuqx6700F5SznLs+8Z6k8AcdABxMExFvoNIoggIEbgp9Fyk7VXgb1Wc9Xc5OsXFy4/RScYcDod5ObqOeAxGysYN61Wq3nm1CkGHQ6MRgM/f9GGUjndi5sOln/EurRUtjU3s85DVA6Hm4K1Tnx7yhR+UXmCPQ21PD116ojcdOSKjqMHD3G808BP7lpBckwCUpHLkELiwUWe/BQjlaOITcZguoITJ72mLlQJUwK+j+c1/rwhEliNcQgW6MIshb17/bMrnnbr1/o+nqioUFLb+qugr1m+vIOYGDsffDAFk93bgcd7SF8/A8Yinn1gacD9bNJk8UZjK645CK6eCLn4NZ5KryVK7PoCj0QCggXy4+npNMWe4PvfF/vZzQ8ODrLtjTc4u8Q162G0lvERRBCB/4JHGtdLXl5t6J6IPB2mxiy/58KBRG5GHm9kwQJ83iN0mfKzWVls3fcpA45vI/CKWOLEahfRk3aFC/217qAKoM1sRpPgcunz7FX48E7vMut2s9mrV1TAJo2GzP37+bZaTXVvb1gZ9FiJhA7LRUzWQXaePcLitLmc63K95kJXLcuz7wnzKkUQQQS3gpsSp1zi/T9N5qtf7eD8eeF9gnNTlETC2tRUtjQ2AuB0HkCvn09pmYpEhZUZM7ppGLjAwdbWgKJyKG6C4K0Tz2o0aA4cQCGT8du6On5bVxfy3GIlEhJraxgcdHHTd7VfCeuaxEclYjBdAcBs7Q/rNZ83RAKrMY5QFugCPO3WwVXWd+zYyaBmEiO9T36+jqqqRHJyDH79FAJchKRn585Uli69QGv96/zNQw9TWTnVb/tgyo0A3wnhAFJRDZvra4mVSDDZ7fzap2HTFwVD5/XjadOYvu9jXvh/LzJ3rrehx/e/+13WqX1mXEWyVhFEcE0QJxipqYln1apmysuVfuXKOTkGamriSU82YulP9Hilf1+BAI/WIWKSL1NaoqK+IXbUZcoCr6RNWxkgk/7vxMf+H/pMroGd53p7uXf8ePdrn5g6laJund/+BWfTQErx42lp2B0Ojt19N+1mM5n7DzBg/zcg3WtbtdrEk2sbubP+Co/tfoVDBXdx32cn+IdFq93bdPR1uTT0MOaSjfR0oOdC9S58XpXkCL5YGA032foTA849CsVPsUkdlJYqqa5WYLWKKSxspKgoieLjH7BmcnBu+j9ZWe7ACkpIT2/k0UfNlJcr+cMfMjEa/5uE6C0UptQH5pn0qRTr/bkJQrdOrElNxe5w8PKCBbSbzWTtP4zJ/lsE4UmAWm1i5cNneP3ll/hkiJvW3LEYSVTU0JXxuCo+/CTy8JF3OoczW18kfooEVmMcIlFUWDXCViu88MILgBybzU5VlYIjR9QBzSQCWb4LVut6vZy5c41s2ZLBhQsJQQkpN9eAWOxk5cpW3t25n+6OFk4ePc7F+gV++xaCpJHLCR0I4/FM9h8SLX6JAcf3eP75dnp7e9n8m99T98BSJkdH8/2qKgB+5TEMD4SheWrWFxZSXFnp/r1g+S5kqwREslYRRHBtkCv1HPjfqQABy5W3bHG5cj2zsQFTR+qo9x+rvEJp2VT0ejm7dqlZtaqJnBwD724Pr0w5QdrG8uVz2blzll8mXSrSuX8u0uv5O4/X/XT6dDL37UP0/vte+wtVmrxJo2H2wYO8MHPmUKCVyrvdv8Ym+Y9hLtbqWKjVcY/OwrbKz1g3ZMVcmJrK8aZhzhq0DQZ8jwgiiCA8jIabzFfBTTHKbrcbYHd3FE4nTJ3aT925ajbXt4zITS44SUn5Czt3Pu6VjbdajrqdTn2xSROYm2CU/JSewj7bdrp7N/jx07k/H6YwdZib/nj2KGtzvjni2fQPDT4HiJLFjbj95xGRwGoMo6amBqvV5le76wutVk9VVSIffpjipcScPRuHXi9Hr5fz8cfjOXMmDtjN9763wS9zJVitX7oU7XbS0evlbNmSEZCQdu2awqpVzbz1VgL6y8V8dvddLD1xgl5LP+AdBJrs/+Z+LBY7ef7582zY8DSajAzezcnh4eISTPZ/w2QfVnXl4j1EiS8ik+7GZFrC8cPH3Op0sFIcAZs0GrL27+f06dPurJVg+R5wxlUkaxVBBFcNwRHL4RAFLVcWi51I5TacgEQ+iDypk2ilDpnchtUiZcCQzIBuIlZLDODdwyD3cNzSaHo5fVrBrFm9DIr+FQicTV+9uonz5xPoaH6bi2fK2feXIlpavK1/5eI9fGXiJPa0u2zSD125gtPpdCuuroVHptt967EpF/hM18lXJk4MmSUr9ChN3qTR8Mb+/Ty6ch9Tp09DbIXpJgvzuwbpNFj4U90Zzt3nsjz+cXYW0w8cdO8rWhrlmtsyJM969Z0FcCcL1P8x/Lx/Q4vwnOhG6r+3s7VXBLc9RstN4hDcZLdEu79bwv+e3JSfr3Nzk1XyIsG4adWqZnbtUmPu+wUdV6oBKCsrx2LZ6N4uvCofFzdZHE8iE/2B1JgS7h8/jlipNGx++un06Wz/5BM2bMwjTpXg5qeUxm5+c7HKi5tmfXKIv5n5AEkxCd6848FPFtuguwwQRCTETnBv+0Xip0hgNUah0+nYsWM3u3dP8qnd9YZabWL+fANbtmS4J30fPDjRnW3asiXDne1qaYnl5MnEgEYXixcvoqLiFHPndns56QTr7fr611spKUmi+/JfeCp9WNXY1rKbXvP6AGekJ1r8EuNS1mOxwMqHHmFdaip/7exELhYhFv+OPut/urcVc5hDi+9iyfEj1NbO4OyZSt5f5vqSByvFETA5Opon0tLcWatg2SoBkaxVBBFcPaxBHfuGoVBYsdtETJhXhs0moqMjivfenkJTU6zbVEKrPUtPaxbmXu+yFE9HwHCy6YsWdWOzidHp+qk6fYrjSwpYfPQkMNxrBa5MuhBUgWuOlfhPf/I79liJq5zl7dZGosViflNXx29G6E8QSpMFa/b3//Qu5x57nD7nsJvZv5/5jMJUbyvmXKWCT6+4FiYT44PPLowggghGxmi4adwI3NTbmslAr8rrtZ7cJMzMCsVNCxfqKC1V8uUvV7Pt1VqSZTK6rVYslh6gAnCJP6Ot8pGLK+m2DLKjpYW+UbROTI6OZs2UKQwc3M+mhYvd/PR/K4r8uKkwNZU95z7hqdxvBN1v45ULOIbK/8YlTEEm/WI6mUYCqzEKwaVPqN0N9EXVanXk5hp4990pfsTR0hJLebmS/HwdxcVJ5OfrmDPHSGysnaIilzLr2XOVlJRERsZUtm/vRix2BhwE6olZs3rZvFnl1aD5bFYWrzceBlbgW7MrF+8hSnIR9cSdHD36NcrLKvndkkXcd/w4nxQUUHD0KJMnF6G/vBcHCp5In8wCpZIn0tV88Nk7PO7xJf9Mp6NYrx+RPBJlMu4tKGC6RhMwWyXg85K1upreuggiuFbY+2PDcN7SUXXGO6u+cmULe/akcOlSAvsPTKT6fAJr11zCWjsbu2VYROo3jEebq6e+IXbEbPrFi/HY7WL++Mc0Otvedos+69JSvXo4wTOT/lvgGAAyiYSiJUtY8tlnJMSnMmD/PkbjBFzC0D9wePEiCo4UIU/4T2Zlv8X8bh2bNJnccfAgZ5ctC8gxz2k0vNbUxIGWVnJTXE3ynaY+r2yVALPd7n6cNT4bG2LsuMZpOJzDYzXsTtHQ/8O/c8/C8RB4h9XiYYjCbdqKIILbHNeXm2qx1M7GbolGSHGYDOPQ5urZf2BiWJU+NTVx5OQYeeX3ZaxLTSdRCv9RIwRPhxACK88qH5XKwsKFOqZPb+L1l1/i3ZwcHikuQRz7M3p7swA9dqeZo0sWU3CkCIXiP9FMe4v83m5emj2bdrM5JD/9VKNh1sFP+M5sLXExMXSa+thVe45z993ntd2Ps7OY+clhvj7zfoiKH77GHvx0qvmk+/dTJ877wvJTJLAao/B06bt0KSHEIsL1vEpl8QqehOdnzeph7lwj5eVKtm4dtj8vK/PuudLpdFy6VMv8+RATY8dmE6FUWvnkkwl+QZtabSIqyoG590Oe9Bl+90S6mh2X30HXu8HjFXokosMcKriLxUdPYrFLSIuV8MtLl1itVrNAqeTJtDTe7vwfZGILNofDPSj42awsXtt/gN9f7nBbscvFYhRSKSa7HalIRO0DD3gRRrvZzOyDB/lGSgrvFhfTUFtLw+XL/PrChZDXvCA+PuTzYxk1NTXs2LGbkycTKSoKv7cuggiuBWL5IJL4vgCOfcNQq00sWGDk1VcDZ9V37VKj0fQyZ44RmdzOuOwq+nUT6O+ejM0STV/3ZLR5p1iQox8xm/6lL3VQUqKipWWQaPGw6LNJk8kbjZ8Cj+At+uiJj2qkb6idSeKEmQkJaGLiqO1tYsac7XT3PE1Tnas0Z4FSyePpav5q2U7V6Up233dvWBn0J9PS+Ptj+zn+qCuwevlMsZciDHCsu5sivR5wLdu06vlX+7HcdAglVHKl3l1CZTGosOnG+80ciiCCm4EbxU0m3Xj6ulOwWaLp756MVltFS2s0NptoxEqfFSua+ewzMab+42wqWEqP1eoRWJUDvUDC0M96VHG/5rHHvsbFi6m8/sop1qSk8dfOTmRiEQkxLzFx4ot+3PSRZTvnzlby/n3hV/isVk/hd1Vl/Cj/fl4+U8y61MDmF+tS1bxffZCH5q/220/PgJ6q5hPun2eqF4f1Od0M3Gx+igRWYxS+boCBvqhisZP586u9Zkd5Bk933XUFsRi2b/e1P/fuufra1x7gz3/ex8mT/lPON26s4+OPJ3L6tNKt5uTl6dHp+hGLPg04mHNb8yEWL76XlpYUpk5t4Vz5f/GVpEnuDNQbjUXorWLeb2+nZrkrgBJU3fuSk0mLi/MK1talZXB6QhJf+srDpKWp+f7fbeRgXh5Ljh6lMIj7zdrUVAaGAi9Dby/t7e2jKvO7nbI/Qtnoli2TQ37OgXrrIojgWiBN6qLEw7EvUPlLXp6e+vrYgFn1+vpYHnusmZISlRd3ucpvqjC0ZtFnTMLcp+DMedGI2XShHEcu3u7VoxDIeRQgIfpdxLYOxKIoHM5BzA47sw4cQG+zcaiggMVHT5A8/nkkoits0rgWKps0mbx54ACPDmXBS/R6jut0I2bQ4yUSHv5wB8/f+SC7a896KcIDdjvPnDo1fF3FYqxOKRanlMGhP9NWJO7nbUNKsN2jOcCtHHv8zhGwecAZ/Mer6DWQJRiJmdLgGsxaNtXrM8zTXmCwNR1rn2L0O44ggmvAzeCmgR4VupZsHvrGBS5fjhqx0icrq5+9Hx51c9Pk6GgWqlRDgoodOAG4jCcSot/Faanlf7eXo+sdR6zkEPckzeOpykqOLllCwdGj3L9wL631B9ikuR/w5yYIv8JnXFQUD2Tm+HGTJ4SsVcH0b6CIcX2nBX7af+5dbA7X+IpJqmzGK6dj/oLyUySwGqPwdOkLBoXCysCAmBUrWnE4RBQUdJOTo0evl6NSWZHL7RQXJwdUamC458pm+4g33vAPvvbvn0h1dQKFhY18/evt7nT222+nMin5f3gyPbAZxJqUNI50/pXVq5ezY9tfGTT1IVO5btz1aWpea6jjYEEB9xw75v6eCKruG01N1OTkeO1zkyaTGYcO8e777/MfL75IoVrNpOhonLiMKgLhR9OnM/vgQVakpFDZ28sz6zeQs7AgrCDpdsv+CGWjI33O1zpEOoIIfCFX6t2OfcHKX95+O5UVK1r8suoDA2IkEti+Pc2fezxKA80Dc4mONxITE49G00dsrJ3cXAOnTikoLk7y4sjYWDsGQx9RIv8ZMkLWSqH4KgsW6Gm6tIXLne18uriAhUeO4Bj6A94wMMD6tLShEsIU3mpq8rIvFvoNtjY28npDg+s6iMXEiMUMOhw8kZ7OH+bN87tW3z11im1NTfzLZ3+h0EMRdjidbKio4ExPj+scJBJWTlFz4Pxf+eaCx3DIrJiVRuyKfqQyOzarBKlBiV03DgZDj+K40RDLB4mZ0sCbAcQ74TMsXNOIvV4TyVxFcFNxM7jJap6DxRwDIkhOtqJWdwflJrXahMVixGo56sVNa1JT3ZlqieQTlixJH+amgru4+/gx4qTVyEQi/unsWQqHuOnJtDS2/fVPPJ7mLSCtG5qR5clNCqn0qrjJFy7uG+Ymm8yGSXGFi7rTVDYccm9XMOebLhOgW1zNd6v4KRJYjVEILn0ffxy8gfn++y8jlTopKUmirEzF+PGDPPRQGw0NcezereKpp+opLVUFfT24hgvPn98dclFeUqJyDwJ2QU9nyyneu39pwNds0mSiOXSILVuW03uljON3L+b+48d5YeZMtjU382R6upsYBHcacGWt3mxu9hMlBLL48Q9+wAd/+hOf5OVRcOQIK1NSQhKAkLW61NvL2b37OHTsS/T2ZoQMkm7H7E+g4c6+uB5DpCMYw7hFf8BkHq5YwcpfxGInsbF21q+v98qqf/WrbZhM0pDcU1qmYM6MBkQiB/39UrZsGVaOc3P1PP10Pe+/n0JXl0sttttFxEftDjhDZnJ0NE9mTKFUuZ2mWjndHW1o4uJZoFSycvJkdra24sR1KdstrsEPmzQa3mhqYuPUqV772qTRsL2tjZjo/2LWjCYqS/+Ld/LyeKioKKjY85xGw+tNTVwyXOG0rpPf1l4KuJ3JbmdbUyPTk8X0xFnpnXSZ4hIlpWUZPmrrJQZbpzE4ZPbhcAquW8N9Dc5A94Xo+rltyZM6KSlVhv77UaZkXmYXlsuhOSqCzzFuAT/dDG6aO6MBeXwPpaUqr2qfQNyUl6fn8P5jfm5/j06Zwj9WVWF3OrHb66i98Gd6uoa56ZuTJ/FOSxOf3H03BUePurlIqPLx5aafajS81daG1fJb4uO7sPX/y3XjJgHTk+30xFnRT+rmyFE4dnyP+7nx4+eiuSsOc2s/tt7hNdIXiZ8igdUYhcul7zRnzsQFvClmzjSSnd3Hm2+m09ISi0pl4RvfaGPHjuHIXGimDAWjUYZc7gi5TWlpEhs21PHBB66f5eI9rEsNbQVaOCWVrQ2v8kS6q4eqMC2N56urebetzW2TLmSVfpidzaShtLhvsCXgJ1lZZL+zi8fSUtnW3IzOYmFnayvbmptDHntBUhLr0tI4ckXHmd4PcTieDBkkhZP9OXEinlmzPmXlyodDvvfNwtUMkY4gguuBcFy30tJMWK0iRCK8suoTJgyyeXNmyP2XlqrIy6t185z8XvrXAAAgAElEQVQAvV7OgQMTOX/elVG3WkWcPq2kstKBw37EXbbni+eys8jcdwgn8NndBSw7fpwOs5k4qZTlEyawr9M1LPjDjg5+fekS/5iV5VKGm5q8OEkQeyqUb9FZ38CTaWm829bG4+npI/Za7WlvJ2VCPl3GVRiNLwPDs6sWa+7kyXlr6XVGY5dZ6Z50mW1vhVLN67DVzRpqqL/5ELICoVBaqiIvtyESWEVwUzHWuGn79gSMnZW852NYMyEqigcmTOCvly8D0N5RRvE9S9zcJBc5edxDjBa4SOCTYNxUrnqN1sZGvjouPG56Ii2N94e4yXOuVZ5WT75WT1ZXFM5e14B3vURM96TLvL4tmba2XwDGoT0p6Or6Lm9ul1O4poGButhbxk1w6/gpEliNUSQlJbF69TcBoSRN4VGSZkSr1XmV+eXn6ygv947MTSZJWOWEJpMk6PPgWpRHRTlQq020tMSGbQUaI5a4TSh+mJ3NjP37vb7cvjMVwD/YApcZxRPl5ayYPInBwUF2d3ZyaPFilh0/zrzEREoMBmB4MJ4w6ypz3z6O63Qc1+nIV6mQ4N28HqhELpzsT3GxCq22ivnzZ4+JksBwy0bF4kgpzm2D28QQyWJQuV2xAiErq5cVK1opLU2itNQ7q56SEp4gIJU6QwodRUVJSKVO9u6dREL0n0ec/zIzIZaFScqhUj9vwefHZ8/y5pBY8/0zZzA7HDw7fTpzPvnEi5PA1U+q+eQQVquFc45kavr7aRkYYHN9fchzSpBI6Gw6gZVKoMf9+9jYO1ny0JfoaZbQb5EzqDRSXKIaQTVXMju7HWNrpoc7V+hGBJHf8Jarv9k8swLBYDTKkMptV/0eEYxB3Ab8NNa4SS5+jfVTA3NTYWqqO7CKkYiYq1D4cRO4Mkue6yPfnwU8m5VF9sFDOOxW1s+6m3uPH8dgtY7ITYlSKd3NxZidawAler2cffsncq46gcfXNjHOJEZilWJI7uHYcTltbf8NNA69WgL8I6CkpQVKPLgJ+ELxUySwGsPIzs7me9/bQE5OEXfddRqHYxCxOIr58+dSUdFDScmwu5XQtO2JqirFiM2UWq2OixdDu+EpFFYsFjGrVzdTVqakvPwFzB4NoLm5BuLixDz//LMAvPDCC/zbzw7zeHqjF4k4gB9Pn+617x9mZ/tlrb6lVpO+bx8Wh4NosRi700msRMKAw8HkqCjWDDkJrktLQwQUL13K96uqALyCto0ZGYjAHbR959RZv+Z13xK5cLM/EomTHTvGRklgOGWjCxcamT9/7k08qgi+CLDqJpCnPU91gDl7KpWFRx5pdfcp+GbV5883XBfhp7zcVfa8d+8k7NY6fneplt9dCl7KEi0W8+GdC4FhweeJIcHnf+bP51J/P5/pdAD85Nw5jnV3843Jk70EIEHseWTiRA50dVJpNGJzOHg6PZ04qZQfZmd7WRy3m83cceAAL82bxz+fOUOvfRCwehzVw5hM36KsvIu7s3sRdcZhV/RRWpZBKAiq+WBvMn09ySG3vREId06QzRJZakRwc2HTjSdPe2HMcJNUVMMf6mr5Q13oMrtem40P2tv9uAn8xehA4rRbiJ40kaqeHv5QX4/T6WS+QsHSceP41Zw5fhbsgpPyN1NSKDP0cKbXe53U0hJLcamKu7N7UXSp6LI3cvTY/wLtHkf+t8Ad7p88ucnc4z1+52bhVvFThO3GOJKSkvja177s1xtTXl7sFQAEKvsrLk5i/fp6LlwIbDU6c6YRrVaP0yli/vxz7oZO36ZLrVZHRYXSPQ/LtwH0/PkE1q8fDpj6+y2IRcfZpFnm/t0vamp4KkAq2jeQEjA1NhalVEq9yYTD6eSdvDweLirCYLXy7FCdsBCUrRtKhwuqjgDfoC2Q5bJviVy42R+TScKZM2PDEGKkslG12sSiRT0UFCy8BUcXQUDcBopvOHBYojC3TqVwTQMlZd6uoo880kJFhSpoVj1c4aeqKrRjk9EoIzbWNf9JmP8iNKPPnWt0jY+wSJBF2fn3n5/gifQaP8HnR0OCT4xEwkd33smXP/uME0MN5X+5fBm5SITd6eRXtbVEiUQ4cJlMmOx2ZGIxx5Ys4Z5jx6g0GikxGPhDfT1PpaczKSqKMz097GlrwwGsKSvzOXoF8AzgMuwpKVWRl1uP87IcmSy8Um6p1IliSi2mgXislpiAt5Z4lDdcuOZbI2UFALRaPRZD6F7fCMYYPgf8NFa5CVz8dO+9ncyY0YtM5rrYL76wDTuujNLPLlzgw0WLvLhJgO+65ofZ2WTu28evamv9hOhZCQnsbGnhyJIlLDl6lEqjkV/X1iIXi73WY8I6bGtjI/MVCr/qHhjmpuqKFnb/+X9wOMxDz4iAp4F7/M5d4KaBgbnYLS4u+yLwk3jkTSIYixACAAFC2Z8n9Ho5e/aksGpVM8uWXUalsiAWO1GpLKxc2cTDD7dRWprEyy9P48UXZ7J1awY2m4j16+vJyuoFXIvyvDw9TU0x7gbQX/5Sw89+Notf/lLD2bOJzJlj9Fq0Xzx7msfThh0D281mtjU1+RGEgE0aDfESCZX33otKJqP9wQfZk5/Phb4+Di1eDCIRu9vakIhErPadBp6WxtMVFQHnNHiqOcLPj6erkYvfc2/jWyLnyv4YCYWcHD1VVQqKihRUVp4Oue3NgFA2un59Ow8+2OX1OT/4YBfr17ezevU3b3lmLYLPJ6y9CvrrZjAvU8wzGxv46U+reWZjAxMnWrzMc+bMMVJePvxzcXESOTkG1GpTwP0Kwk9OjoHnnz/HP/3TBb70pQ5UKovXdgqFFZtN5MVxADabq3fCbhPTd2Eu+u4BxKLDbNIM81AgwUchk3F4yRLmK4YXTRanE7vHYwewIiUFsUjEgxMmYHM6+ZsJE0iNieGluXMRA40mE1P27mXOJ5/w/PnzGG3D5SZysZi5iUpkIi1CUAVCWYrrnWxWf073hSDylJYpSEhuD7ntjYBFN4E8bfDPUK02kZdrwKYPnk2PIIIbhbHITSqVhZwcPZmZ/Xz00SSsg1L03QPIxK1Ei11L8kqjkbVlZUHFaP91TToLFAqiJRLkYjHv5OUhF4nIio1l7ZCL4NNTp/L9zEzaHnyQOInEz8hCWIf9aeFCv3USgMEwyF8+3s0fT/was1kIqmS4yv/u97tGntwUfwu4CW4dP0UyVrcpfMu/giksnsOFN2yoIyrKgcUiAkQBmy6F4XirVzdz9mwCs2b1cuxYMl/9agcpKWa/ORA5OQZkMqd70d7e3s6RTw9xdskS937DGVBXOJR1WjdEGE5wuwd+KyWF7c3NyAOQwQ+zs8lsaODVBQsC7ttTzREQK3Eg0J9viVw42Z+cHIPbnWysGEKEKhstKFgYCapuNT4HCnAoOCxRDHakMtiR6j7V5LnlIbPqnsKP74yZ++/vIDu7n5KSJC+lOSdHz/r19ezZk8KlS65Bmjk5es6cSUQqdfpl06ur48meEgVOOHn4JE+kTfETfHwz3eAKfD66806m7t2Lxce6ygnYnU62NjUB8F57O++1Dy8chMcfDfVM+O73joQE/rRwIVKxmMx9n2J1fgtBGXaVpUgwOeTIwlBbBZGntFSFNreBrnbvhntBCXZ6abxOn/9Hgmu7gBNnQmQFtFo9ebkGBtvSI1brYx2fY37y5CZwnerN4iatVheUm7ZsyUCr1WE2JHHy2H6eTFczTi7jZxcuAHDoyhV+kJUV8JwCrWsSJBI+Hcqc725rQywS8ZfOTmqXD/e5zz54kD6bbUQhepMm26O6JwE4BLxNZeVwT2h0tAqz+Z+BwMfoz03+231e+SkSWN2m8A0AiouT2LixLmDZn14v5+zZRHJz9ezaNYW0tAFsNlHIpsuKCgXz5xsQiUQsXXoFs1nCnDkGFi7sRirFTQ67dql54ol2PvjgI06dqmLvh+/x7cmTvb604Q7QFEpr8pRKLvb1kaNU0mE2IxKJmJGQwN3jxgW2UA7gjOP5/OPp09jSoEYiuoLZ8feY7K5FTKASOSH7Y7Xu5OTJpICB5J49KUOzwixjyhAiWNloBBHcCvjWtw8M+JvpeAo/wsLDZgOHQxxS+Fm1qpktWzKIi7ORm6vn1VenuTPqAtRqE4WFjRgv3YHZrOPchSLeX7bU/Xw4gs93pk3jWFcX0+LjqTQaaRwYYNAR2kXVFwqplAcmTOCRlBTyVCryDx9GJhYzKcDQYq1Wj9PoypTZdePJ014M2CMinJ+nyCO7RQYR1l4F9roZzMvsJC+3Aanchs0ixWJQYYrMr4pgDMKXmwIZfQXiJrsdHI7QorQnN+Xl6dmzJ4XqaoWf1btQDdRWleLmJpVMxnvt7e6Zdt8uLWX3woUsG++dUfHsIXcCh7u6uDM52S1E72hp4aHJk0mQyfzK/bY1NnLpgQcCXhfPMsO1aVPY2vgSducVoN3LGl2Teid/88hSdu1OoaXFfz9jhZvg1vBTJLAagk6n49ixk5w6VRXWENmxcGzLli3GZjvMqVPxiESumQxPPdXA4KCYc+cSOH58HA6HCK1Wh1arp6YmnupqBV/5Soef0YUvSktdqfBXXvGeG5OTY+Cdd4YVmccea8Fms7N5cwNFRWosPd0ct4duHgeIl6jos78MgFz8GhumXeKl2bNpN5u5++hRpsbEUGk08nx1Ne+0tiISifgwiAPfcxqNn3rjC2V0J067GSfvEatYw8KFRhYt6glYIpednc3MmdmYTHUsXKhDJnNitYro7Ixi1y41DQ1xwNgwhBjL9+3nFp9jdTccOMOscLcYktwZF5XKgs0GGzfWIZc7/Po5hRkz999/malT+6mvD5wxBkH4UbJuXT2xsQ5kMicbN9Z5cZ7LVEePCFBMO0/lJx/wuM9A83AFnxixmEazGbPdziKVih9Pn87z585R2dPDvePH02+zYXa4prPIxGKK9XqeTk9Hq1KRq1QyOzERiWj4mn1LrSZt714kIhFmh8OdQRfKUvrrZjDglMGgDGvrNAoLL1FUNLLIY7HIcCDymv8iPArZwyDyfOj0+j84vJ93WKKwdKixdPg4qobbDBHB9UOEn0bcxrP3RqWyYDDIRuSm5cs7yMrq4+LFwEIH+HOTVOrk4YfbuOuubg4enEhTU6yH6ZeLny60bfXipvfy85l18CA2pxOjzcb9x48HPQ9BjI6VSIiVSt1C9CMpKfy5o8MvG79Jo2F7gFmhAiZHR3PPuHGk7t2LLcCQqfjYZO6evRF1SgE2nWHU3AR8IfgpElgBNTU17Ngh2JqrPWzNAw+RHQvHlp9fT25uN93dUdxxRy9lZSo2b870SnNu3FiH3S7iyhU5IpGTmhqX+1+4862iohxuBcdzNoOgyEyaNMC0ab28/rqnevNvgJ5o8T9Q98DSgGqwywr9U8AAOBFzmGezlgLwL9XVdA0Octnp5NMlS1h69CjT4+NZHCBbJcA1+HMa5apkmjue8SM9heIyVtM/cbTgLpaeOMQTT8xj6dJ7ApbI6XQ6/vKXjzl//hJnzvin+leubGHPnhTMZsktN4QYy/dtBDcWYvkg0qQu5Eo9MrkN65ACZ9ONvyUZArF8EFlSp9fxWHsTycsz0tsnYcmSbiorlSFLZ9RqEwsWuEYn7N4dupm4rExFbq4+KOfV18cikTgpHirXGb3goyde/vdcvO9eflFTwxtNTShkMk739PBeWxvn+/r4TkYGv57rL6x859QptjY2srmhIej7KKMTh4Se+4hKXEOB9jJ5uQbMrVO9Pj/bYDS2wWgW5utYvLgbm02EzSaiutqlpgv8rNXq6b0FfUyBPvdbeR9GcOtxO3JTebmS3bvVIbkpN9eA3S7y6sUKhGDctHp1E1KpE5NJQlNTjJufzlZ1csJSNyI3uXA/sIAo0W+p/9K9TI6OJu/wYS719VE1JES/29bGipSUoOV+a1JT/czCRkJUVDQLZ32FWVMeQyaNYhAY7FUS1ZvI3DmGkAL0reQm+S3ipi98YKXT6dixYzdbtkz2S+0GGyJ7q4/NBQd2u4jk5MGAaen9+ydSXe0Kgt57T01cnI1Vq5ppbIwLe76VzSZCpbJ4bdfSEkt5uZIVK1qZONFCSUmy37HJxXtGnCUjlMAA7m3bzWa3g809x44hHnLfEovF/Lq2dkRleVrKAGsKmygpUXkpKKr4XfzN+FQWKJV8OyWN4uNH+a//+ne/17sClXcxm21s3x481b9mTRPR0VJWr14R8J64GVmksXzf3ra4TZReWYKRqCmNlJQqKS2bOvzHO1dPnvYCg63pWHtDu1Vd7+OJntLgfzxaPfn5du67r2vEfs7q6njmzOnh2LFkli69clXCj8B5q1c3k5HRz1tvXb3gIxfvYZ3a1ZPxRlMTnxQUUHD0KH/Kz+eRoiIQiUKa8bzZ0s7ffve7FBdP4+TJcV7P+wo9a9fOQWrJwFg3E/OgazFiRUJ80mWUk+opKVVRWjrFTxE+dy4RvV6OWm1Cm2uk8dICnIDIQ4YNpeyGK9YG206WYCQm0OfueR/23bz78HOP24CfPs/cVFqqZNEi/TVx06pVzbz7rppHH2324Kd/JxA3tQ0M8ERFhXtouQsHXP9EYr5z6hTq6GhOG43s1Gp5qqKCnc3NPKZWe82+EuBwOum2WPj6pEm81tRCTk4e58/3YzLVA/0BzyU2No7cBUvQjF+FlGSsTglW5zA/yeN7h/gpuADt4qYcj+lUN56fwuKmG3gffuEDq2PHTnLyZGLI1K7vENlbeWxZWb08/HAb5eVKqqsT6O+Xhjz28nIl+fk69u6d5H5cVaUgN1fPgRGaoi9fjnK/1hPl5SoKCoyYTCaOH9qJMBROQLgDhGMlLsVE2FawABUmjD9dUcFT6ekBVeHvnjrFa40OBhz/6f6dRWzC4WgmLs7mronu7DTx1tYinl3mmna+SZPJjEOH6OjoYNKk4fMSApWqqmgMBlnIa1pWpuTBB0UkJ/vPjblZWaSxfN9GcOMglg8SNaWRN7en+ospByZSfT6BwjWN2OtuTm+LWD5I9JQGv+MBV2my3S6mrCz0kNuKCgXp6Sb27Enhq1/tCNiL5YtQwo+wv6sXfHYi5gTPTV/KL2pq3HPznkpL4922NpwiEesDuHV57qdQncr21yv52+8lMH78IMeOjQ8q9JQcP8q8VG+r4vikyygn14Vc9BUWNnLliozkZDsdzTOxWmK89iGTD6BMbiFB1YVcbsNikdKnH0+/bjI2S+BjDxdi+SAxAT53v/sw0mP1hUGEm1wIzU1KHnrI2+odAnNTSkwMH995J++1tfHChQtU9QwbRww6HLzvYZjzzZIS9+Odra3IxGKWHz+Oc2jbXpsNncXiVd5XXl4U+LoBX544EatTxGfG2SxZshjdee+1Trj85HTClfasIW4afm+ZfABFciuJqk4vburtnozDepO4qU6Dw3pj7sPPXWA12mzBqVNVFBWpA+xpGL5DZG8WfI9NpbLw8MNt7NzpumH+6Z8ujNgr5TmgTni8dWsGzzxTy/kRmqJ37VKzYkWLX2BlNMoQieycOHIQieMScrH3MDnPeQ3Tp/eyYkULDoeIlpZo1GqzX0bpzhw906c388Yrv3K7/v1o+nSy9u8P6vb3nEbDa00HcJUTuoI6IeiRSp388peu/cjFr/FUeppXA2dhaiq/+Nd/5b9fesm9PyFQmT1bF1b/WW5uHS+99IpXoHQzs0hj+b69LTCG1N/RlM5Ik7ooKVWGXAyUlCmZl9nlX09+jQjUuyBL6vQ7Hk/xx24XedkaB0JpaRLz5hmprlaQkmImI6P/moSf0tIkMjNbiBZvx+z4ewR+CFfwiZdcYW3acLbq3JDy+6xGg+bAAZLlcn5TV8dv6upC7idW4qCo6BtkZPSPKPSox/URE52EzSlGJh9gwsR6ioqSQn7ORUVJZGT0A3af29lJXKKOieoLlJYq/BRbrfY0htYsLD0uxTZQf0MgFdjzd/IAn7vv8bnvw8vX9z78QmCM8NPtwk3gz09jkZvKylTMmtXIiU+9BelwuUkqkiMX2zHZ7UG36bfbwW7HYA09qsETcXFxTJ6cRnN9DRVL72FmQoIrg7//U8yWeZicrgBx1Pw0tZ/xk+qx2qLo73GteeISu0fkpoEelZuXRstPUWOAmz5XgdXVZAscDnNYqd1Qtto3qvTL99h8h9iF2yslDKgTHuv1cqRSZ0ArUc/Gw6amWPdrPaFQWOnpMXH61Ck+XXwXBUf8h8kJ6OqKIipKhsNhYdKkQd5+OxWNptfPenT76xVes6/CcvtLy/By1ALvQBL0iDnMJs1Sr9c+m5XF7Dfe4IfPPefOWgmBSn5+V1jXVC53sGXLZDwDpWPHTlJREccdd/Tw2GPNXudXXJx0XbNI1+O+jeDWY7SlM3KlntKyqSH3WVqqIi+34YYsXnzhezy+4k9BQfeoOKq8XEVOjp4JEwavSfipKj9MlPgiDob5IZDgAy6Xr7IyJaWlSRiNMsSSn7C5voatjbV+QzTXpKZidzh4OYDg41qIHGDA/gdAickO5eUWFiwwjCj0HLm0k/mz/w6AhOQ2nEPXIhTKy1UsWGDgrbdSWbvmPI2XFmC1xCCTDzBRfYG3tquDKrZr11yi23wH9qvMXI3qPowEVrclItx0Y7ip7OQRP0Hak5uE4E8icfqJ0Zaef6Hf7mqJkIlEaOLjmRAVRZ3JROvAANYAhhPeiAHGARMBNXFxU1i1Ss6WLYtoqnudp9JtzExwGZO51lhqTnx6nGz1l9x7GDU/bR/mJyAsbrKa5+C0BM8KhoJcqbvl3PS5CayuNlsgDNodKbUbzFb7RpZ++R7bnDlGr2xKuL1SJpPE/dhuF7F8uSulvWuXOmCQIzRFq1QW92s9odXqKDp2mCeGBs/5WgaDi8Ty83UsWGDA4XBgs4mIirLT2yt1u+wMQ0+0+Kh/ABSG25/nTCrwJsJgpT+To6MpnDLFK2slBCqjuaYtLbF89lkcNttLyOXR2GwWNBrXIm3r1gyvYFVohL1eWaRrvW+/sBgjSjCEXzpjq5vhVodlcltYiwFpEHvb0TaWj+Sw5Xs8vuLPaDnKaJQRE+MqEb5a4SchoZNTlac4EkD0EXhp7lwjMpkTm81lWKxQWDx48AlKS6Ho6L8GHKI5++BBXpg5k0kBeMVX7PHko1BCzxsH95GeuZao6GQSVF3I5I6wF30tLbGUlimYPq2VK+1ZKJNbOXMmPqTAU1qm4I7MDno7pnr1OQyrw8O/C9jDcI33YQRBMEb46UZzk9PHvdLzfa8XP41VbgolSKtUFjIz+xGJICrKQVraABcvxnu0N6x1Dd0thaIj/5d9BQXu9Y3T6eRCXx+LPv2UDxYtQiWTIRKJiBKLiZdK+ZfqGrY1Z3ut0wYGnKSkVAOGgNy0SZOJ5pPDjEvuISY6CQeia+InICxumpXZTl9HOsCo+WkscNPnJrC62p6TefPmkJ9fz969E4Lue+FCQ0Bb7XCDucLCb1FVVT3qjJbvEGDfDFWwocCeEIa0AeTm6rlwIZ70dBNSqYPs7L4AQU7g1wpQq01oNM1se7WSd+8dLmcZHian9Eq3v/zyNK+G0aeeauC994bt2kEIgNQBAyBhVsM/Z2ejOXQIcfR/YTQOf1YmH+4SgselSy9RdNSfKAT8MCPDK2slBCqjvaYlJUnMnWtk+/aJrF7dxI4daSHnW7z22tTrkkXyvTcCYSzYwUcQHOGXznS6h1v6zl8JBNeQWX9qD0eBtg9GB1zYWHUTAi5sfI/HV/wZ7fdJobAyOCjG4RBdtfAzTrGLB8el+ok+nrwkzFcReGn+fIPXYE9XZimwKPMttTqkq5an2KNQWBkYkAztM7jQsy5VzaFLf2TW7L9HLrfRP8pFX2mpivz8WhJVnYgldmYqxCEFHmFoZ2/H1KD7D4VruQ8jGPu42dwEI/OT5XIKRJlvKTfZbKJr5qYvj/fnJvAuU3z11YyAAZs3P3n3eQrzPlenprL8s88C8lOsBC8hWuCnkCJ0aiqHLv2R2bO/53rvq+SnvLxaRCKIC5ObhMBqtBgL3CS+YXu+yXCVcoV2+SgqUlBZedrrd3PmzCQ3txu12hTwNa7UbjezZ8/wey6cYO78+Si2bt3O735Xx69+peZnP5vJr36lZvPmBl566RVqaoLX1C5evIhFi3rcxyYoLAKKi12zpkIfu4Hi4iS3lfHBgxPZsmUa//M/mcyfH/q1eXl6LlxIQCx2olJZWLbssstl8J1S1qWmepftTZ1CQvS7JCcP8sgjrnT7wYMT0evlOBwitzPOjh2pPPxwGyqV8PUWVNzgE8a3NTUhAgrVqSQn7gp6vcAVTMybNwdl3AmeyvAP1gR4Zq1ACFSMo7qmMKzKaDS9lJSErjkuL1dSUHDlumSRfO+NQMd5q+3gxwycHv/GEFylKiPV+KuQK/Xuny0GFVqtPsQrXPa2FoMKJyL3P5Hc4lag9x/w+V4emMib21OJTqsnNquaU7UONr88lZ+/OJPNL0/l1CUHcdPOI0sw+r2XMA9GgK/4M9rvU06Onu5uOWKx0y38/PKXGn72s1n88pca9u6d5P6DGUj4mTy5jc7LRTyX7eKTTZpMJHyKQtHpLgMKxEs7d3ryksBJmQGPeZNGQ7xEQuW99xIniwZeAd5x//Ms69Fq9UilTu6++yISUfB9Pjc9k6bmvfQN6Bm0yLh4MZ6cnNCfs+f5G40yJBInO9+egtMJO3b4n+fBg8PnKRY7kcltfv0LohD/PL9Ivp97IAj3YQQjYAzy043mJmBU/PTJ4WTkk1v8uan25nFTbq6eM2cSuXJFfvXc1FHEs1ne3AQGrzLFUN9bb34K7koaJ5EQJ5OzZMm/EoybhM/DbO5BJjkUnJuyXdzUO2DA5hRfNT9Jpc5Rc9PV8NNY4KbPTWB1tT0nVVXV1NW5sgnLll1GpbL4BRJ1dQmcOXPeb38jBXMqlYW0tH62bfYH0QsAACAASURBVEtj/37vG+njj8ezZctkduzYjU6nC/j6pKQkVq/+JuvXt/Pgg11+N7NeL2fPnpSQx75//wTy8nSsXt3sNbAtP1+HWOyksLCR5cs7/F67enUz9fWxrFjRwk9/Ws1TT9UjlTp55RUluisn3OQg4LnpWYicn7J27SkqKkIrXRUVLndCCM+pS1CIf197CaetdsRgYtmye+jqaON3ly4hev/9oP9+feECxSdOAMOBSlyczX1NA12XVauGryMMqzJz5hhHbIQtL1cxa1bvdcki+d4bnsf54INdrF/fHnD4cQRjB1dTsmDvVZKXpxtBENFh7/XudwzUyO2J/n4pdruIN99M9+Mqd+A1pQGx3Js/LboJ5GkNQcWfcDhK+D4JC5kDB1zWxCOfp7/wkzZ5p5/o83i6mvHKd7zKgHzh6aAaDicVDvV/PpGuJinhnaDHqM010t44iz7dwRGFnnWpauprt2PQT8DhEI9q0Sfw0GgEHus1KLZWn8890PHl5Rqw3YL5NRFcO24mN0FoflKpLCxZ0h2Ym/YH5ybfe/RauWnBAgOnTyvp7Iy6am5aOyWwIL1woW6U/JQSmkvS0pgRF4vF9EHI49TmGvl03xkeTwvNdwI3AVfNT4OD4pvCTb5/kwId243mps9Nnv5qe05Onapi715XA1t+vi5gahdg1iz/vpiRgrn8fB1lZaG/LJ7licFMMAoLv0VOznkqKioZHLRy4cJw4+SlS65Bkfn5Otavdx27w+FKv0okdh55RI/FYmbz5ky6u6O80s2vvDINsdhJQcEVNmyoIyrK1Qt15kwir76aEfBahiqReXLqVEpPfMbZi/ODXhNwOeNs2FBHcXESlp7w3HAmKdPJv/sfOXcukRUP+9c3L1xoZNGiHncwcay0NOT+fCEEKuDql9u1S83y5ZfJyTEQFeXwS/ULEFSZhQt1Yc+3uF5ZpOzsbL73vQ3k5BRx112ncTgGEYujmD9/bsDhx184jCEFOBCupmRBkmCgpiY+ZI1/TU086ckGbP0e5bYjNJbn5+soKQltPVxSpmT+9HacdolXOY6tP57CtU2UlKrc4o9neY0nRz39dD3R0XYGB8VUVycMlcaKWLbM9V0rKlKxcmUL5eVKPvpoUtDzzM01uIUfga9LS6Hq1Cn2LF/qdeybNJlsP3SILsOjIT8Pwfjm6IFwx0VIMNntZKSYWZB/2esYtVo9ublGWppn0dubTEdrG7/TXxpxCGiKSoTuygZmzy7l8OFkVq1qprJS4TbW8C0N8lXIfcudgp3nhg11mA3jEfmpwq7HI82QcViiMLdOpXBNAyVl3oOftVo9ebkGBtvSI1broTCG+elmchOE5iff3ihfeJYlWnUTvIcBWyWsXdPEmbOJV81Ny5d3sGCBkZMnr42bTgfgpuemZ/Fm6yE0mrm8+WbodZM3P9WxuX4kV1IJSY1trHrC/zi1WgO5uQZammdxpfMtfq+/xO9rR+ImVx5GdyX1qvhJJCIs8dmTm8DXFXBkfhoL3PS5CayutudECI4cDlHQfiOx2BmwL2akYC6cP3KCmcGMGVlBTTAWLXKZYHzta1+mpqYGuVzYTuFezItEEuLipKxe/S0/s4yf//w/cDhEfq444FKDBgcl2O2iof3ApEnmIEcbuPlawA8zMphx6BC9ln4gOCELAYbQjGmzidi8OTMkiQ+KLMyeXcu5c4ls2ZLBvfd28p3v1CKVgkRyfYIJz0ClsvI0DocZq1XEa69NDekAtGVLBnPmGMP6QyQSya9rwJOUlMTXvvbliKX6bQihZGF/COte35IFuVLPgf+dCoQWgp7Z2ODufYCRFehwuKqrS44sr4OS4iT/Hog8ETkzrUji+kHk8BJ/wKUO7907ibNnEylc24jDlMjsWX3Mn2902x7v2qVm5coWNz+pVBYuXIhHq9WzaJEOicRlNnHxYnxA4Ucufo2npwbu1VyXmsqrdR8CTxIMQllvVOILmI0yfvCDi35CiidMdhd/Prq2jspKJ+vX1xMTY8dqlWLQTaSuJhvL0Gyp/MWvACObgYhwYrFAa/Msli49x9mziSgUVp55phap1BlQ4PHkodEIPD264H3F4cDaq8BRp2FeZhd5uQ1I5TZsQ30vpsj8qtsaN5ObIDQ/hcNNpaUq8vPqkCt1AYcB52n1iMRDBg+j4CabRYpYauOPf0xjxYpWr7WTwSDn/vsvs3Chzm2EYzKJeecdNQ0NcV7HF0qQLlSnUXriKEZjXshzFPjJ7Px//PM/h+YmgKhEC4UbavnoowlMnDg4zE8WKQb9ROpqtFgsMW5ugpH5CZxYLDFXxU/yMA0voqIcGHXB77twYO1VYK+bwbzMzlvCTdc1sLpRtuPhYPHiRVRUnObMmbigi+BAPSfX4q42UjAXyg5dKMebM8eI3W5n27adnD+fQFGRwmtit6+j4dVkKYTjdDrtXsqPZ/bKs5FQq9Xz9NN1vPfeFC5dSnAfq77zj+T3jtC3lJrKtpbd9JrXBz3f2Fg7drtrgXT06Hi+971L4ZUdSJ18+9vN2GwiRCInUqmMBQvmX9f7yzdQqampQSbzDmQDqTLhNMIuXGgkJye0KhXBrcFo3aiuB2y68eRpL1Adwro3L9dAf91wf6ewABlJCPJ1PBpJgQ7GVZ4uerGxdgYGJIglLtXQs1TQ5RLWTF/tTCRRZgrX1AdVCwdaMrF42DQrZpyiuDjJS5n2zawL+8jN1aPV6qmsHPQqa87IaOGPrx/iuen3Bjy/Z7OyeK3+MIFcuHx5Scjei0SExUvR0Q60Wj0ikROrVYJON4nuK6kMWmKRy02MG9eMSnUZudyKxSJDr59I95VUd9AVaCnT35NMQ40WdUozClUnUqlr4Xbq1PA1VaksfjwUrtOZzSrBaYlCPNTlIkDk878L/iqx8BqHJQpLh9plnz3SmiyCq8bN5qebyU0Qmp/CWUfNnWtEKnME5qf9rtLiwjXNDF5OpXBNc9jcBC5+mjPHGHTttHu32ms/jz7a7LV2mjevntLPDrFJE5ibnsvORHPoEAkJXV7GXJ7n58lPP/lJNVJpeNwkkzn5ylc6EL7Dev042tuysVhikclNTEypCcJNsYTKDl0NPz30UFvY3OQY4ibX+18dPzkt8mFuCnYiNwjXLbC6kbbj4cC3lMtzEexbJuaJa3FXGymYM5slpKWZ0Gh63V8Mk0lCc3MM6ekDIZ1RPF3zfEsGR5ulEI7TZLLx6qsu5SdQ9grwIqI1a5o4ciSZggLXguf82S6KLXUjlrNMUlnp9Uh6hQrgNmyoY3BQHLbDzH//93SvlPvOnRe87q/rHdz7BrJ2u5nBQTEVFUovVaa4OIn16+v91DABETOJsYvRzmu5XnBYohhsTadwTWPQP/Tm1qleC6erdTwaSYEeGBDz1a+2MX16X0Ce8nTRC8RTnuU45o5U7HUzA6iFSfTWzfRbCFoMSWhz9W5lOhQ3HTgwkfPn/bnpj29UsCYlLaTo80S6mlcbArtw+fKS0MsazrXu75ewdWuGm5N0uh6yskvo7k4lObmZ0lIlZWXpHsGhAa22hJbmO+jpSQ66b4slhstt0+lqd/WzRslNTJ/WSm5uI3K5NaA6HI7Ao9XqGdCPC/p8BGMLt4KfbiY3QWh+CsRNVVUKLl+OYvnyTj+Xz9D8NEDfKLjJdWxJzJp1hZdfngaMfu20++39rJ0SmpvWqVP5q3UXRuPfuX8fip/y8nTMnWugsjJ4aV0gburosJCVXYKuO5Wka+AmCM5PeXmBs1dfJG4SOUccKDYMrVbrLA3Qu6LT6XjppVf8bMcFqNUm1q9v95shdSOg0+k4flwo5Ro5m+N77L4KgdksQS6HJ5/8NhkZ/ulo74ByOJjLy9Oh1epxOETu4W5Go4y0NBOPPdbM9u1pQa/VqlXNfmlelcrC97/fwqZNPwr7OngGGCDH6bTw85/PxOEQ8aUvdWCziULe5MuXd5CXp+fNN9PDOlbX59yG0wlbt6a4r+f69fV+JOS5jzVrmqiqSuQvf0kJeizLll1GKnV6qWDC+3/44SS+9a0rfO1rD/DnP+8LGVhfa3Af6l7PyurlkUdaqahQetUcX8/3vxEQiURlTqdTe6uP41owUZXlfOze//b+ZRjUJpYPEjvtgt+8FgFqtYnCNc30e8xr8USgWSyjhaca7VmyEMhGOHpKAzqzCZXK6s4g6fUudTAmxtULqNfLSIqOxdw61es94qadD3ieWVm9rFzZSkmJirKyq+cplcrCMxsbMJ6f57e971WSyAeRJ3USpdQhi7Jhs4mQSJy8+OJMli+/PGpuipX8BJM9+Lw7AcroDAzm/wibl86eTeTPfw6flzw56eGH29izJ4Xqav9Fr2v/LdTWaLEOZa4AJCL/vgKxu9dg2D553ORaztda/Bai4ZzX2jXNGOtm4Ry6t7znxAgIPccq4H1/AxThl/esN5qdnf5uB7cZbld+uhZuMpkkXLwYD+AOiiwWMU5LFOaWaV6vD8ZPWVm9rFjRSmnpMDcpFFbuuusK8+YZw16bwLXxE3DVaydd+8/D4qZpKWos4hdHtW56+eVpQQPZ68FNFkus1z0UDj8lT67lwjVyk90SHTBjdbvw03XJWF3tDKkbgavpOcnISGfduhqkUidWq4jLl6N49101TU2xKBRW8vMNSKX/G3BhHKw0Lz4+jq4ukd/CxOXaFLpJXHB/8QwiAjkaBkOw7OHGjXVuRSm8umWXHWm4x+r6nBU8+mgcjz/eTFGRgpgY+4iNp2VlSnJzDZw6FXg7zx6CQO+fljbAyZOJ2Gwf8cYb/ipSqAHRgTBS1itYZjQry0xsrJS1a8exZElTxEziNsDVzGu53hDKqUbavyzBiCzRSNNFJe+9p/JQGfUkJVl5++1Uurqi0Gr1TNQasPcY3Up2sIbetDQTK1a08tZb185TRqMMWZQNxYxTDBqSsASZLyNPMBIzpZ5SHwVe4Ker4SZfG2HwXlhkZfXy6KMtQ0LXZeLibGHxUl6ePqjLaSBe8uSkkhIVaWkDARcvwv4zp7XQ0RZcbJHJB1Alt5Co6kQut2GxSOnVj2egNwltgFItwels9eomP4FHq9WjzTXQ3zrNa+ESwdjFreYnz1LPkMN4g3CTy8RFz8cfT+T0aaVHxus85tapIflJLHbyyCNtfmsovV6OzSamqGhkhzlffpLKbURPag7KTRCYn37wg4vXsHby5yYY5qfa2jhWrGiltjaOjIxmysqUYfPTvfd28t57ar/nrxc3tbcFtnQHFzcpk1tQ+HCTqTcZrfb8VXFT3xA33e64LoGVy3bc/8P1hGDSMJaa7L0DkEyvVPLKlS3uVPLevRM4ezaeYAvzQMHcO+/s4a9/xe+LEa5r01NP1XsFVgqFFasVPvjgo5BlbfX19bz55v9isUB+fhezZ+vcU60rKpTuVGyoumUBQiPhaI61o0NKbW0jZ86oiImxM3t2D5s3B56PIKC0NIkFC4wUFjZSVJQUdJp5IGVGeP+tWzOYP7/7moP7cEtaI258nw+M5JYHQ8MNc4cbrq9HlioQPPfru4gRyweJntLAm28FL48TFNrhnoIG7B5KdqCGXqtFTGmZfwB1NTw1XHoydahMqZqB1gyvngVZXA8xU+qwO0TceVc38+Yb/PjJl5t8qwhMJglnzijC5qbi4iQeeaSNN99Mp79fSn6+LmxeysvTs3q1a7ETLi95cpIvj3vvX0lubiNX2oePY1j9dRKXqGOC+gKlpQq/EjCt9v+z96ZRcRxmuvBTvbKoaboRAgu0AJJAthBLd4NsWZOJZcWaJE4sx44lhPG5EY5iz+c5J/fo3PmT5B4n+TFzz9z8yWd7FEmZiWwrTizLsa3JWJbt+92xnLB0AxJaAAFilVlELyAaeq3vR6mKqq6lq5pmE/WcoxMHurqri66n3/V5OjHteQDP1w7B6TJzRrUKCvzQaoGykijstj7o73UaZr1WTPZuR/ReUkUI7lCIf7YXqwqsYg4rgZ+kuInmokOHBtHfnx6z8yTNT4Q2jKamLMHv9ET5ye/X4kp3RJCbtIYAjGtvw2jxQKslUVbuhUZLoqnJiitXzIKxkxA3tbdT96Ncfior8zHJI/18cvnp5Zd7sHfv6IJx09jtrdAQc++D5idTxoQEN3Uo4qZQUIfAPW4S6lStRH5KSmKVqIfUUsLtduPMmfd4I120WVlnp4nTSlbadevs7ILTyU825SY0aWkRzs8oOd0MuFziO2s3b97E6dN/QENDJqdtTs8cX7y4Dvv2jaGz08RZchYjB/pxcs/VYgniG98Yw+9+N9eeLy/3yVwAjyAa1aCgYBoVFV5mUdPptEiq39Cv7/PpYTBIE1m85F7qMyHU9VLV+FY+EvFrWQrE86ES6h4LVbKjQSMCIxuYn5lKrghK4CbCU7TkN1fQ4hbCvdsRCRphMPmQlt+LpmaLKD994xtjmJ2d4yaxPYPKSg/CYQJbtkxx9lGFzm/fvhFO1+nChVzZ6nk6HYn2dhN0OhJHjtxCenoE09PC1guxr1td7YbRGMXPfnad4dSmJitzDMVZId7xAFUNXpffiTffyucHq/eu7fO1Q3APbMWDRR5OkDLrzYKnZwciwRRByWI1F1o5WAn8pJSb6J/F4ycxbgLmx0+x3BS9x02pebfgdGXC6SySFTtlZQVEuenIkT4EAtI2sfT5/fWvc8kjrVAol5+0WpKJmZRwk0ZDwmiM4NixTk7MR/NTMrhpYqAYDxZNcLhphsVNAAT56X5AUhKr+SjrLRXkjC/GkoGSrptYsilXtYmd0LDbuh6PgRfgu91ufPbZ/4fLl69ykhqAnyj+5S9ZqK0dwPi4AZWVHvT3p4mSw8GDgxgakm7Lss81NoBR8n5JUgutVoO1a4NM9ebYsU5OICL1+hs3+hEIaESJAoif3C+nkVYViwMlC9cLVQkWAv1adGVYTuU6tkIbW8lmPy8NscBNKU+JjZ40uzKxs2gM4Skz0vJ7cfpN/lgPzU+HDw+AuDfDb7N54HJZRJfEhYpfYue3Zcs03niDW5mV+/4iEQI7dvjwpz+tx4ULuTh2rBOnTknLHO/c6UU4TCAUIvD669wg7cUXb6G/PxUbNswwxaOcB7rgm8hDKJgK7b2/T2bWMJxOsyQXOV1mPFTkxtTIZtwd2SRQ6SVlKWsJfa6FFABVLD5WAj8lwk1AfH6SSirny09KuenQoUFcvpyBurp+jI4a8cgjd/Dgg1OS3FRbOwCLJSh6jjS/CCWPSvhp7doAPvhgPb71rZG43EQb9R450oempixON6my0oOjR3tBkoDRGEUkQiB3fScmJ9Yze6BakLBkDcnkpjsMNwHgcFFsQnW/8ZN0Si0TlLKeT/IxYsp6SwVqfFFaSaelxYLS0rn3paTrRiebsaCVUaRAV1aEHMCBuQD/yy8bcfPmTfz617/BxYvdaGiQnjlubc3Enj130N6eAZ9Ph+rqCTz9NOXN8NlnXEfzzz7LwVtvbUR+/iwslqCsc92yZZpHEnLer93uBklGMDMTRW9vGmpqBrB37yhj6BfvWg0OpuLgwUG4XBacOlWAX/5yO06dKkA4TODFF2/huecGcOxYJ37ykxvMOKXb7eY9l5zPRGOjGW1tVyQfo2LlgFajkkKsX8tSQG7lml2hlVPJpgO3WMjlqa6uNYIcRcPptMBomUDahh40ydjZ6uoy4Z13NsJu9+Cxx8bi7hm0tZnx93/fjWPHOvHEEyMcrrLb3UhJiUCvJ3nXTj4PZ6C52YoDB27jmWcG43KSxRLE/v2jOH16kyCnnjmzAQUFfpw9m49f/nI7Xn+9CF09QWzY0ob0jDlOWmMZh9Ml/ZlzOi1IzZyQfIyKlY2VwE+JcBP9Myl+EuMmIDn8pJSbKit9eP/99RgfN2LnTp+sHSgxbgIofiIIPjcpeX9sfpqZ0cQ95pFH7oAggDNnNuDiReGYjyQJvPZa0T1uCvC4yaRyU1wkJbF69NFd2LVrEvn5fsHfL0epabnji2wyUNJ1E0s2m5qopUapa1Vd7UZ1NWWwp9OROHmygDfu0thoRmvrZWZ0LTMziJYW6Q+7y2VBJELgP/5jPc6e3Yju7jVobZUmFJcrE0eP9uJnP7vOI4j8fD8cDg927vTilVe6BQMYOe+3osKHN94owokTBZiYMAKgqjDFxVOornZLHmuzebB5sx9vvbURn34qL5B57bVe/OpX/y9effVV/OIX/8wkWitxpFXF/ED5tUh/Ph02L8JucTuGhQRd3ZMKMmjEdrrFpI3ZEAvc5PJUcfGUKEcB94InfQQaLQlX3C9jKwoLp9HXl46zZ/NQXDwVl9OcTitmZ7VMIaW+/ha2bJliuOmNN4qY6q+c92exBPHEEyP4H/+jE48+OoHi4rvQakm8//56bN16Fzt2+CQ56bHHxuAS2FmjMTSUhuZmC4qLpzg+YG++lY/cjdeRnd8Jo8EPg8xgVW8IQ4sotIhCc69DpWX9oz8/GoD3j105pkEw/0jB36tYXKwEfkqEm+ifSfGTVFKZDH5Swk0tLRaQJHDjhhkffpiHSESTMDfR51dR4WOsZuS+PyF+0ukofsrICKO6ekLympSWTsYVJXK5MmG3e5j9XZqbcvM7Euam1cZPSRkFTNRDaikhd3yRTQZKum5iHldSyij0tQJI/PznlLSnGOgA//btVBw+PICUFHmu1qmpc4nixo0zuHhReHmRhtNpRVmZD//rf23njLPcupWKrVuncfPmGnz6aQ5POSf2/R46NIiWFu4C+O7dd7BjxySiUQJ///c9zPjeRx/l4rvf/QqRCKDTkair60dzs4VzrWhfhulpHbq6hL2jAG4g09dHLc9+8kkOrl+n2vvvvpuDkhJqbw0wrLiRVhXzgxy/lsDwpgV3ao+HeD5UwFz3mIacSraUEWh/fyrq6vqh05GYmaHuzY4OE7ZuvQuHzQsCBE6eFJf7Baj7JRgkYDQKV2bZYBeyurupvSa5x8SO4BAEJT3/3/5bH1JTIzh6tBetrZnMaLAQL2VnB/DUU9RY9IkT3LHob397BN3d6QgEtOjoyEBNzSBaW808TiounhJdOo81Wy4t9THjykNDaWhqsmLzpinkbrmCUEjeKFAoTuKsYmVjJfBTItwExOcnMW6i7yONhmR2ma5fN+HLL9ciGiUYn6c//zk3rs+TEm5ii1GkpMjf8WJzU03NIG7cWIPSUh+++ioVOTkBvPJKN291gc1PbW0Uz8jhJ4OBxKFDg2ht5e/Z22xeEAQEE8LYPftwmIo9aW5qbragsGBS5SaZSNo7X2lKaXKMgdlkoLTrJpZsbtzox9e/fgd6PYlHHnGjqsoDggD0ej0qKsqxe3c1XnvthLy56jCB27eNsFiCmJlRvrulZAGU3QXq7DShrq4fAImbN9cwN6RQAANQQdLJkwWoqnLjhz/shdEYRThM8Dy+2CTR05OGQECL8+fXY+NGP/buHUVVlYdx+KavWUpKVHTBNV4g09Zmxs6dXnz4YR6uXqUk4qurfQmZRatYuaDUqIpRVjQeYxppgb+3eMmTKuBekOEQToAA/g4BXcme7i0BID6HLhS4sb/A33gjlxPI1dQMIHLXhLu9JTBYx+IGVDabB3fuGLF2bVAxPyWyj8qWSb92jR+IHj3ai48/zkFbm4Xhpa9/fQwvv9wNkiR4vjixQRFJkvjwwzycOEHx2Ysv9iIlheIzjYaEVgtBTmWLcIiZmbpcFlRWevHmWxvwfO1A3Gtrt3sQ8FpZewq497/i+woU+FVgFcsXy52fpIozgPD+pRx+isdNv/lNIe/eJkAg4M5CyGdB9lrxFQZgabiptdUMh8MDgMDQUBr+9Kc8jm3Giy/ewrlzlBp1d7eJ8ZyqqnLL5qeTJwtRVUVNPNF7nARBIhLRwmDgF+ClBIJobqIVUj//PBtf/9s7srhp1pslKJqzGvgpqSnlSlJKe/TRXWhpuczrKNGgyeDdd/Oxf/94Ql03frI5i1CIQHOzFWfPzt1QdKeqpGQLrFarrKTPbnfjxg0TwmENXK5M6HRkXFfr2KpRIuQAzHWBtm+fxDe/OYLGRqvoDUm33z0eA65dy4Dd7oFGY0A4HMGZM+KLn3NBDIG+vnScOlXIGE3/9/8+J3n/6quvJhzIOJ1WvPRSD65fz0B3twnt7WY4HG7Jz8RyG2lVkRyw/VqWI6JBIyLT6aitHeAVI+x2NyoqKIEFANi3bxQOmxezw5tlBV2hKTPIwQJUlg6jyjEBEsJf4HMyyYMAgKB7HRwCfiU0qHEXLwDg+nVTXH6y290cfqL3DJRwGkB12cvLfbh4kTqOXY01GKL41rdGsGPHJC5dWouiorvYtu0uCAJxd1Rdrkw8/PAEcz0uXMjFhQu52LdvBMWFKZj4qhCbH2zgcarFEpQlwvHb325GSkoE09M6XL2WAYfDI3lt7TYvJnu3i14bFfcPljM/MQnQ831odsb6E7lhs3nx8cfUVIvFEmQ6bXL4KRFuCrrXAUDSuYk2Owbmx01sY3OAy08pKRF8//tD6Opag5kZLUpLJxG8a0ZKhlc2P7G5CaC+D4oLjZj4qhAFD/2Vw09KuEmnI7FnzwS6bqbL4iZv74Oi1+Z+x6rt1VmtVhQVbUJtbY9goOJwUN2RgwcH8cAD2aitjW8sG4tYo9lQiBBU7YuV8hYbI6RB7RZ5cfx4IeNJAAD19bfQ2Sn+YbfZvDhxYq5qlCg5APEJIjWVIohr1zJw+XImioruwuHwoKRkKzo7u+ByCftTAPwghv1zvioff3xPKVkcOHAbJ08W4L/+y4rKyinU13+1YkZaVUiALnUtzzFsxdCm+XHmnQ0oLp5iqpF+vxZerx4kSXGV36+FQU9iumc7yKBB1gy63uSDMa8fzc5MpKYZMD2t43iqxNowtF8zoThvDLMjGzAjYDrMTvbOnVuPmppBEARQXe3G7t0Tgoqd7J0oGk1N1ricrz++JAAAIABJREFUJmQczh55FqvG0t234eEUaAiAJIm4OxMtLRZUV/NFb5xOK+y2Pvi+2gz/pAV2u4dJ6gCgqsodd9G9pSUTu3ffQSCgQVWVG5curcXO0kk8Xzt4TwKa23mz27zwDxciGjSyFLYoCFd45cmtL9edhfsS9xE/habMMIJAamqEw01dXWtw/boJjz8+hu985yvF/LQY3NTebsZzzw3BZvMiJYWvKExzEzsOmg836XQkc4wUP9lsHmi1UfinMmE0+ebBTxbYbX2YnsgFSXIL8Eq4ye/XorWVMi8mCMTlJrC4CVhd/LRqEysA6OsbxDsCgUp7uxlvvFHEeDz9+MdDioPpWKPZ6mo3QiFCkhRaW9Px5ZdU0iC2s0YnfX/+cy48HgPjSWC3UyOFQjPHlZUeVFe7cfPmGk4Ckig5AMoIgg5gDAYNvvnNJ9DRcTNhkmBL3rvdboTDEV5ymAhZVFW5cfFiDkgyjFde+X9WzEiritUDvSGMgYE09PWlixo7ajQkfvKTG5yAWwoaQwDGvH6cfmsDY3Fw6lSB5HhIWdkU9DoSsyMbEJoyQzOaB4d9CJWVHhiN1G5TSkoEb7xRBIsliHCYwN27OrzxRhEzDr137yhsNqp4FQxSX7kEQSI9PcxwFHvPQGhnQMwEk+6ySxVYmAp3XT8IQPY+l07Hv6b0ojYNm82DGzfmODWemanFEkR6ehg7dkxCpyNhs1FcrtVFMdGxEzuKRmPMNLMwdc9M876IylXcF9DrIzh/fr3kbrgSfkoGN0V6S1BRMoQqRw+0OpLDTRMTRgQCGjz77DBTXNdoSOzefQcVFV7s2uVGMKgBSQIkSaKkZAqtrX4MDaVJ7o7L4SZAugBM89PhwwNIz+1PCj+tyfoKV69moLLSy8R8coyWe3rW4ODBAQAEdu+eoPavCBKTg8XYUeTlcZOv90GQy2B8fimxqhOraHQ2bqCSiAqckNHsjh2+uKRQXOxFa2srnnzy75gxwsLCC7DZbkKrJZkETKcjceVKJgAwngQuF7XQSBPDgw9OoaLCh1CIwMSEAQBlJJef7+eY0SUSuADKCaKurh8ajQY+n2/eJEH/PS5darjXdfNykkO5ruw//GEv2toyGY+NpiYrNBrjihppVSED7O/5FRyHLoSnjc46zjH3pAs18Tq+dXX90BoCIAEYc4Z5HjDHjnXCZArjwIHbnK42m//OncvnLuI73HjhhT6MjKTgs89yMDCQhokJIzo61sDhcKOykqooBwIatLVlivpX0V12OQWWxkYriounYLGEZPvGCP08FNRBS0SRluHBf36cwwm4pHZZ2deDTjzZBsgG4wxmRzZgdmQDYqu6BONyNvczCtK+L3M/S8LNwH6KlbgMsRyg8pMg5stN9JihLv0ufsfioGPHOhGNErBYgiAI4O23qedi34vHjxfyuEmrJVFbO4D29gz85S9r0du7Bu++m4/HHx9FdbUbOh0Zl5vY485y+MnlssDhcCMcJubNT2ss47j0x8240WFi+Cnenj19TVwuq0BnqhvTw4XwMj5kbH7i7n1y//v+56dVnVgtlLGxkNGsElJwu91MZ6S3t583Plha6mMkOuUQg83mgdUaREODlVdhEQpcgkENxscNouQAKCeIxkYrtm+fwr/929uIRudHEvTf4/LldvzXf+Xj2rV02YEMDY2GhE4Xxc6dlHxyJELgmWeGsX37NsnjVKhYKshR31LqaRNr7un3a7F7952493NzswVlRWMAwAl+aLS3m7F37yjneeQUYGpqBjE2loKamgFGDCIQoKrGH32Ui5GRVNTX38K1axmC/MEeeWaPSYuB7oxHIgRsNg8+jSPEQatlsWG3e+D3roXOMAutNox9+8aQmhpBdbUbu3ZRzy3Ed3JGlp+v7WV1p1SoWL5INj/Nl5sCIxtgsI7x+IlegdDpSEZ6XC433bhhws6dPpSXe6HTAaEQgWgU+OSTdejpMcXlJofDgzNnNgKQVwB2uSyoqPBCoyHnxU+zU5lIz7yD+vpbSE2NIBwGqqsnRLkJkMfXKj8JY1UnVnJEIhJRgaOMZrlLpnJJwem0MOOAQgkawCUGpzM+MXz6aQ46OqikzevVIydnBj/8IXU8XWWhA5cbNyiz3/r6W5yxHDYSIQg6gPm3f9uEw4cHEiYJ9t+D9p3yeAyM6uCRI7ckyQKgqjBPP32b5zxut3tw9WoHyspuYuvWrZLvR8UKxQrea5CjvuWweeHvLRY8XmMIQGcdhyHTw4xu6I1cT5L2djMqKqj9TSk4nVZUOXoQjRK42b2B9/umJitsNg/OnZvjQXkVWkqI5/TpTaipGcSpU5uZceYDB26jq2sNLl5cJ9pldzg86OlJZ8ak5XbG29ooYZ0OqYVsuwfXr5v4P7d5cXdsI7KL2tEYwyn0OQnxnZzr4XRlYmfRGGZGNsyr+sv9/QJ9+OmnVTtXiWOV8lPSuamqB4ZMD0hEefxEr0AQBJidcyXc9Oabm1BbO4B//dcChpu+8Y0xdHX5JbnJZvPC59Nh69a76OtLl81PqakRtLWZE+anKocHUZJQxE1yr4nKT8JY1YmVHJGIRFTghIxm5ZJCc7MVjY3NIEkSbW2X0di4kfeYOWIgceIE9Xxyu0YFBdPYvHkGt2+n4IMP8jg32YEDt/HQQ5P47LMcfPDBekGvFnrHiyBIFBUpIwh6J+vGDVPCJMH+exCEAU8/PYQtW6YZCfdwmMCdOwZRUQ46ARVSJKSrMARBiYio+1QqlhPm42nDXgJ3ujYzxx092sspQjQ1WbFrl1vW/azVkWj6qxXPPjvEUQAFqPspduRXbgHmyJFbuHAhFy0tlFHlhQu5cx2c5/vvmX5SnFdR4UVq6tye6jvvbMCzzw4hP98vW/U0FCJQXDwFrTaKmpoBuFx8CwibzQONhhrB1mhIzqL23dGNWJMzgDffEu483b6dggMHbvP4Ts71cDotqHL0AKBUGJdaWluFCjEkyk8Lwk1aEr9+fTPsdg+Pn+gViMOHB5nnUspNLlcmvv71MZw9u0E2N9FJ3Isv9uLGDZNsfgoGNSgpSZCf7B6QJIE331TGTXKvidNpgcPRq3JTDFZ1YpUMY+NY5T+NJgXRKH/WWCkpvPFGHyorQ8jODvBuvPkQQ0WFF6dPb0JdXT9zjrHmmsXF3dBqgZkZDbZtm2IUEmmCOHNmI0pLqRG6zk5lBAEAX3yRjQcfnFJEErF/j5s3byIUisDnM+D48RzO8VVVbubcYslCTgLKVx5Ucd8hXtVqmVaMpTxtpntLOF9ujFpczBI4DY/HgNbWTE4RwuMxKPLEo4sRhw4N8kaHY3lBiW8eQI3B0IEMMNfRT02NIBjUIhQiBIsn9N7o5KQubme8stIDkgROnixEdnYABw4Mo6BgGhUVXkZYyOPRgyCAnp50PPfcIIzGKEJBHWa9WfD2PogU6yicAuOQNG7cMOOhhyZRWzsAl2tOjlru9dDqSFzpjsBhv4GZ4QKEpsyAwA6DEJZERUvdu5o/Vgk/LSQ3sYulsfzU3c2NW5Ryk9NpxY9+1MP8Ti43AcC5c3moq+vHnTuGuPxkt7sxPm7AuXP5cflpclKHmppB6HRz/BTwWdDeBcXcZDaHFBTMozAVsrkJWO38tKoTK2B+xsaxyn/0B/KZZ4Z5krtKSYGWYK+pGcSJE/xdp+5uE0IhIiFioOeQn3hiBMePz8kbs8016U+fyRTh+UYAQF9fOsbHDair68fERHyCqKz0AACeeGKE8ZMJhyEZxBw8SAUxWm0K5+/hdrvx9ttn8e//Lr6bUFvbj7q6fjQ3WzhkIadr2Nhohs1GdQ0ffXSX2rlSseQQGpUJei3wu7MRDRpjZAy4iF0CZ0NIGfTyZWU2DENDlNn29743hPfey2e4qqtrDYcHlfrmsQMZGk6nFUeO3AIA0UJSd7cJf/lLFr72tTFYLCHJznhlpRcGA3nvfE34zW8KsWfPONauDSISIZCeHoFOR+L6dRO++IIaGf/R0T5MdFQwz5Oa6YbTtVlU7bWpyYrPPstBQUEvUlMjeOmlHuh0ZNyRZfb1uPhpDm50mFBXewuR3u2IBsWPUaFisZEoPy00NwFz/LRnzzg+/DCP+Xln5xw/JcJNej03KZDDTQAwMWGETkciKysIq1V6codeuaAL4FL8dOVKJg4dHMbIFRvzHGtLWpk9NTF+cjqpSSY2NwWDGtmCGX6/Fu+8s4HFTWrnatUmVkKdprKyUtmBtJDyH0AF92fP5jHtXvbvEglYaClwIdVCgpjzJFBKDLQPVSycTivKynz4p3/ahm9/+zb8fp1otaOhYS2Ki6eQlzcjM4ChxvVoNURadtlgiDKPHRpKw7lz+Ryp+5/+9B85z3fpUgP++lfh16Kfo7nZiqKiKWza5EdZGUUkwaAGRiPfeTwW7K5ha+sV1NR8T925Wm1QWslawMKb2KiM3eaBw96JwPAmBKcyBU6JehOxS+Bs0N1v9tjv+LgR+/ePKLJhcDqpnaqjR3sRjRKMCA5BkBgaSsGNG2bFvnlC5uTsZEvsPi4v9+BrXxvH6dOU4a6QJDLtZfPJJ+vwxBOjjGk4ABQX3+V5G1ZWevDii7cwMJAKjTaCB3Y236sKW6E3hJGdHcB3vyus9lpffwsffLAeqalRnD+/HuXlPvz85w/iiSdGFH8fNLsyUVY0isAIf6+NxkrxelExD9wn/KSUm5xOS1yLGLvdg9/8hls8dTqteOmlbqSkRLBx4wwTD9D8lAg3xYpryeEmar97GOEwgTff3BSHn7wgSXBGGbOyAqL8dPDgILS6KI+bfD69pBr1s88O8bgJgCJ+YnPTbMy+VSxWAz+tysRKrNNUXS0/kBYTlgAoQjh3Lg+1tQNoabGguZm6ATo7TTh4cFBhwGLB0aO9HDNNGuEwAZuNkhpXSgxScuZpaRFEowS2bbsrWXkpL/cgL29WdgDzjW+Mcs6vry8d587l47HHxlBcPIW0tAhKS30AgM5OE0pKphAIBPDqq69yEt/Ll9vR3JwvWSGmxx6BCP7lX+aWZY8d61TcNaSNm9XOlYrFhtSozFwXox/h3lTRSiH95SqG7m4TTp3ajJde6kF5uRd6PYnPP88WvJ9tNmrUlvbRo5GdHYBGAzQ2xpqtU7ubO3b40NychWefHZLNf2zlURrsZEtMaW///lE0NlqZ12AL27A74x0da5CVFURbWyauXctATQ3l1SK0f8kelX777Y0YGEibCx6twIEDw3j77Y2ix9XUDGJmRsM5/0R8BJ1OCxy2PsnESoWKxcJ8+UkJN9EF0kgEkmsEhEBUn50dAEDA4zHi4sVcHj/19aUiPz8g+16kR4jZkMNNBw7cRk/PGvh8+rj85PXq0N+/BteuZeDQoUG8+25+XBVRtuAPxU0Edu26g9273XHVqDdu9HMKWUr5ieamWZWbVl9iJdVpUhJICyn/sdHdbcI772xAbe0gKis9MBiiCAQ00GgoL4TYioPdTsmdv/deHueG9Pn0MBii+NGPejAwkIYHHphlVVuAO3d0qKvrR3t7BsrK7sq+CaTkzOmbS2q8UGkAQwdeW7ZMMUukUh4uNTUD6Opag9dfL+IlvkBAVoU4dowIgOIEVN25UiELC+RFo7OOo9kVR17YlcnICwtBjr9MNEqAJAm0t2ciFCLQ0LAWnZ0ZvPu5vd2My5fNyMmZ8/azWIJ46qnbvJFh9o5Dbe0ANm/2IzU1KjiiG+ubR1ee//Vfizjnyb436fs4tsASiRAcA3KPx4ALF3I5XX9a+RQAs3sxMWFAf7+wkBFzrZstKC6eQl9fOhM8ZphDmJzUSx7X2mrGpk1+zvknYjLq8+mhM4SRsr4PwTsPgFzuI4GqUuDywDLlJyXc9KtfbcO+faMIh6n7W4ibTpwoZPas6ftdLj8BpGxucjg8mJjgxkZC3ES/Pi1mYTBEUVw8hTfeKOKchxA/vfRSD959lyqot7Rk4vHHR+Puh7tcc4I/dGJbW9uP5mZrXF7bu3eUU8hi81Nbm1nymgBz3JReeAPB0XyEp03Lvzu1QPy06hIrOWNkDQ2muIG0kPJfLAYG0qDVRvHaa1sAAPX1t/D22xsxPa3jkUJvbzpIkpq/ZcNsDjFy6GNjKfjznx/gGdf99a9WGAwkCEIeMQDUjR+N8k6ZQw5S44VVVW4AUBTAfPDBAzhw4DaT3MWrvhw6NHjvWhOcxPeFF/rw1FPDOHMmfoWYJLl3TCJV4sZGMx555IqaWKlYdBgsbjidMpSZbLdEEyu5/jIkSYng0J99ofsZoO5ptqiEHEGY5mYLdDoSFy7kYvPmaRw8OIjKSi+MRqrgdOOGCb/9LVVp3bdvhBHMOXLkFtOFTk8Pc+7N+vpbmJ7W4m/+5g4mJgycSnV1tRuNjfwuPw1axhgA8xpZWSGcOyftscNWBqNRUDAtQz3LiooKLyyWEIdburtNOHmyAHv2jOPll3s4RvBCPoJ04evyTQIOewcCQ5tYC+MLB7EdmvC9HRoVqxPz5Scl3GQ2hxiRLjFuAvj3qBJ+amqyYs+ecWbXKJab9u4dRVWVB1ptFDk5QRw71on2djMGBlJ53NTZacLatQHs3z9KXStDFH6/FkYj5WkqBXqHi+amzk4TqqvdeO898WK+0Hun3jO30CQEejWEbY8BzPHT0aO9TMdQjJ9obmq7koaqqm6EJ3IwO/qA5OsmA8uRm1ZdYtXWdgVNTdKtysbGTDz88GXJQFquuXA4TMDn02PfPm61QYgUqJuWu0/1yCN37pkA85OIWMWbCxdyYbEE8f3vD/KU/Ng3AV1xuXkznfP6sUkFu7sTWxUOhwmenLIQ6ADmzJkN6O42Yf36WVZSJk12LS38/bKhoTSMjqbErSy3tprx0EM+3LjBDTqE5rblVIkjkVn88Y/v4/HHv6aOBKqQRhK9aPQGmcpMBn53lkbIvQ4Oe0dcf5lowIDU9IAidSwAKCvzMVLCYmB/4ff1pePs2TwcOHAbLlcmtFoS27bdRXm5D+EwgbExI86cmRu3q6ykdre02ii6u9cAoPlvHb71ra8QCmnujRVbeJ3rWBl4GmZzCDMzWvzv/72NeXxqqjJlMBpyhYNSUqI4c2aDoMrrzIwO4ZkUNF1Jkwwy6cIXzf11z/cj0lO8oAGEnB2axUjuVCQJy4iflHCTzeZRrN4HKOenDz/Mw/XrGXj66WFMTBgYbpqd1UCrJXH1qhmXLq3ljEcfOHAbJEklcU1NVrz//nrU1vbfG4+28sajjxzpw7lzwtwEUPw0Pa3FqVMFzB6UXi8v3orlJ4NB3l65TkcKxrMejwHj4wYMDKRzBNliQXMT2zdVd3cNwtPC7zEZWK7ctOoSq2hUXuAQjQYkHyPXXFij0XAqLVKIrTbk5/tRWjrJuIMLITYB8XgM+OMfN+Do0V7MzhJobZ0bMbFYgswcslZLwunMYuTMhZIKursjVBUOhTSIRqPYuNGPvr50wXMD5pLLmppB+P1adHWtQXHxFEiSUHw9aFgsIbz3nrwKTFMTPwnq7jbhxo01+Lu/I1BVJa9KPD2txcmTw7h27V9RW/vsootZzFdsRcXKhFxlpoiAmTbneabX4IUX+qHVkpiZoT7rHR0mbN16l/GXIaMaaDf3yN5BpPkkkYSEroRWVbmxfbsP6ekRhEKE4LjOXBd6AHfv6piEaeNGPyIRjWTnWkgGHqCCgCtXzEw3/LPPcmCzeRUJANGQKxw0O6sRDKQY49TBQjjsvZJBJrvwNTSUhmZnJsqKxhEcka5kJwq5OzSR3oVN7lQsT8yXn6JBIwKjeXi+dgAk5ro6XV1rQJIESh+aYripqqoHs7PyRbrmy08nThSiqsqN3Fxqb4s2Lo+9D+hEgpY6r6+/hYsX1wEgcPp0/IK40HuhkxQ2l73wQv+C8tPMjFbwd/n5fuSsCyJnXYgnyMZ+DI+bmi2oLB1GuLdE9HXng+XMTasusZJLBOE4gYpcc+EHH3wQDsdtRZUWmhAqK72IRuO3cWMTEFqZ8Omnh7F5M1fOfGpKB602imhUgxde6Ec4TNwbCSSh1wNPPXWbGb2JVxW22SglmrNn80QrL3a7G1evZuD8+fVMAqfXk9Dp5FVRhPak5BKlWAUmP9+Pigo/XnjhR7h0qQFvvCGdIMdWiQniLP7hH44uWkKTDLEVFSsTBOaUP8VQWekBITJaojf5kJLXd6+iV8SpmtbUDCBy1wQ/64sn4k/jWUXEwm53IyUlwoypKFUkpUGP8zQ1UZ4wTqf0HoDLRY3r/P73G3Do0CC0WlJR0YlGfr4fNpuXV8W+fNksyzYiVlBDzt6m3e6BTgvs2zcqaJw6O7wZkWkTZoc3o662D80ued10emF8oRIrKTlsgL1DEye5U72t7kskg5+MOcNodln494Xdg+BoHtNxCE/kQGsdleX9lCx+amqywmbzIhRC3D0llyuT4SfKF0qam8QUn4XWEYaG0jAyYkyIn2JtL4Rgt3ug15Hi/DREnQvFTVzzZ3FusjLm5guBpHETkHR+WnWJFVuiXAyVlcLKMmzINRfOysrCtWvHZXtYRSIEjh7tRWtrJk6eLMArr3QnlIDQFZc9e8aRm0t137RaEhZLCE1NWTylL0o4Yz3Gx42cMRqpqvBcpWYAJ04U8t5bfr4f5eXUzga7Mkyr0CRCdgAUXcsnnhhFU9Pce62q8mDXrikcPvwsrFarrAQ5thLT0GCCzbY4YhbJEltRsTIRjWoZ5U+xz6fN5kU0wr9PNIYAUvL6hCt69ChZ7SDnmNnhTXDYOyUrkw6HB19+acX/+T9zAYEYp8YubtM7CWyVU7vdDYKgkgQpsAtIbW1mVFV5ZBedLl7MYYIAh8ODu3e1vMX3zk4Tvv/9obi2EeyAB6A6+0eP9kr+jRw2L/wDRSgr8koap1IGqyWorr52b5dDuptOL4wvFKTksGksdHKnYvliMfgpfNeEaNCI2dEHoA8YUVU1EPcefe21LZx7JVF+stvdGBs1wGINKeInID6fuVwW/PCHlOIzW8TMbvcgGiXwyivdPC+8mpr47z2WnyIRAjabR5rTZfJTpLcEZUVjsiZ9fD49dPqFE69Yzty06hIrvd4giwj0eulkxu1248aNmyAIoLp6HDYbtQul1+tRUVHOMRc+fPgZ/O53f4hbbbDZPIhECBw/PpekJFptASiCCgT0MJvN8Pm80GqlW9l0a5otAKHRRONWalpbM/H000M4dy6fQxDl5T5eFYM+ZnTUGLeKIlR9AQC3Wx/3WlZX++6Na6Zg925x42d2gvyXv6SjuTl+lbipyYLduxdHzEJK1h9QVQuXJZL4XRL0WNE/MSupHHfrVho2ZaXwjtVbxxRX9KJBIwJDm1BX28+rTNrtbjgcHoyNGeBw+KDRUN10p9OCI0f6eJzKVv08frxQcP9pdlaLigqv7H1NuoDkdFrxyCNu2cf85Cc34PdrMTCQCpIEOjszeFXXZ58dQmOjBXV1/QJ7EVTwde5cHo/P0tOpxKamZgCtrZmcTlNsRyoybYorlR4NGhEN6xCKkKKjQjTM5hDCweR9jccaucaTwwYWPrlTkWSsYH4Kea1ARIu65+/t1QjwE0DFDvS5iNncxOOnL77IQkWFFydOFCoucMvdazIao0yBZ3ZWC42Gv8PFVjrW6UhRG4yKCn6skp/vx4MPTuHjj3ME98qV8lM0aERgZAOMWXfw619vic9NoeS2p9n8tJy5adUlVuXlZfj97zsliWBgIB01NeJzodzRrA28TlVJyRZO92Dr1q04cuQwCOJtyWpDVZUbf/2rhfNhlTNmYrMJJyBUkjiBL7+0gCTNmJ4WN/uNHZuhBSDkVIUpc1AvQxAzM1potST+4z9yUVQ0jaeeus3zmaKrL3Jndtk/z8oKIitL2pB4165J7N17EFarNW7CsXXrVrzyyg8RDv8aDoe8KnG8HbxkIZ6sP6CqFt7PCLuzsbWoE+9/kIuNG2d4XZbz53Nx4LsjmO7dyDs20Yoe1TUpRlnROK96OdtfhEyTDzqtGw8/PIFdu9zQain1LLaNhEZD4umnb8f1hCIIEu++m4+nnrqtqIDk8+llj3X7/Vr8y78UMwql8fymwmEwioT0tdbrowBIbNrkx8SEkRfM9fSkIxwmUFk6w7pmWkSCBoAATAU9jFpVyL0u7sx/0GuBJzQla8Qw6JXm5/lAjhx2spM7FSsHS8ZPPeL8pM10o7rKw3CT36/FrVtpqKkZhMuVKZuf6ur6Gb8+pQVuJY9nc9Nbb8VXOo61tQmHCZAkcPVqBiYmjMzePM1NkQiBnJwAenrSuPwU1gAkKG7L64dGJjcBQHgmRdZIZniWn1AnC8uZm1YdG9KjX3/4gzgRPPfcHezeXS14fKKjWQUFBairew46HX90kL4BJiaMnEpwPFNhiyWIxx4bQ0nJFLRaEjt3+pil9JISPyor7+Dzz7PR0LAWx451KhaLUFIVNhii+Kd/epD52TPPDOJb3xpBc7NF1GdKqvpSVeVGVxelABYrsHHuXB7WrAnjhRf64XKtFR3DVDIaZ7VaYTCkYGoqJKtKrNEszjKkHFn/xUz0VCwuIsEUzA5vxoHvUrPt7HvJbvfgwHdHMDu8OSHzTUC8ohcNGhEcyRceoZg2MT835A7hcncUFz+dUw49cuQWjMYImpqy4u4kmM0hdHcrNzg3m0OIRklFXW85ssu03xRbtVWjIfGTn9xAIEAgL28G1dVujuLqmTMbUVR0F9XVbgRGNsDvXsvstrVcSYPTlRejVtWB2eHNkmpVYXc2coomkJUVlB4xtHvh7ykWeAb5iO1SsRH0WmTtZyxkcqdi+WI58lN42oTA8CYONwFQzE9NTVbGr08pP8nZa0qUm9hS83PcpMFDD03iwQenOBYWx48XIholUFnpQXHxXQRGNiAU0rP2bi2KuQkAQqN5qKrqkSxuOxwezPYXCRytDGL8tJy5adUlVrG7UWxppEeiAAAgAElEQVQiqK724bnn7kgG5fMZzaI7I5WVjXjkEe542o4dJbh6tQOtrW14+GE3du2ivrynp/nVFp9Pj507vdi/fxQul4Vjomu3e3D48AAsFjO++MKChoa1AORLArN3tZRWhWlYLEEUFvoTqr4EgxrcuWOAx6PD1JSeU5XRaKjKeFHRNFJSgPJyatSPvpYEYUBmZia8XhJnzpxRrJxXVlaK8+evxiXQqioPyst3xn2+ZECurP9iJXoqFh/03k1Z0Zjk/DvvuEWo6IXd2dRO1r0vWPoL/9ixzrg7Bk6nFUeOUB53Sv3lKis9cLsNcDjcsrveUsqsdNC1cydlJ8HetQCoPYWRkRTk58/wxqkBoK8vnapy1w4CUQKG3EGEowQefmQCZeVe5rkYtaq6Xmh9FgTHHxD8+1EjmZuRsqFP1FDeYfchMLRpQRWvyEAqHI7B+PsZvfNL7lSsXCxXforlJnZCIoefXK65QrNSfopECNjti8dNvb3pcLv1qK724Le/3cx7TaYL9/wASJAIRzQJcxNAJa/hiRxB31S6URCeyFlQqfXlzE2rLrECpBMc9v6NEOY7mkWPpgn9rqCggPPzDz/8M6NYx6620ImGlJP4Cy/04/LlufZ7IrtaVFUYinehqqrccMVxYxeqvtDt8KysIEgS8Pl0IAjgyy+zeCObDz3kRmHhblRWVuLJJ/+OGc/8z/+MorFxY0LKeVQ38zIsFo8kge7aNSXa0Uw25Mr6L1aip2JxEFulo2fb4+3nsCHXfHM+Fb1o0IjAMH8nS2khh/aXO3RoEK2tmXC5xFWn2EFJcfGk5Jd7JEIw3jJi58TetTh5kt9d7+tLRcSfhvXr/Whqkt43vdmThq1bB9DUZOW9B7avVmOjFQWbp7GusEPUayU0ZUakuwT67BHOaFM4rEHIlwn/PP2r6M+YxhCA3jrGM9iMTGXCmDOMzz/PlpwsCI7kq1LrqwwrgZ/EuMlsDiXMT3L8L+m9pv/8z1yRvUs3zwB9PtwUvrsGhQ8Q2LLFI8lPKSkRREnA5bLy9kvFuGl2eDPCUxmCzzc7+gB0d9egsnQYVY4e6PQkwiEC4dkUzPYXzTupIkFAYwjAsAK5aVUmVoB0giOFxRzNilWsoxOQJ54YQThMxGljW1BcPMV4TCltZQOAw+FGaqpRUVUYSLz6QhMZQejQ05OCxx4bl/S1MRg+webNmwEg7nhmKPR7lJXtwN69fyuaOFPdzGdw5swfRavEDz88pyi4GCgt3Q67vSWurP9iJXoqlhfEguKQe51s8835VvSEdrIiEXmd7kBAw/z/7m4TLl5ch/37R2G3e2AwzI20/Pa3mxGNEnj88VHOknZDw1pkZwdhq5iEzeblHMMeg3nxxVuC3XeLJYgDB27j97+X3rUASSIc0cLlEg/yLJYgCgr8kpxFCwS1tFhQUeHF6bc2SHqt0MFhYHiT7L+HEnDl+GMMNh09uNmdjoaGtejszOAU9ugxyPZ2M4rzZhfk3FSsfCw1P4nti4bDmgRFwUhs3OhHRYUXKSl8ftq7d5RJsrq7TejvT8f3vjdEyZnrSVED9HCYwM6dXrS1zfGLXG6KzqRCYwwgHNGI8hP9XFJTRMLc1Mex44hFeNq0YD5VK5mbVm1ilSgWczRLTNJ9504fT9QhFvSYDb0noLSVTUulu1xmVFSE8YMfDKGhwYzm5vj+BYlWXy5eXAeCMOCVV47it799E598Il0dbmjIwEMP/V8MD49gdjaEH/ygjyOQQZ8T9Vgrxsa6cf16l2T3iupmvoTPP/+/0OuvMSOZJKnDjh0PYu/ery26f1V3dzpvFJTqxnmxa9eU4n0yFQuAJChtSe26CEHyi+ferPycL1KsgpaHMQZORkUvdufBkDskqxqt1VBcMzSUBosliH37xpgvf7oIU1rqQ3m5jxHFeeedDRxT8kuX1mJnqRehsEZ6DKauH48+egcffbSe+Z2c3YbmZgs2bfJj/XrpopqcTj0tEHTxYg7S0iKSXisaQwA66zgnKA1NZVAL5xmTnEA17M5W/HeUlLu+NxZUUzMIiyXImSxgw2IJovSoDDlj1btqabGK+UloH0seP7nR20vxDJ2YsG1nYvkpHCZw9WoGZ0fb4zHgvffy8eKLPSBJjWRiU1s7gP7+dOZYudxkt3vQ3GzFw49MiPKTnOdatdwEJJ2f1MRKIRZ7NEtobJEklUkTA3Ot7MOHB9DSwm9NV1T48Kc/UQEHXXU5d46qurhcGaivv439+4HKyl4YDFGEwwQ8Hj0AEjU1g5yERsgdXU71pbZ2ABkZVMXF6/XB6ZRefBwZ0aGtrR1NTVY4ncJyzrRxMV2FOXlyA+L5PlmtVjzzzAE888wByddPBtxuNy5dasDly+2IRmeZvbDS0u2cLlzsKOjMjBZGI1BXdxgFBdJJtor7D3K+eOpq+zDdW4Jpkf0HqUrkfBG73xALuhodGMlHXe0gml2ZSE0Nc778hb4w9+0bQW1tP2Zn5/hGoyEBAmhtlTbkbG62wOFwo7V17jWkuus0nE4rysp8ccepxZ6LHYDRY9xGYwQzM5p7z89XPtObfDDm9XOCUvZerdMZG6h2io4UikGO3LXLJWxiSkOVWlchhPuCn+w+AJRpbiw30e+FzU/79o2gutqNbdvucnagnnhiBFot4pqZu1yZePLJ2zh9ejMA+dxUVeWB02VBWblXlJ9WGjfJMf9dztykJlYxEAt0aQEEOYayyR7Nih1b/MUv/lm2QS5dDQaAiQkjSBIwmcKctqnXqwdJkjh4cFCw6kJ1fMxwONw4frwQWVkBfO97w+juNvGqTD/6UQ80GhJVVV5cuLCOOR85FROXKxPV1V5cutQArVY6eaSr27/7XfyxG4/HwCSay8n3iSvbn8/qRPXBbm9Bd3e6ZJC5f/84qqo61MRqhUNpJRhQ4gEzhsDIBnGFvwWC1H4DuxodmjIjMr0GZUXjMGZN4vXXpYspdJJz6lQBKis9OHq0F1Q5npAlllFV5UHd8wNodlL+W0p2LdrazJL7pkLPxe7Ss4WSbDYPtFrq9729azgBgMYQgDGvnxOUxnbzaHADVfGRQiHIkbuOVYqNhSq1fv9j1fLT0CZEAilJ4aaIxJge+/iXX+7Bk0/exqVLa2VzE+0BKKVEqHLT4kJlRBakAl22AILQeN58pL6VQm7XrLh4K+rr+5nzrK52w+WySO5Z7d07Cp2O5CVtjY1m2Gx3kJkZxDPPDAvfRLRbel0/Hn7Yg2vX1iiuDFdVeXD5cjtmZqSrw0pa2xcu5HLmpaXERYQS65KSrSBJAp2dXYLJdiKQI9vPbnULQfWvWr1Q4gGjZKE8mZDyw2JXo+lRnfR147KTHI/HgJYWC2w2D3p6THjooUlZx2q1JMIkUF09gaoqt+xdMJo7bDaP6L5pbKdeqktPm7LX1fVDpyMRiRAw5A4h7M4WrNbKGgsSGdsRg1y5a/bkQyxUqXUVQrif+Gm+3OT16rF7t/iYHvt4rZZEaakPO3f6ZHMTvTsKiPNTbLddDjfV1g4gGgUIAlhT0o6g1wJCG1G5SQbUxOoelPhTzUdVMBmQ2zX71rcOAgBznoFAIG7VpaXFgpdf7kFpqY+zq6TRkNBoqK5Wc7P07lNTkxXV1R7U199GQ4MZjY3iqjds0MQSjc6ivd0qKbahRCCjtNQHj0fP+GKJiYsIJdZUi/vavRa3eLKtFHJk++W0ulX/qtWJ5ew6z4akH1YM5Mov00kOtdNEjfjGK8TEHvurX22D2RzC008P8aq8seMxwaAGgQCB4uIpfPxxjqAKld3uhkZDcjhLTsDR2GiFTkeiqcnKjM0QGhJOVyHnsfIKU/yxHSnIvd4zM7EL/BRUqXUVYrjf+Gk+3HTqVAEqKsTH9ISO/9WvtuHb374taMIby0+RMIGnnx6C1RoU5SePR8/hObkTRKmpEZw/v35urK/Kg/E73HhE5SY+NPEfsjog15/qyy8bAcyN5/30p/+I//k/f4af/vQf8eSTf7coIgK0qEV9/VfYv38cFksQGg0JiyWI/fvHUV//FdM1Y5+nXi9vN0urJXHqVAHCYQL19bfwN38zhvr6WwiFNLJa2i6XBeEwUFRUiJdfLsCPfzzEVF+kQI8vajQpGB5OQXW1G/n5fsHHSglk1NdTCmAnTxbgF7/YjlOnCjAwkI6SkrvYsmVKUFyEnVh//HE2PB4DzOYQ0+K+eDEHHo8B0SjBJNsnTz6AM2feg9vtlnxfQqBk+6VnjltaLCgt9Yn+XvWvWnnQGAIw5A5hTUk7LDtbsaakHcbcQWgMyhJk+otHCittTIuWX5YCW7m0tNSHlhZqnK+9nRrTk3NsWlqEuY/PnctHRYWH4Rk2f5w6VYBf/nI7jh8vxNWrmdDrSfj9Opw8WcBIJf/kJzfw0ks9SE2N4J13NqCy0ss8F31+UqDvcXps5vRbG0CCKmKxIXssSEGgKud62+0e6HXUngn7e2bfvlHU1Q4mTfxExdJDiJsMuUOKuQm4//hpPtzk8+kT4qcvvshGRYWXEwMJ8dPrbxRhYCBdkp98Ph3nueRwk9NpxbZtdxmuvPhpDk6f3oR9+8ZgsQSZx6ncxMfK+FQvAubrT7XYSKRrJlfR0O/XMrtKt2+n4MCB2+jsVNbSNhqj6OjohF5PQqNJAUkSsuTeCUKDsrJSDA5eRVfXGsHqS2WlR7BNLtXepscUa2sHQBAkIhESv/jFPzMjfUKJtZyqTqL7WnJl+6Va3ap/1cqC0NKvUsd7GovhUbXYkLNQzlYupb/Q/X4tOjpMqKkZiGsL8e67+ZxiBZVc5aG2dgDXrpmwfftdnDkjzh81NYM4caKAs+/4s59dx/nz6xGNEowXV0tLZkKm7LTIxu7dd/Dhh3nMz+X6EIaDOsGdGEJAFk6uwMjsQCHKinyJiQuoaoArAsnkJuD+46f5cJPZHEJTkxUvvdSjiJ/Y3n5tbWbcvGmKG9+I8dO5cxtQWHh3XtwE8FcsgPlzE8Dnp0XhJuqFFwRqYnUPi+lPlSwo9eKSs5sV62W1ceMMmpqsKC9X3tJOS4vg5z/fDrM5hEcfvYPqajdP7p1ua5eV+ZCaGkE0qsXsbADr1s3g7NktAMDzKPB69RgfN/AStUTa2/RIH0FE0djI9YqR0+JONNmWm+RKtbpV/6qVA6GlX4CvkhXpLZH1hSDXA2Z6gTxGhCAkwatEbpdZKH/+nkSzhAknQH2hb9zoh9erx9atd9HTky7oP8c+tqjoLoffAMo/6513NuDQoQE4ndJjzq2tZt54Ljuw6O424eTJAlRVuQV9s2Ih5JXjdFrxwx/24sMP534mx4dQaaAqV2AkPG0Cpk2LKi6gYvGQbG4Clh8/LQU3mc0hdHWtYcb5EuEnmk/27BlHTc1A3DUMKX5KBjcBfNEIlZv4WNGJVTwFPyVYTH+qpYKc3Swxs99H7nkk0C1tMWUsgErOurrWcNrIH320HuPjBtTV9aOx0YqWFguyswN46ilKlebEiTlVmurqr1BZSSA7O4CuLhNPDe/YsU6cPZuPZ58d4iRqcgUyjhy5xRnpu3o1HXV1/QmP3ySSbMsTIPHCaKTU/5ZCJEVF8iBHPpatkhUP0aAxrgfM7PBmJmigK4VCnYtkQLriLV9uNzRlBjlQCIe9F+XlVLElENCgrS2To1QKAIODqTh4cBDt7RmoqPDio49ysWmTH2ZziGcWefJkAdLTwzx+ozEwkAaNBrKUBevruUpUsYEFreAJQLEpOzDX8WcrusrxIUwkUJW7wK8IapdqRSHZ3AQsL35aCm5qbzdj795RFBZOQ6MBOjpM+OSTXLz4Yq9ifvJ4DDh/fj1KSycT5ic6uZsvNwH8TtaK4iZgUfhpxSZWchX85GKx/amWAvRuVij0ezQ0WEWrJkJmv+yW9tGjvXFb2tevm3g3ZUPDWmRnB7Bzpw+VlZQT+enTfLl0tireiRMFvGQ3LS2CgYE0ztgNe55ZCmLtbacz8fGbRJJteQIkU6irO4yqqo4lEUlRkTwshEoW9cUj7AEzraC6PF/Iq3jLl9sNT5sQGNoMY14/WlszsX37FK5dy+CN/W7aNMOok3Z2UtLBvb3p2LJlmmembbN5UFHB5zcaZnOIkS2Wgs+nR2pqBPv2jTLBYmenCQcPDvICC6Wm7OxzCYe0jL8X/ToXL65Dbe0AXK5YH0J+oKoESgRGVNx/WCgFv+XAT0vBTQDQ2UmNJp8+vQkpKREmTvnkkxzs2zcmuN4gFH/RSAY/dbC6h4lyE30ukTDBeQ2Vm7hYkYmVEgU/ucHnUvhTLQW2bt2KsrIdGBvrRkWFl1c1ib2p2eM2dKfq449zUFfXj6YmK1wuPjl88UUW9uyZELwpL13KRkXFNEiSQEODtGFea6uwKp5Qa/vIkVuKpZPZaG6mEkal4zeJJtt0khtPtr+goAAFBQXLYq9PReJYKJWsaNCIwMiGJZMsBpRUvOXL7dLVyuK8cej1UdTV9aO52cJ8ae/ZM84Z+2VzAUmSePjhCVRXu6HTkQiHCYyNGQX5jYbd7kEopJG5K6BFWZGGCRYjYWBySsdIp8/MUHza0WHCrVtpvHOPF0jZ7R4EPVaE3Ot4QWloKhPl27CkibQo1E7VisRCKvgtNT8tODfpSMH7e+/eUc7YHs1Njz8+htTUCOx2D6qq3DAYSIRCC8tPMzMaTE1pefz05ZdWkWTIjfJyn2iSZ7d7EPRZOK+x7LkJWFR+WpGJlVwFPyWiAnID3aXqEiRz7HHv3r/F9etdOHlyAx56aBLhMCGaPMSO29y4YUJbG9WO3r9/FDabB0ZjFH6/Fl1da3D9ugl79kyI3pQ+nx4aTQQajVFGW9vCa2sD3ISHbZz7xBMj82pvJzJ+M59ke6ll+1UsHuTKx64UlSw2lFS8lVQe6Wpl2J2NtKIOjrF5JELwrCPYXGCxBLFnzzhKSyeh15PIyQngscfG8Pnn63h/A3pUJeTNlLlwb2WCRb3Jh5T8W7hxw8wpMtntHtTUDECrJREIEHjoIR8cDi90uigiYQI3OkyCgRR7bIYOSkPuddBbx2DI9CAty83sh0y71y2PgEXFiobKTYlzU3AkH7r0Kc54YDhMgCQJnDs393yx3ETbwRgMEYDUIHttELm5M4J/g/nwU9rGbmjT7qKjIyPGHsKDv/3bOwAo3yyam8JBLUCQeP9PD6C72yR6Lmx+0hgCDD/R+2v+sWyEVjE/rbw7BQun4LdcA91kjz2yk8jW1nQUF3sFkweLJYjNm/2ccRv26N2JEwXYvfsOtm+fQlpaBDt2TOLq1QzJygs9OqdEFS92x8hgiMBmm0za6A19XgRhQH39V5zEWqzFnaxkW6kAiYqViZWqkiWm4sSGkoq3XMU6NqJBIwJDm1GyjVpkTk0No7zcJ/qaW7ZQY4EtLZl4/fUiTjBx9GgvPv44B1euZPJGVSKBFEUL9xpDACl5fTj9prhZ+qFDgzh/PhcHvjuC6e7tiAaN0Jt8KNnWh6kpT9zdE73Jh5S8vqSptalQEYuVyk1AfH6aLzcB8fmJPR44PJyCvr50UfVkNjedPFnAufcPHLiNHTsm8emnOYKckAg/adOnJfmppmYAKUaS4SaA4pwD3+1Dfv6syk8JYkUmVgup4LfcAt2FGHsE5pLIL79sRGtrq2A7++mnh9DSYhEct6Erx4GABjodoNEAWq0Gs7M6ycoXPTrX1nZF9v7Syy8XcBLdUCiIgYFURaM3drsH5eXiM8zV1T5UVpZj9+5qXmK9ffsOVFYCe/Z0LZtkW8XKglz5WKkFX6HKYNBr4VUGpR5HBsXvt0QhVfFmV2cJAjCVXBE857ivwVpkNmZNihoCy7FcqKvrx3e+85XgqIqShXu9dSzumFFbmxkHnvoKs0MFzHFyd0+YxC2Jam0qVMQiGdwELE9+iteNozvbkQgB684W0XOO+zr3+ClnS8c9bzy+erIsbnp+AFu33IJOH0kOPzVL81NrayYqSiKc96ry0/yxIhOr1aDgR2Mhxh5psJPId989h/HxbpSVzanV6PUkp50NcFvaAEUWP/7xEH7603+E2+3Gr3/9G1y/Hn90jiRJWWIhFRVlnET35s2bOH36DxgeTsWHH64XHb3ZsWMSu3ZNQquNgCAMCIXCeO+9XNH2Nn1eyy2xVnF/QI58rNSCr9zK4FJUEMUq3qLV2QTPhR6/SV83DpfI/qMcy4XmZivKijSCex/CQYUWkaABIABTQQ9CQR1CkxnQZ3rhdBVKnrPTaYXD5uO9Tzm7J3ISNyG1NrHAVa60tCKoe1UrHnKlraU+O8uVn6S6cTQ/tbbGdLbnwU96XZRRT07EDqbZSe0uTYnwgiA/hTUACej1USCvH9rJDIC4Nwb5hyLB56FB8VOf4HtZCH5aVG4CloyfVmRitRoU/GgslnExe+9qaCgNFksQ//AP3ZKdQYsliOpqNwKBAF599VVoNCkoKNiE+vo+NDSYJffUEhELobt3//7v4hUfevTmuefucLp4N2/ehE73HhoagrL355K516ZCRTz52EgwRfA4uZVBcrAw/uOe74N20gy9aVKyqqzofQl41khWZ2OqmUqr1KGgDh0dJp7dAiDXckFa4YwdVNCBYMuVNDhdeZyA85FHojLHjMRNvqWQiFqbdOAqX1paxerCfKStk8tPt5ACAnp9ZMG4CVg4fqI7ZEJrCcngJmCOn6LTGax7nZsM22weaLXyVAQTESUBlPPTauKmFZlYJUvBT0ngvFRB9mIZF8eKdxgMQQQC4io0YnsM1dUeVFcDhw9b8MgjA6Kjc4mIhcjp3rW1ZeJ73xtBTc1znGOV7s8le69NxX0OdmVMYiRfSj5WbJZfbmWwsnQo/uOcZmza6Md7Z5JXLRbyrKmullGdvVfNVCqlG/RasHXLXZ7dAr2TmYxgQmMIwJD9FfRmj6AlxMWLObLN0hNd+leq1iYvwJUvLS0JtVO1siCDn+JJWy8OP2UiNTWC8+fXLxg30aqira3J5yd2hyxRO5hkcBM98rxc+GlRuQlYcn5akYlVMhT8lATOSxlkS409svcXSJLEL37xz/NK9tjJR2NjM9rbMwTHbaSqPfTeV319f9y9L6XJjpzundNpwaOP3hX8e8gd81uovTYVKhKB3MpgVZUbTldenMdZUVbmY/gkWfPwsSMqhDbCU+0TOmelalwAdyckduczHJZnuSAVTNCV1dFxPfo6rKLB1+XLc8abYhBb+pezj6JUrU3+aI58aWkVKuIh2fx05MgtRKPEgnGTzhAWVBUVOmel/MTmpkTtYJLBTUNDaRgdNS4bflpt3LQiEytgfgp+SgJnAEsaZIuNPYrtL8w32aOTj5aWJnz55Vr84Ad9vHEbObPCcve+YpMdujP42msnmM5gcfE2EASJSERe944kgwrfNReJ7rWpo4MqAMxVy6TFpGRDdmVQpoFkrEE2MPfFVr7tK5ARbdwFdCGwR+isO1sW1huHtRPS1GTFxYs5jOAO7bcnBjqYoCvwbDUwdmX14MFBnDsnroTW1GTFiy/e4hhvsiG29C93z0SpWttCSUuruM+wwvgp2dwEYMH4SWhf7eLFHDQ1WRPiJmCOn5RwEwB89lkOamoGlgU/rTZuWrGJFZC4gp+SwJkkSVmPtVj+CJ/Pl/SAWmjsUU7HaL7JnkaTgmiUEBy32bnTJyhZzkYie19inUG7fRg2mwckKc8gb76iJYnstamjgyoWCrIrgzK7NUIG2cC9qrKjB01N1nkvli+0N47YTkhoKgM5dspvTyqY8PcWMz9jBzHsymq80R2Px4A//Wk96ur60dhojfGJccNh8/EESZQoaYnth8S+FzowWkijVxUqxLAY/JRMblJ0zgnwUzK5CZjjJyXcBAADA2nQ6Uhe/CYlmLRQ/JS+bnxVcdOKTqwShZLAmfrv+I8tL+/F8eOFSQ+ohcYe5ewvJKoUSIPdKYsdtyEIJG3vi+7ytLVdRiAQkpwZrq0diGsAnAzREqV7berooIqFhNzKYHgmJe7jxAyyAeozrdWRnOMTHccJei2yq7OJQmwnJDrpS1jhjF1Z9fuFJd3ZGB83IhQioNORDD/6/VoY9CSme7bzXkepkpYSeeX72ehVxfLFYvBTMrkJAEKTGQvKT8uBm+gk9dQpbvwWCRMIuNdypNNpLBQ/rTZuuj/ehUIoC5zlta8NhihnbyGZAXXs2GMgEIg7HzxfpcDYThlbYv3Ysc6kdI7YXR6DIRXT08KVD4C6odvbM+BweCQNgOWIlsSDUjn/hZTEV7GCIbRAm8D4jVyfmdnBAjjstyQfJ2aQDUh3s8SkvcVABlLhcAwqrs4mA/NROGN3fYQkk2NRWenBlSuZHH7ct28UZUUawddRqqQl11MGWNlGryqWACuIn5LJTXqTD3qzFzYbFp2fFpub2tvNHIscmpvErtNC8dNq46ZVmVgpDZwTbV+zA+rdu6vntX/DHnt89dVXF1wpUEogxOczxK32xOscxXZ5jh3rjCtF+pe/rMWOHZOCrW05oiVyd6CUyvkvliS+itUJuT4z4WmT5ONsNg/Ons0T5TKpbhYgTwoYoMZJjDnD+PzzbMF71WbzoKrKjeBI/oIZR8ZTOBMDu7IqJJnMhlAgGM9MNZFxPTmeMoD8AHchklkVqxfJ4Sc3yst9eP/99YL8lExuSsnrw+k3NyIlJSIyJueGw+5DYEjauytRLFduAhaOn+SODd4v3LQqEyslgbMcI1upm76x0Yxdu9rQ0nI5afs3i2WQLCYQsn37Nly92iFZ7YnXOYrt8siVIjUao/j1r7dwW9sRAtXVDknREiU7UErl/BdLEl/FfYAEF8flVjql5vs1BDA7K1z1jdfNAuTPwNPjJA0Na9HZmcG5V/1+LdrbzWhvN6M4b1bZRVgEsCurHo9BcMeUDr5sNi8+/jgHPp8eFktQltGzkpEYMXlrMSTD6FU26FNTZdfvLywJP8fU1/8AACAASURBVGkBgsT7f3oA3d0m3nMvBDfR3+uxaw5+vxZerx6hSfOy81RKBjfFu/8Xip/IoGHxuAlYcn5alYmV0sA53mOlbnpape7Uqc1J279ZTINkMYGQsrKbIIjE5e5juzxKZobZrW2LJYgf/3hIshOkdAdKqZz/YiW6KlY35FY6xef7M8W/2Bxu/PnPuUmZgWePk7DvVTYsliBKjy4/BajYrk+sZDK9oxCaykBkKhPf3D+O73znK1lGz4Dc3Q43QlMZCZ3/fEaNVKiYD+bDT3qTDwe+24/8/NlF4yZAmJ8sliBeOtqH5VYGTQY3xbv/F5KfVhM3rcrESmngLPZYh4NqX587J9y+BqgbPhDQJHX/Jj8/F5WVznkbJM8H85G7B/hdHiUzw2zISSAT2YFS8v4WM9FVcZ8gSfsNSiD1xRbyWZC9VtqmQO4M/EpWpxPr+jQ1WRGNEkxlla5mCwVfkpVcArDZPJLdfpvNi8hU5rzeQyKjRgmB/VbV7tX9g0XmJ5Wb4iMZ3AQsLT8tKjcBS8ZPqzKxApQFzmKPNZvN+Pxzs2D7mobD4cb16+K/B5Tt37jdbnz00Sdx9xeefPLbC65Al6jcPcDv8iQ6MywngUx0B0ru+1PaAVWhYqnA/mKL9W9SIu0thZWuALWQlVW9aRJ//jhHkLsrKz2orKRGeL65f3zZVcxVqFhIxAbdbP8mlZsoLHTXR+Wn5GB5fnoWCUoSA6HHut1ueDy/gcvlF73h7XYPjh8vlHxuJfs3dPdFan/h2jULdu0aRWWlrKdcEsR2eZTODMsdOQQWfgdKaQdUhQpBxKuoLWDFOBo0KpL2lsL9oAC1UJVVvSGMK1cy0d+fLsjdtNn7d77zVVJfd1Gg7l3d31giflK5iYuF7Pqo/JQcrOrEar6QE1AThA7RqPRfUsn+Dbv7IrW/YLMtbwU6oS4Pe2a4vp66oSmxjGIQRD7S0rrw1FMjikYOAYAgjLKqVAQh/vt4mO9opAoVSw0l0t6Sz7PKFKCUgF0xF+JugOLv5VoxV6FiKaBy0+JA5afkQL0680S8gPrSpYak7t/cLwp0YkkpABCEFunpOtTUPDcvc2UaZrMZNpsHn8apUmVmJr7XAMxvNFKFirhIULFL/OnIe083V/iRK+0thaQrQCVaYVzgnbVEcD9UzONC3btanVhgfkoGNy2IcqbKTysLi8BPamKVBEgF1Mnev7mfFOgWq8vj83lRWRlBx//P3p3HyXHXd/5/fauqj+m5R9LoHsmWZWGDL1myDTZOiIEAAUIC+SUxDpgEwmazefxIdiG/DWED+YWEZQPJbwM5Ns4mJsbJL4dNEsCOD2xOH7os31g+dB8zmnu6p4+q+u4fVT1qjXsu9cx0z+j9fDz6oZnuqvp+u6r0mfp8j6ppWqmuumqIoaHqt6IWkbk5n+4ANRd61pRIfSk2TU3xaX4osVpg8z3/ZrndgW4xenmsLfK1r22cdkLm1762jptvPrpgdRCZN5WtbA3Y6llW01yA+WhJbMD9tKjPmmoEmnd1/mnA/3eT1TxPSfGp3lWdHwsUn5RYLYL57JnRHejmznHS9PWlqj4MsDwhM1pumQQLEWlYajEXkUal+FQ7JVaLZL56ZnQHurmr7OWbakLm297Wt2R6+UQmzPO8hnM17bNR5rahhdEg+6ls0Z/nIlIPDfL/TvFpbhSfaqPEagnSHejmRr18IiIiIrLQlFgtUboD3eypl0+WvRrG61e25tp6TIbR/JvlT3cKPL8pPkkjm+f4pMRKzgvq5ROZPSdZINHVS7JjkETSpxSPsS8NdGuMvYjUjWKTNDolVnLeUC+fyMwSrcOk1x9k1+4Odu/ZfOauUFcPsnPH8+SPbaY02g7UOHdBLcEiMgdziU2g+CT1ocRKRESAqDU4vf4gX7lj41nzEQcHk9z/wGqee76VD9xykODl16h1WEQWjWKTLBVKrERElpMa7jCV6Opl1+6Oqjd5ATh6NMOuPR1csaVXd4xaLHNtOZ/nO4uV57VMNQTLH1g1twtZPdvq/HaO8cnr6lNsakQNEJ/mLTZV1q+G+KTESkREAEh2DLJ7z+Zpl9m9u5OdVx/Uxct5ZPohWD+kcGzTWUOwROabYpNU04ixSYnVIhsYGOB733uU/fufIgzzOE6aK664jBtuuE43UBCR+XMOd+JKJH2GhxPTLjM8nMBL+rXXSaZWy36q4Q5s1cxuCNYhAj08VOZijufpgsemyXWSqTVIfGrU2KTEahEdOHCAO+8s3/J7Q8Utvw+yb9+T3Hzze9m6dWu9qyki56lS0aO9vcTgYHLKZdrbS/hF/ek4X8x+eGifegpkwSg2yWSzHx66uLHJWbSSznMDAwPceec/c9tta7n33lUMDiYJQ8PgYJJ7713Fbbet5c47/5mBgYF6V1VEzlPFoU52XD047TI7dgxSHOqc24YNag2ejfneT/OwvWgI1vTHe/fuTpId0583IrVYsNgEik+z1WDxqVFjkxKrRfK97z3Ko4+2TZtZP/poG9///mOLXDMRkYg/sIqdO4bYsCFX9fMNG3LsvHoIf2DVItdM6mVRhmCJzECxSSZr1NikPtNFsn//Uzz22PRdkY891s4b3vCknrMkVWl+npyzWd6JKyymKBzbxAduOcSuPR3s3t15ZjLwjkF2Xj1E4dim2Y1XX8YtwLbKl6vpmTkNbN6HYC3j80LO0Szi07zGpsoyl6HzJT4tyPDQeTgvlFgtkjDMzyqzDsPCItVIlhLNz5PFUhptJ3h5G1ds6WPn1Qfxkj5+fPvanG5QcN4pD8G6/4HVUy5zzkOwROZAsUkqNWpsUmK1SBwnPavM2nEUGORslfPzJt/55t57V/H0083AP/Nrv/bL6rmS6c3yjkxhMUXx5IZzm/C7TFuCTbJY9VkppYHu2i7oFmN/1XAnrmgI1g957vnWqkPZy0Owci9vq62OIrM4T2uKTZPLWCacZAGvq2/+YxM0dHxq1NikxGqRXHHFZVx77UHuvXfq8b/XXjvMlVdevoi1kqVgtvPztm9/TMNIRRZAonWY1PpDUzwr5Xnyxzbjj7bVu5oLYt6HYInIvJlNbFquz5hr1NikxGqR3HDDdezb9yRPP908ZWZ93XUjXH/9tXWonTQyzc+TBTHLeVdz2tYy5CQLpNYfmuFZKQeXzlCkczjuGoIli07xaUazjU3hUvo/Osfj3oixSYnVIunq6uLmm98LlOfJtFfMkxnmuutGuPnm92ool7yK5ueJ1E+jPitlsdU8BEtE5pViU6TRYpMSq0W0detWfu3Xfpnt2x/jDW94kjAs4Dgprrzycq6//lolVVKV5ufJglqmrbnzJXpWyuZpl9m9u5OdVx9smD/sszKfPQKzLUtkrnTuTGnZxiZY0vFJidUi6+rq4l3veruGbMmsaX6eSP006rNSROT8ptjUmJRYSUPSM5vO0Pw8kXlyDnefWpBnpUyuSz3VcMfAOW1bRKY3x/+LCxabJtelnpZgfFJiJQ1Hz2w6m+bnidRPoz4rRUTOb4pNjUmJlTQUPbOpOs3PE6mPRn1WyoKo1oI721biRmnhFjlPnFexCZZMfFJiJQ1Fz2yamubniSy+Rn1Wioic3xSbGpMSK2koemaTiCyKOdx1at6elbIUe3WWYp1FlrpZxqd5fY7TUvy/3oB1VmIlDUXPbBKRRtRoz0oREQHFpkbj1LsCIpXKz2yajp7ZJCLzxlS8FroMEZG5UHxacpRYSUOJntk0PO0yemaTiIiIiDQaJVbSUG644Tquu26EDRtyVT/XM5tEZMHMZ8vtYrQ0i8j5Q/FpSdAcK2koemaTiIiIiCxFSqyk4eiZTSJSV2rFFZFGpfjU0JRYSUPSM5tEREREZCnRHCsREREREZEaKbESERERERGpkbF2Fo+dLy9sTB9waOGqIyJ1sMlau6relaiFYpPIsrTkYxMoPoksU1Xj05wSKxEREREREXk1DQUUERERERGpkRIrERERERGRGimxEhERERERqZESKxERERERkRopsRIREREREamREisREREREZEaKbESERERERGpkRIrERERERGRGimxEhERERERqZESKxERERERkRopsRIREREREamREisREREREZEaKbESERERERGpkRIrERERERGRGimxEhERERERqZESKxERERERkRopsRIREREREamREisREREREZEaKbESERERERGpkRIrERERERGRGimxEhERERERqZESKxERERERkRopsRIRkXNmjOkxxowZY9xGLd8YY40xF9VQxsPGmA+f6/pzKOdWY8z3znHdTxtj7pjm84PGmDefe+1EGotiz/xR7Jk/SqxEROaJMeZmY8zu+I/tCWPMPcaYG+pdr/k0+Y+ktfawtbbFWhvUoz6Ty6/1QmSmi4TlyET+uzGmP3593hhj6l0vmT3FnsWn2LMwjDE3GWOeN8bkjDEPGWM2TbPslcaY7xpjho0xR40x/20x61qNEisRkXlgjPkN4I+B3wdWAz3AnwI/OcXy3uLVThbLEj2uvwy8B7gCuBx4J/DRutZIZk2xR2B5HFdjzErgLuBTQBewG/j/p1nlTuA78bI/AvyKMebdC13P6SixEhGpkTGmHfhd4FettXdZa7PW2pK19t+stR+Pl/m0MeafjDF3GGNGgFuNMSljzB8bY47Hrz82xqTi5VcaY75ujBkyxgzErXJO/NlvGmOOGWNGjTE/NMbcNEW90nF5/fF2dhljVpfrbIz5q7h1+5gx5vcqh7QYYz5ijHkuLuNZY8x2Y8zfEl20/VvcMv4JY8zmeLiLF6+3zhjzr3GdXzTGfKRim582xvyDMeYr8XafMcbsmKLunzHG/En8c8IYkzXGfD7+vckYkzfGdFaWb4z5LPBG4Etx/b5Usck3G2MOGGMGjTFfrtYjY4x5G/BbwM/G6++v+HiTMeb7cb3viy8AqCj/l4wxh4Fvxe9fZ4z5Qbzf9xtjfrSinFuNMS/H23rFGPP+SfX4w7ierxhj3l7x/pT7tsp3+QVjzKH42H9yquViHwS+YK09aq09BnwBuHWGdaQBKPYo9izx2DPZTwPPWGv/0VqbBz4NXGGMec0Uy28GvmqtDay1LwHfA147xzLnl7VWL7300kuvGl7A2wAf8KZZ5tNAiahnwAGaiC6IHgW6gVXAD4D/N17+D4A/BxLx642AAbYBR4B18XKbgS1TlPlR4N+ADOACVwNt8WdfA/4CaI7Lfxz4aPzZzwDHgJ1xmRcBm+LPDgJvrihjM2DL3x34NlFreRq4EugDbqrYB3ngHXF9/gB4dIq6/xjwVPzzG4CXgMcqPts/RfkPAx+etC0LfB3oILo46wPeNs1xumPSew/H5V8cH7eHgc9NKv8r8b5sAtYD/fH3dIC3xL+vipcZAbbF668FXhv/fCvROfKReP/8CnAcMLPct3fEP18KjAE3Aingi0Tn55un+M7DwLUVv+8ARuv9/0qvmV8o9ij2LOHYU2Uf/H/An01672ngvVMs//vA54jO023AUWBnPf9PqsdKRKR2K4DT1lp/huUesdZ+zVobWmvHgfcDv2ut7bXW9gGfAX4hXrZE9Idvk41aoL9ro78kAdEfrEuNMQlr7UEbtdRVU4rrdpGNWvT2WGtH4pbjtwMfs1ELdy/wR8DPxet9GPi8tXaXjbxorT00004wxmwEbgB+01qbt9Y+AdxW8Z0Avmet/aaN5iX8LdHws6r7CthqjFlB9Ef6r4D1xpgWoiEf356pPpN8zlo7ZK09DDxEdHEwF39trX0hPm7/UGX9T8f7chy4Bfhm/D1Da+39RENa3hEvGwKvM8Y0WWtPWGufqdjOIWvtX8b753aic2D1LPdt2fuAr1trv2OtLRANqwmn+W4tRMlV2TDQUq1lXRqOYg+KPUs49kw2ORYR/946xfJfj8scB54H/spau2sO5c07JVYiIrXrB1aamce4H5n0+zqg8qLhUPwewP8AXgTui4du/D8A1toXgY8RtRL2GmP+3hizDiAeQlJ+9RBdPPw78PcmGu7zeWNMAthE1MJ3Ih4uMkTUgtwdl72RqJV0rtYBA9ba0UnfaX3F7ycrfs4B6Wr7Lb5I2E10IXMj0cXMD4DrObeLm8nltszz+pXHdhPwM+V9G+/fG4C11tos8LPAfyDa/9+YNMxlohxrbS7+sYXZ7duydZX1icvsn+a7jQFtFb+3AWPxxbQ0NsWeM99HsWcJxR5z5q6KY8aYsfjtybGI+PfRSe9hjOkC7iXqfU0TnTs/boz5j9XKWyxKrEREavcI0TCT98yw3OQL1eNEfwjLeuL3sNaOWmv/s7X2QuBdwG+YeD6DtfZOa+0N8boW+O/x+y0Vr8Nxa/NnrLWXEg1peSfwAaI/fAVgpbW2I361WWvLY9OPAFtm+R0mf58uY0xl62IP0dCec/FtoqE3VwG74t9/HLiGaMLyXOs3G+e6fuV6R4C/rdi3HdbaZmvt5wCstf9urX0LUYvw88BfzmL7c9m3J4guMgAwxmSIeg+m8gxnt95fEb8njU+x58z3UexZQrHHnrmrYou1tpwsnhWLjDHNROdDtXh0IRBYa79irfWttUeBv+dM71xdKLESEamRtXYY+G/Al40x7zHGZOJJz28vT3qewt8Bv22MWRVPSP5vwB0Axph3GmMuiodjjRANwwmMMduMMT9moonmeaIhEFVvN2yMeZMx5jITTQwfIRqeE1hrTwD3AV8wxrQZYxxjzBZjzI/Eq94G/BdjzNUmcpE5c8vbU0R/0KrthyNELbt/YKLJ65cDvwR8dRa7sZpvE12MPWutLRLPYQBeiYcvVTNl/WbpFLDZxJP1z9EdwLuMMT9ujHHjffGjxpgNxpjVxph3xxcMBaIW2hlvFz3HfftPwDuNMTcYY5JELbrTfZ+vEF08r497IP4z8Ddz+L5SJ4o9E/tBsSey1GLPZHcTDVV8rzEmTXRePmmtfb7Ksi8QPS3i5vg8WkPUI7e/yrKLRomViMg8sNZ+EfgN4LeJJvYeAf4T0UTtqfwe0ZCTJ4GngL3xewBbgQeI/vg9AvyptfZhojkOnwNOEw3d6Ca6m1Q1a4j+0I0AzxFdLJSfk/IBIAk8CwzGy62Nv8s/Ap8lupXtaPwduuL1/oDogmzIGPNfqpT580STqo8T/ZH8nXic/7n4AdGE7HIL8bNEF3RTtRhDNPn5fSa6s9X/PIcy/zH+t98Ys/cc1i9fiPwk0XEpnwsfJ/qb6xAlLseBAaKhRbMdujKrfRvPm/hVouN3guj4Hp1mu39BdKOBp4gmin8jfk+WAMWeCYo9Sy/2TF6/D3gv0TkwCFzLmfl3GGP+3Bjz5/GyI0R3Efz1eNkniOLXZ2db3kIo3+1DREREREREzpF6rERERERERGqkxEpERERERKRGSqxERERERERqpMRKRERERESkRkqsREREREREajTTk7pFRBpeS0uXXbGi2kPgZblY5WbrXYUJfUFzvatwXjh8+OnT1tpV9a5HrRSflqZGijnzTTGsdlPFJyVWIrLkrVixnk9+8l/qXQ1ZQL/c8mi9qzDhf41dV+8qnBc++tEth+pdh/mg+LQ0NVLMmW+KYbWbKj5pKKCIiIiIiEiNlFiJiIiIiIjUSImViIiIiIhIjTTHSmQZ2bNnT7fnebcBr+PshpMQeNr3/Q9fffXVvfWpnYiIiMjypcRKZBnxPO+2NWvWXLJq1apBx3Fs+f0wDE1fX9+lJ0+evA14dx2rKCIiIrIsaSigyPLyulWrVo1UJlUAjuPYVatWDRP1ZImIiIjIPFNiJbK8OJOTqooPLPo/LyIiIrIgdJElIiIiIiJSIyVWIiIiIiIiNVJiJbK8hGEYmik+MER3BxQRERGReabESmR5ebqvr699cnIV3xWwHXi6TvUSERERWdZ0u3WRZcT3/Q+fPHnytpMnT075HKs6VU1ERERkWVNiJbKMxA//1XOqRERERBaZhgKKiIiIiIjUSImViIiIiIhIjZRYiYiIiIiI1EiJlYiIiIiISI2UWImIiIiIiNRIiZWIiIiIiEiNlFiJiIiIiIjUSImViIiIiIhIjZRYiYiIiIiI1EiJlYiIiIiISI2UWImIiIiIiNRIiZWIiIiIiEiNlFiJiIiIiIjUSImViIiIiIhIjZRYiYiIiIiI1EiJlYiIiIiISI2UWImIiIiIiNRIiZWIiIiIiEiNlFiJiIiIiIjUSImViIiIiIhIjZRYiYiIiIiI1MirdwVEREQWUjaf53B/P7likc7mZi7s7q53lUREsNZysK+PkfFxSkHAlZs24bluvaslNVBiJSIiy9YzR4/yps9+lr6RkYn3/uiWW/jY299ex1qJyPkuDEN+/ktf4h8ee2zive2bN/PtT32KlnS6jjWTWmgooIiILEtD2Szv+eIX6RsZYUNXF1du2gTAb3z1q/zb3r11rp2InM8+c9dd/MNjj5FJpbhs40ZWtray9+BBbv7ylwnCsN7Vk3OkxEpERJadIAx5/5/+KS+eOsWVmzbxwz/8Q/b9/u/zu+97H9Zafv5LX+KJgwfrXU0ROQ/9y+7d/O7dd+MYw90f+xhPfu5z/ODTn6azuZl/27uXT9x5Z72rKOdIiZWIiCw7f3TPPXzziSfoamnh7l//dTKpFAC//Z73cMv115MtFLj5y18mVMuwiCyiE4OD/MKf/RkAf/CzP8tbL78cgK1r1nDXxz5GwnX54j338NAzz9SzmnKOlFiJiMiyUvJ9/uieewD4m49+lM2rVk18Zozhto98hA1dXTx3/DgPPP10vaopIuehv/jWtxjN53n7FVfw8Xe+86zPfvTSS/mv7343AP/zvvvqUT2pkRIrERFZVv51716ODw5yybp1vPOqq171eSqR4D/cdBMAX7r//sWunoicp0q+z18+9BAAH/+Jn8AY86plfuXNbybhuvzrnj0c6utb7CpKjZRYiYjIsvKnDzwARBco1S5cAD7ypjeR9Dy+vm8fL/f2Lmb1ROQ8VW70ec26dfzopZdWXWZNRwc/c+21hNbyZw8+uMg1lFopsRIRkWXj+ePH+dYzz5BJpfjAG9845XLd7e387HXXYa3lz+JETERkIZUbff7jNI0+AL/21rcCcNtDDzFeLC5K3WR+KLESEZFl48/jFt5brr+e9kxm2mXLFy9/9fDD5AqFBa+biJy/njt2bFaNPgDXXnQRV19wAf1jY/z9I48sUg1lPiixEhGRZWG8WORvvvMdAH4lnkM1nZ1btnDNli0MZrPcvXv3QldPRM5j/+tb3wJm1+hjjDmr4UeWDiVWIiKyLDz87LMM53JctXkzV27ePKt1fu71rwfgm088sYA1E5HzmbV2ovHmQzfeOKt1fmrHDhKuyyMHDjAwNraQ1ZN5pMRKRESWhXv27wfgJ668ctbrvOOKKwC498knCfRMKxFZAM8fP86h06dZ1dbGNVu2zGqdtkyGN77mNYTWct9TTy1wDWW+KLESEZFl4ZtxYvX2OFmajYvXruXC7m4GxsZ4/KWXFqpqInIeK/eI//hll+E4s7/0Ljf8qEd96VBiJSIiS96Bkyd56dQpulpauPaii2a9njFmoodLFy8ishDuOYdGH4B3xLHpnv37CdWjviQosRIRkSXvnjgpeutll+HOoUUYzly8KLESkfk2ls/z3R/+EGMMb7388jmt+5p169i8ahWnR0fZ/corC1RDmU9KrEREZMk71xZhgB+55BKakkn2HjzIicHB+a6aiJzHvvXMMxR9n2u3bGFla+uc1jXGaDjgEqPESkRElrTxYpGHn3sOgB+fY4swQFMyyY9deikQ3cRCRGS+1NLoA+pRX2qUWImIyJL28LPPki+VuPqCC1jd3n5O2yhfvHxj3775rJqInMestTUnVm+69FJSiQS7Xn6ZU8PD81k9WQBKrEREZEn79/hWxOd64QJneroefu45rLXzUi8ROb+9cOLExG3Wr77ggnPaRiaV4sZt2wD4zvPPz2f1ZAEosRIRkSXt+y+8AEQtu+fqwu5u1nR00D82xoGTJ+eraiJyHivHph95zWvmdJv1yW6IE6sfxNuTxqXESkRElqxsPs++gwdxjJn1gzerMcbwhq1bAV28iMj8+MGBAwC84eKLa9pOef3y9qRxKbESEZEla/crrxCEIZf39NCSTte0rYnEShcvIjIPHoljyevn8Gy9aq658EIcY9h78CDjxeJ8VE0WiBIrERFZssoXLuWkqBZqFRaR+TKYzfLssWOkEgmu2ry5pm21ZTJctnEjfhCw++WX56eCsiCUWImIyJI1X0NtALZv3kzS83jm6FGGstmatyci569H49i044ILSCUSNW9PDT9LgxIrERFZkqy1E/Oh5qPHKpVIsCO+c9ejL75Y8/ZE5Pz1SBxD5iM2VW5Hc0AbmxIrERFZkg6cPEn/2Bir29vZvGrVvGxTrcIiMh/KCdDr5yuxqohNeiRE41JiJSINxRiTMcZ8yhjzl/HvW40x76x3vaTxVM6vMsbMyzbVKizTUXyS2QjCkMdeegmYv8TqglWrWN3ezunRUV48dWpetinzT4mViDSavwYKwOvj348Cv1e/6kijms/5VWXli6DHXnoJPwjmbbuybCg+yYyePnKEsXx+4vl480GPhFgalFiJSKPZYq39PFACsNaOA/PTHSHLysRQmxpvZVxpTUcHF3Z3M5bP89SRI/O2XVk2FJ9kRuVGn/nqrSorNyJ9X4lVw1JiJSKNpmiMaQIsgDFmC1ELsciEkVyOZ44dI+G6XB3fcGK+XBcnarqtsVSh+CQzmq/nV002EZteeWVetyvzR4mViDSa3wHuBTYaY74KPAh8or5VkkbzxKFDWGu5vKeHdDI5r9veHj9zZu/Bg/O6XVkWFJ9kRuXYcc2WLfO63St6ejDG8PSRIxR9f163LfPDq3cFREQqWWvvN8bsBa4jGmLzf1trT9e5WtJgyhcuuhdh6wAAIABJREFUV23aNO/bLj/Mc58SK5lE8UlmkisUeO7YMVzH4bKNG+d1261NTWxds4YXTpzgmaNHa37wsMw/9ViJSEMxxtwIvBYYBUaAS+P3RCbsO3QIgO3zPAwQziRW+w8f1g0s5CyKTzKTp44cIbSWS9atm/fedFCPeqNTj5WINJqPV/ycBq4B9gA/Vp/qSCPat4A9Vp3NzWxetYqDfX388MQJXrthw7yXIUuW4pNMq5zwLESjD0Qx7+8feUQ96g1KiZWINBRr7bsqfzfGbAQ+X6fqSAMaLxZ59tgxHGO4vKdnQcrYvnkzB/v62PvKK0qsZILik8xkIRt94EzCph6rxqShgCLS6I4Cr6t3JaRxPH3kCEEY8pp168ikUgtSRvmiqDzkUGQKik9ylokeqwWa/1SOTfsPHyYIwwUpQ86deqxEpKEYY/6E+FbGRI0/VwL761cjaTQTN65YwInbahWWahSfZDol3594/t2VC9RjtaK1lZ4VKzjc388LJ05wyfr1C1KOnBslViLSaHZX/OwDf2et/X69KiONZ98CtwhDRY/VwYOEYYjjaICHAIpPMo3njh+n6PtsWb2atkxmwcq5avNmDvf3s+/gQSVWDUaJlYg0FGvt7fWugzS28vC8hZrDALC2s5PV7e2cGh7mlb4+tqxevWBlydKh+CTT2Rs/uHchG30gin3/smcPew8e5Obrr1/QsmRulFiJSEMwxjzFmSE2Z30EWGvt5YtcJWlAfhDw5OHDwMIOBYTo4uie/fvZd/CgEqvznOKTzMZiNPrAmaHKmgPaeJRYiUijeGe9KyCN7/njx8mXSlywahUdzc0LWtZVcWK19+BB3nfttQtaljQ8xSeZ0WLM/4QzidveV17BWosxZkHLk9lTYiUiDcFaq6Y3mdFizK8q04M4pUzxSWYShiFPlHusFjg+re/qYlVbG30jIxzs6+OC7u4FLU9mT7NxRaShGGOuM8bsMsaMGWOKxpjAGDNS73pJY9i3SBcucOauXuWhhyKKTzKVl3p7GcvnWRfPz1xIxhiujJ/hp/jUWJRYiUij+RLw88ABoAn4MPAnda2RNIzyRcRCPRi40gWrVtGcSnFiaIj+0dEFL0+WBMUnqWoiNm3cuCjlXRaXU769uzQGJVYi0nCstS8CrrU2sNb+NfCmetdJGkP5IuKyRbh4cRyH127YcFa5IopPUs1ixqbKchSbGosSKxFpNDljTBJ4whjzeWPMrwMLe5cCWRJ6h4fpHRmhNZ1m08qVi1KmLl5kEsUnqWrRE6u4116xqbEosRKRRvMLRLHpPwFZYCPw3rrWSBpC+QLidRs3LtpdsJRYySSKT1LVYidWl65fj2MML5w8SaFUWpQyZWZKrESk0Wwnei7MiLX2M9ba34iH3sh5rnzhslhzGECJlbyK4pO8Sq5Q4MVTp3Adh0vWr1+UMpuSSS5as4YgDHnu2LFFKVNmpsRKRBrNu4EXjDF/a4z5CWOMHgshwOK3CFeW9fTRo4RhuGjlSsNSfJJXefbYMay1bFu7llQisWjlXqY5oA1HiZWINBRr7YeAi4B/BG4GXjLG3FbfWkkjqEditaqtjdXt7Yzl8xw6fXrRypXGpPgk1dQjNlWWp8SqcSixEpGGY60tAfcAfw/sAX6yvjWSegvDkGfi4S6XLcKt1ivp4kUqKT7JZPVKrC7XDSwajhIrEWkoxpi3GWP+BngReB9wG7C2rpWSunu5t5dcocD6zk46mxf3JmxKrKRM8UmqUY+VlGlssIg0mluJWoI/aq0t1Lku0iDqdeFSWaYuXgTFJ6miXvHpwu5uMqkUxwYHGcxmF73RSV5NPVYi0lCstT9nrf2aLlqkkhIraQSKTzJZ38gIp4aHaVnE5+uVOY7Da+O7ED51+PCili3VKbESEZGGV8/E6tL16zHG8MMTJ/S8GBE5y8Tz9TZswHEW/7JaDT+NRYmViIg0vHomVplUiotWryYIQ54/fnzRyxeRxlXP2FRZrhKrxqA5ViIic+D7o4yMPEc2+wquWyQIkjQ3X0Bb2yV4XmvV5YeH9zM2dhhjQjzP4vsumUwPHR1XVF1nqrKKRQfHsfE2DJ7XwYoVO0il1sy6XGNcrC1iLRhjJrZlrcUYCEOD41DxPiQSFt8vf2bwvPCsz0qlydsCsDhOtI4xZ7Y3OjrCvf96F+96709TKsE37v4nrLX81M/+DOl0G9ZaHMcjCEJ6e49z15230961gnf/zM1c1XuKGz/9aa658UYe/fa3WbFyFT/5MzeTy2X5pztvJwgCCEPau7oAh7GRYdo6OnBdhzAIGRke4l3vex/fefBbDA8M0LliBTe86U382z//E51dK7j+TW/im3f9M2/7yffyxKM/4B3veS/WBHzj7rt5ww0/wukH7+Ppo0dhBRQKJ+nv343vD2IMWGuq7DMXz2smCMZx3dLEuZJOr2Ro6Fl8f2hWx7K28/RloDRRvyBI0Nx84ZTnqyxd1oYEQQnf9wnDEMdx8DwP101gTPV29DD0KRbHyefzBEGI6zqk02mSySYcZ+pLxMqygsDHWj8uF4yBZDJJMpnG81JVy65WbirlEQQ+uVyW8fEC1lpSKY9UKkUQhBSLeYrFHL4fAD5BEBKGDp6XpLk5TXNzK57XjO+XKJXGKZWKWGux1uC6hjC0WFvC94sUiwV8P0c+HxIEhkTCkMm4+CVLc0s3TU1pdg2eZDxIcXQ4R3NTM6taPFY3GYqBoTcXcGpoiEIxx33PRc+H9pMd/N43HiOdTtGW8djc3c1APuC5oyfJlkp4QHNTgu6OFQwODeA6DhtWd1PKZRkZG+TyTVtoafIYGeqjPdNEKYT+bJZMcxe9o1mKhXEu37iWFRmP4ew4bZkWHAdWd3QC0bP2AEJryZUC+sYD+sd9hvIBBT/EOJB0HdqSLiO2j0QiCThYy8S54jguQVCiUMhTKhWBmY/lXE0+dyCM/x65uK474znb6JRYiUhDMcZcD3wa2EQUowxgrbUX1rNeAPn8MXp7v8uuXe3s2tXD8HCC9vYSO3f2s3PnN+jufiPp9Pqzlu/r+za+b9m1q5O9ezsn1tmxY5Brrvk63d03nrVOtbKgmR07Suza1cmePWe2cfXVg1xzzQN0dV1Oa+vlsyr3zW8+xdatJR5/vOusbUXvj7F7dxe7d595f/v2QXbsiJKH3bvPLv+mm05x8cVj7Nr16nV27hzEmJAXXmjhwQdXT3zW1fq/6D9xjEe+8z3CEE6fPE4YWr70R89wyeU/xU/8xAnCMGDXri4e/fZtuLZE/8kTfONruxns341jLY8+9DCOgeHTfXzzX3Yz0P8SYbGIARxjGO7vxxINyRjq64X4/dBa/vmr/4JrsjjGcPrkCb55910ExSIDp05x153/SsIp8u//ehdBscRf/NkTFIuGtHuU7wUb+PCHf5Vnj79C1+iTDAw8yYEDLVxwgcuePR1n7ePt2wfZvn2I++/vZtWqItu3j/EP/7CRvr4UP/VTh1mz5oV4/2+Z8VjWcp4eONDE5s0he/asmHTu9XPNNa8+X2VmjRqfrA0YHx+nWHSw1sWYBNaGGBOQTJZoamrCGPesdcKwyODgENmsg7VJjPGw1mdkpEBz8zidnR04TnLassIQCoUSo6MFSiWD53mk0ykgIJUao7W1SCbTclbZ1coNgjzZbC+lUhbfbycMWymVSpRKBeAkyWRIqZQmn/cIggIjIwGFgktTU4rWVo9EokA6nae9vR9jmsjlklhr8P2AUsmhUBgDQiBBGGYpFvMMDCQpFBJEF/aWpvQIPZ053PYkEDBcHMZzm9ic9hhNuhz0DMNBkQ43QZsXcOjoIIVcjn0vRT1F/f0ttA2eZsjPk2nu4OF0ChtCenSA4bE8pbBEMtXGqOvT7Q7TnHB59qCHVxxmhRlheKyd1qYUdqgXkzaEhBSzhrxnaDbjpMjy0FCGpuYUPek8G1YlMUBXsgOIEqtSENCbCzk2FNA3Yukf8xgYSzCWDwkNdDQZOppCDtlhUqkkra1p0ulWotO4SBCMUSoZSqUU1mbiRqPSlMeylvM0DKFYDCkULMYYEomQVMrDcaY+Z5eCpZkOishy9lfAF4EbgJ3AjvjfuvL9UXp7v8vtt6/nvvu6GRxMEoaGwcEk993Xze23r6e397v4/mjF8t+hWLTccUcPDz64+qx17r9/NbffvoHe3u9MrFOtrBdeaGbHjiG+8pVNPPDA2dt44IHVfOUrmxgYeJJC4eSM5QJs3px71bYq37///rPLePDB1Xz1qz2EIezZ03nWOhdcMPU6d9zRQ6nkcOGFWYD4syzHjj7Ot65/A/v37+PJJ57goeuvx3MMDg9x/fUHsNbE9RsnCI7x0A034DkORw5/n/HxcR664QZCAxZ46IYbOH7sEXK5Y1jAdRweuuEGAqAUBEDUk1Z+3zGGIBzBMWZiu2O5XPz79VhG+fMrriA3Ps63rn8DfvE7YB/moevfwPGju7jjjpXYjRcxMLCfu+9ex+bNOe68c+Orju2DD67m7/5uI295Sy+7d3fy1a/28J73HGfDhhxr1uRnfSxrOU/vuqubTZuyVet3//2vPl9l1houPlkbMj4+TqHgAt5ES3/0r0eh4DI+Po614cQ6YegzODjE2FgSaMIYL17HA5oYG0syODhEGPpTlmWtQ6GQZ3Q0oFTKABlKJY98vgQkKRbTjIyUyOWyE2VXKzcMA0ZHxxgchJMnO8jlAny/RKHgMTYGJ04kOX7cMDxcIpsN6O116e9vYXS0jaEhl+HhEmNjSXp7kxw+XODkyTy+b8lmXYaGmhgbKzEw4HH6dIrBwSwnT1qOHm1mdDTD0FCCkRGX8fEUI30pBvs6GBs8zOCpIUrDqxjoGyUkxej4KIOjMNLbypHTLk8fGSCZD+j0WugbjhpvWnFYlUzTVCxA1jB8dIzRvmEYd+kMi7T5lnQugX+6l3QhQaJoGOk7hTeWZ4W3gmPHjnHqVD+tXjODp8foO5Wlw8vAaC+JYpGUyTA+NMz4YInRfIbDp0cYz2W5ZPU62jPNDOdyPHHsNCeGLINjDkOjHiOjLuN5B1NM4RRSjGZdjg0bRkcdcjmHkZGAfD6HtSH5fJH+fsvIiIO15R4jB2NSVY9lLeeptQ7FYpFi0cOYVHy+OBQKRax1q56zS4USKxFpNMPW2nustb3W2v7yq96VGhl5jl272jl6NFP186NHM+za1c7IyHMTy586lWDPns5Zr1OtrDe/+RSPP941wzY66e/fPWO511wzwN69HbN+v7KMPXs6ueaagTmv09+fnFgv6dzNhzZt5KqODl7TlOGDPeu4qqODD/b0cGlrE49//3sT37XJ+TIf2tQz8XlLwvCLmzZxVUcHv9jTQ0ciwVUdHdzas56VqRQXt7Rwa0+0/Id6emhJJLi4peWs99+/cSMr02l+YePGie2uTKUmfr910ya++NJLE+Xcumkdr23LxD9voP/Uvezes4JTp9L09IzP+P337u3gmmsGOHo0w7597XM+lueifO7Mpn7Vzj2ZUcPFpyAoUSw6U7buG+PGPQRnbrxSLI6TzToYk5hinQTZrIPvj09ZVhiWyOcDSiWXqMcjSuZ838QJmUOp5FEohBNlVyu3VCowPl4kl/OwNkUuB8ViNEysUPAJAofR0RTj4yG+nyebTeL7XlwfGBsz5POWUqnE0FC0XD6fp1BwCYKQXC4aMlgsQi4XMjbmMDaWJghCrA3J5RIU8jmaPSgUkmT7Azw/j2t9mm2SwXwRG8LIsI8begwPFxkdGqc9lWKsMI4fFkm6GVY6SZpduKi5FUoBybCfYHSQlIWVCVif9Gg2ObqdHClrabJJmotDdHohrYkMqUKe/HA/BJbmEnT4hqBUIBNkSYQF0mEap5jF5LMEpSTjuQLFQoGkl+Di7uhRantfOcp4wZAbN+QKhkIAQckABoOhUIDxnBv34kXDuAuFkCDIk88H+H4S33dflVBXO5ZzNfncKRYNlWmIMS6lkiEMS1XP2aVCiZWINJqHjDH/wxjzemPM9vKr3pXKZl9h166OaZfZtauDbPaVieU7O4vs3ds5wzqdE+tUK6u7u8CePdNvY/fuLnx/aMZyL7tseE7vV9q7t5PLLhue8zqdnaV4vUEcHuZT27ZwIp/npVyWT23bBsAntm7l5VyWZ5/dy65dBjgIHOW348/f0d3NeBDwyfj3T27bxkCpxJPDw/zypk30Fwq8nMvxia1bAfjtbdvI+T4HsllezGbPen+gVOLDmzcD8MGNGxkoFvmteLuf2raNp0dH+Uj8+ae2XcwruTFO5vN8atsWXL7N4487E99pLvts9+4uMplwTsfyXJTPndnUr/J8lVlruPjk+z7WTn85Z61DqXTmYjmfz2Nt9aTqzDoJcrn8lGX5foDvA7iT1nPw/XJZLsViOFF2tXKj+U7R/D+AIIjqGs2ViuZIFQouhUJIqRRQKnlxr3mIMVAoOIyPh0BIPp8gCKLeF3DxfZ983hAEhmIxoFSy5PMepZKL74c4jsX3LV6QI+V5BIHF5gzpsIgNsrQnWhkaG6MQOthCgSD0yRdGSQYFjNPEybEop25PNtMUBiRtwJqmTlL+OM3hEK3BMKkwT4vrsTrh0mZHWOVZPFuAwGelzdPqWfzA0oaPKYwylsuRMYZOzyWfG6HDDfECn4RxSQYBXpAjLAUUCyHFUkAYhlyyNhrSu//QEYo+5H0o+VHiaSrOjWIApcDg+xZrQ3zfxvskP3Eszz5+lc4+lnM1+dyZfN5MPncmn7NLheZYiUijuTb+d0fFexb4sTrUZYLrFhkenv5CZHg4geuWJpZvamJO61QrK5Gws9qG59kZy81kgjm9P7mMTCY453XKvVVr02l+/amnuLWnh7XpNABr02k+2NPDd/v7eXrk6zQ5z/GhTWc+/63nnuMXN206a/lf7Onhw/v2cf2KFby2rY03rlx51ueXtrVh4FXvf6inh9sPH+aLl13G7UeO8EtVtlv+vFyvzx84wBcvu4xbN23gfx/6OpnMdRPfb7bfv3yM5nIsz0X53Jnt8Zl87smMGi4+hWE4Zc/TGYYwPDOsKgjCieF/U3MIgrOHYlWWZW0Y36jGVCnLTvxsrZ0ou1q5QWDj7bjxdonXOVOP6Hcbf+4Q7XLi381EXax1CENDqRSSTEZlV9Qeay1B4E7cYCfaQIGMEw17C8MsTQmPJiePh8VzPNKOQ6Hok3EzDOUHcfwxulJpwOHESB8A6zOtpO047YkW0k6a1SmHIllskMRjjJWpDkypxIqkjzVJhk2eYjDORS0tGMcykuujO5km6xcZHuvlosxKwsCn4I/R2ZyhAAxmh+hKpwiMZWCkj/WdCZpcl2whz2vWRInVgRNHsJgzu2fS8bGACcv7uLz/ouNTeSzPHL+zj2vlsZyryecOVDtnzz53zrWselKPlYg0FGvtm6q86ppUAQRBkvb26S9C29tLFa2uScbH3TmtU62sUsnMahu+b2YsN5eb2/uTy8jlzrQwzmWd3t7cWb1Vtx8+PNGLVPaJrVt5OZuF8EEqe6ueGBrimZGRid6qst+Ke5f+6uBBXqrorQI4kc/zYjb7qvch6rX6m8OH2T88zO2HD0/0VpV9cts2bj98mJP5/ES9yr9/atsWXPMwfX25Oe+z8jGay7E8F+VzZ7b1m3zuyfQaMT45jjOLuSj2rGcsua6DtTP1BkR365uqLGMcjIm2/eqyzMTPxpiJsquV67om3k55XiTxOmfqYUy0TdcFY87+rsbYiboYE/VCJRLORNkVtY/mXLpBXF6UKKSdLAk3BYQk7DgpN0HahKRMgLUhmUQK1+bwHENY6KOVHC3pJjwDJ8ZOALC5uYNmxmn2EoRhyEoPWm2RdrdIM0WaXY+k8VnhGToSDk0mT8YfYUVTO00mxBb6aXYNXUkXrzhCOuHiudBpSmQcl7TjUMoP0J5MkzIOhewpUgmX1mSSfH6ci1dHQwEP9x3D2gBMfEwmHR8T7YZ4X5X3X3R8zhzLyuN39nGtPJZzNfnciW4m8uoyKs+dejwXrFZLr8YisqwZY9qNMV80xuyOX18wxrTXu17NzRewc+f0Q7R27hyiufmCieUHB5Ns3z44wzqDE+tUK6u3N8XVV0+/jR07BvC8jhnLfeqp9jm9X2n79kGeeurMYZjtOoODCR6459GJ3qrPHzjAByt6q8rKvUPNCc7qrfrIE0+c1atUufyHenpoSyTO6v0C+PyBAxNzq6qt9/4NG/jIvn1T1uMDcS/V5N/XptN8aNMGfvCd7815n+3YMUAu58zpWJ6L8rkzm/pVnq8yO40YnzzPe1WyMZkxIYnEmZ6idDqNMdMn3saUyGTO/v9RWZbnuXgelBOiyrI8r1xWQDLpTJRdrdxkMoXnmYre/qiunpcgkTAYY0mlAlIph0TCJZHwcZzovp/WQioV0tQU9Til06X4lvHRnf2iuxRaXNeSTLokEoZ02ieRCPA8hzDI05YEz3Pw/SKtSYfmTJ7mRJJWN0HB5ulsSrAqlSAfDJEhz8qkIeU6tCRdjo9EidW2lg66mzxCAqzNk05YNqaTpBI+a9MufjBGwg1Z3ZSmyQlpcQqsb/LAlGhyLJ1eiLV52j2HnqYkw/kBvLDI+kyaJBYbFml3Q8KgSMZAuxNCmKM17dLkOmzoXAHA0f5e/NI4aQ8SHrgu2IpzI+lCwrV4nsEYB88z8T5JTxzLs49fpbOP5VxNPncmnzeTz53J5+xSocRKRBrN/wZGgf8rfo0Af13XGgFtbZewc+cwGzbkqn6+YUOOnTuHaWu7ZGL51auj22jPdp1qZT3wwGquuWZghm0MsmLFjhnLffzxLrZvH5r1+5VlXH31II8/3jXndVKpfo4dfXza3qqyT2zdyngY8svxHKdyb9XkXqWy8pypW3t6Jt47kc/z14cOnTW3arJyb1flepPrMVWv1ScvvoiXX9zDyy8XZ/z+27cP8fjjXWzYkOOqq4bnfCzPRfncOXy4acb6VTv3ZEYNF59cN0EyGUY9FVVYG5BMhjjOmd7JZLKJ5uYQa6snV9aWaG4O8bymKctynATptEsiEVDuFbE2emZe9AyskETCJ5VyJsquVm4ikaKpKUkm42NMgUwGkkkP1/VIpTxcN6S1tUBTk4PnpWluLuJ5flwfaGmxpNOGRCJBR0e0XDqdJpUKcF2HTMbBcUKSSchkHFpaQlpa8jgOpE2e1oxLMmlJkKc547KyLU86kcH1XFJejhbP0pFK4YV9NDtFVmQMbS0+vp+nLxvNsdrW3sHq5hRhKQd+lpTjsybVRLtXZEXSEIYjJE1AazJNwi3S4fisySTwbZYUJToT4NmorLVNTZQKg6S9El2pFlxbBL/AyuYEhcIIUKKzOQnFEUwY0pxIkXIcVra0kisWOD1yjHQ6IJOypFxwE1EvlMWSSkFTJohvbW5IJCCVcnDdNOm0i+cV8bygyjPMXn0s52ryuZNMWip7rawNSCQsjpOoes4uFUqsRKTRbLHW/o619uX49Rmg7s+w8rxWurvfyAc/eIy3vrWXzs4ijmPp7Czy1rf28sEPHqO7+40TD12Nlr+RZNJwyy2HuemmU2et85a3nOSDHzxKd/eNr3pQa2VZF1+cZffuDj7wgUO85S0nX7WND3zgEF1dl088WHa6cgEOHmx61bamer+zs8hNN53i/e8/jONEvSmV67zySmbKdW655TCJRMhD9z3CrT3T91aVVc5xgql7qyqX/6WK5SHqrdo6RW9V5XofmrTe5M+n67X6wPr1rGz/Rw4ebOLmm4+86tjedNMpfv7nj3D//d3s2DHA+99/mK99bR1Hj2Y4eTI962N5Lsrnzk//dC+HDjVXrV+181VmreHikzEOTU1NpFLRg3Oj+UY2Hnblk0oF8TOBzlzyOY5HZ2cHLS1FYBxry+v5wDgtLcX4OVbelGUZE5JKpWltdUgkckCORKJEKuUBRZLJPG1tCTKZ5omyq5VrjKG1tYXOTlizZohMxo2TqiItLbB2bZF160La2xNkMg7d3QErVozS2jpCR0eJ9naPlpYi3d1FenpSrFkT9YBlMj4dHTlaWhJ0dZVYuTJPZ2cza9ZYNmwYoznTz9oun7Y2Hy8xxPqVOdasyrKitYPOTpe2zgLr28GhgGtKdKXyrGwvsqHDZW2z5aXBFymFAStSTVzYlaEtkcILC4RmjOa0T1PGZ2tbBuOMkzE+mWSA8XyaEwE9zSk6k4aEGSckz8qUS6tXpNmztKQ8upMhGWecRNLB2JAWL6Q94ZKggGWMLZ0pOtyQgdExLJa2JFyyNoobufFeUl6Ojlaf1paAdDogTOYJkwVam33WtVtaW0MymZC2NpdUKjo30ukkK1YY2tpCjClhbRC/ClWPZS3nqTEhyWSSRKKEtYX4fAlIpZIYE1Q9Z5cKc/bEPhGR+jLGPAJ83Fr7vfj364E/tNa+fqp1Nm26zH7yk/+yKPXz/VFGRp4jm30F143mqDQ3X0Bb2yVVL1J9f5Th4f1ks4eBqDXX910ymU10dFw+7YXt2WUVKZUcjLHxNgye18GKFTuqXohPVa4xLtYW46XMxLbOtDhH8x1c1xIEBmujG2j4fvkzg+eF+P6Zz0ol4vftxPvR+Hi483//JS8fPwZAxnXJBdVb1SuVl2t1XUbnsHz5Z2BO5cz288rft268mJt/8Vfx/cH4IZqmyj5z8bxmgmAc1/UnzpV0eiVDQ8/i+0OzOpbn4sy58zLRxTZ4niUIktOer43kox/dssdae+7ddwugkeOTtdGtsEslnzAMcZxo2JbjJKa8QA1DH98fJ5fLEwRh3MOTxvOaqvRaVC8rCHwg+tf3o7k7qVSSZDKN66aqll2t3HQ6QRiWyOVyZLP56KG9TR6pVIogCCkW8+TzOYIgwBifICj/30nS0pKmra0NyBAEJXx/nGKxGN+8wkzM77HWj+9CWGBs+CTFbJ4gMBCYAgA9AAAfOUlEQVRmaUqE+MUQNzSk0h7XZPoYyYdkAw8LFLKnaTIBqVQT44HDD154lruf3MO6lhZ+vOcCQgvjpSKlIMADfL+IwZAtlUg4Lq7j4joORb+IawyO62EcB8cYEq6LH/qk3ATJhEOxVMJxXFqbm8kVimBcmtJNpBMubc1pOptbsY5LV2cXW9esJGEMX3zgAe587DF+653v5KNvfSs20cLpcZ+hfEAxCDEOJByH9qTLt+0VJJMJwjAaTlk+V6JbofsUCtH+g5mPZS3naRD4GFO+cYaL67oznrONYqr4tPQGL4rIcvcrwO3xvAUDDAC31rVGFTyvla6ua+jqumbWy69YcQMrVix8WfNV7nz6zd/5hdrW/83rGRo6yYEvfIGL1sxP0lGLK//rf2X/4cP89M2/z7p1V53zdjKZhe3kqOXckWk1bHwyxsF1U7huatbrOI5HMtlKMjm3JPtcypptuZkMrFx5TpudVze3PDrt55/9Wp67n9zDz73xjXzhllsWqVZTu/HECe587DGODg/TEwf+TW3Vj8/esal3sON48ZDLBalmzedOo1NiJSINxVr7BHCFMaYt/n2kzlWSOsnlRhgaOkkikeKC7u56VweA127YwP7Dhzl+/AAXXnjuiZUsTYpPUvb00aNAFBMaweviejx95Eida3J+U2IlIg3BGHOLtfYOY8xvTHofAGvtF+tSMamb48dfAGDt2otwG+S2u+WLl+PHD9S5JrKYFJ9ksmfixOp1GzfWuSaRcoL33PHjE0NBZfEpsRKRRlEeeNDYEz9k0ZQTq3Xrqt/drx5eO5FYvVDnmsgiU3ySCSXf5/njxwG4dP36Otcm0tHczLrOTo4PDvJyb29DDJ0+HymxEpGGYK39i/jfz9S7LtIYyr1Ca9deXOeanFFunT5xQj1W5xPFJ6n04qlTlIKATStX0jLF3Ufr4XUbNnB8cJBnjh5VYlUn6icUkYZijPm8MabNGJMwxjxojDltjKn/zGBZdMeO/RCA9esbJ7HavHIlyWQTQ0OnyGanf2C0LD+KTwLwVDyP6bIGGQZYNjHPKh6mKItPiZWINJq3xhPC3wkcBS4GPl7fKslis9Zy7Fg03G79+uoPCK4Hx3EmhiZqntV5SfFJJhKXhkus4voosaofJVYi0mjKj1p/B/B31tqBelZG6mN0tJ9s9v+0d+fhUdf3vsDf35nJZLKTkIWESSAhCUS2ACGAoGAaaMGqVAv0iFVOqcfH06feej3n2FYrdanPtV49j96jp/fW/VR6hJZCZVFBQEQxsoY9gRCyJ2Ql+6y/+8fMbxIUZZnl+5uZ9+t55plkMpn5RMePv/fvu/w6YTLFIjExXXY5l8jIcI2gcZ1VWGJ/Is/Oe5M0siOgijsDysdgRURa874Q4jSAIgAfCyFSAAxKrokCbPg0QHXnNa1Qg5U6okZhhf2JPFMBtbIjoErdSKOiqQk2u11yNeGJwYqINEVRlF8CmAOgSFEUG4A+AHfIrYoCTYvTAFXqmi+OWIUf9ifqt1hQdeECDHo9JmRkyC7nEjEmE3JSU2FzOHCmuVl2OWGJuwISkSYIIUoURdkphLhz2GPDn7Ih8FWRLENbrWtn4wrV8KmAiqJobkSNfI/9iVSnGhuhKAryR42C0aC9w+hJZjPOXbiA4/X1uEFjUxXDgfY+EUQUruYD2Angtsv8TAEPXMKKloNVQkIqoqMT0NfXhe7uViQkpMouifyP/YkAaHd9lWpSZib+fugQjtfXY7nsYsIQgxURaYKiKGvc9/8ouxaSy+l0eoKVlrZaVwkhkJGRj7Nn96OhoZLBKgywP5FKq1utq7iBhVxcY0VEmiKEeFYIMWLY94lCiGdk1kSB1dHRAIulH/HxKYiNTZJdzmVxnVV4Yn8idStzrW1coeK1rORisCIirVmsKIrnyquKonTCtbUxhYmhjSu0N1ql4pbrYYv9KcxpfSrg+IwMGPR6nG1pwYDVKrucsMNgRURaoxdCRKrfCCGiAER+y/MpxKhbrWdkaG9HQJV6kWBuuR522J/CWGdfHxo6OxFlNCInVZtTgI0GA/LS0qAoCk41NMguJ+wwWBGR1vwJruvDrBZC/ATAdgBvS66JAkjL66tUarBqajoDp9MpuRoKIPanMKaOVk00m6HTafcQWp2myOmAgafdTwURhSVFUX4P4BkABQAmAnja/RiFCS3vCKiKjU1CfHwKLJZ+dHTwrHC4YH8Kb571VRqdBqjiBhbycFdAItKiUwDsiqLsEEJECyHiFEXpkV0U+Z/DYUNz8zkAQHp6ruRqvt3o0fno7m5FQ0MFkpO1uZCd/IL9KUwd0/j6KpU6YnWMwSrgOGJFRJoihLgfwF8A/F/3Q6MBbJRXEQVSU1MVHA4bUlPHwGSKkV3OtzKbJwAA6utPSa6EAoX9KbyV19QAAKaOGSO5km83NSsLAFBeWyu5kvDDYEVEWvMzAHMBdAOAoihnAGhzlTD5XF3dSQCA2XyD5EquzGwuAADU15+WXAkFEPtTmHI6nZ6gogYXrcpOSUGsyYSmri60dnfLLiesMFgRkdZYFEXx7BErhDAAUCTWQwFUV+ca/VFHg7RsKFhxxCqMsD+FqXMXLqDPYkFGYiJS4uNll/OtdDodprinA3LUKrAYrIhIaz4RQvwaQJQQYiGA9QDel1wTBYgaUjIztT9iNWpUDvT6CLS21mJwsE92ORQY7E9h6oh7GmChxqcBqqao0wHddVNgMFgRkdb8EkArgGMAHgCwFcDjUiuigFAUZViwKpBczZUZDEakp4+Doii8UHD4YH8KU2qw0vo0QBXXWcnBXQGJSFMURXEKITYC2KgoSqvseihwOjub0NfXhZiYRIwYMUp2OVfFbJ6A+vrTqK8/hZycabLLIT9jfwpfakAJlhErdYMNBqvA4ogVEWmCcPmtEKINwGkAFUKIViHEE7Jro8AYvr5KCCG5mqvDDSzCA/sTBdtUwMmZmRBC4FRDA6x2u+xywgaDFRFpxS/g2m1rpqIoIxVFSQIwC8BcIcTDckujQAim9VUqbmARNtifwlh7Tw/qOzoQHRmJcWlpssu5KrEmE8alpsLmcOB0Y6PscsIGgxURacW9AP5BUZRq9QFFUc4BuMf9MwpxwbS+SjV0LasKOJ1OydWQH7E/hTF1Ot2UzEzodcFz6DyVG1gEXPB8Oogo1EUoitL21Qfd6xgiJNRDAaZewyqYRqzi4kYiISEVFksf2tvrZJdD/sP+FMaCbRqgiuusAo/Bioi0wnqdP6MQMDjYi9bWWhgMRowalSO7nGsyevR4AFxnFeLYn8JYsAYrXssq8BisiEgrpgohui9z6wEwWXZx5F9qKElPz4NeH1wDANzAIiywP4UxNZgEy1brquEjVorC61gHArdbJyJNUBRFL7sGkkfdETCY1lep1JrVqYwUetifwpfFZsPJhgYIITDZPQIULMYkJyMhOhqt3d1o6upCRmKi7JJCHkesiIhIupqaYwCCa32VKitrIgCgtva45EqIyNeO1tbC7nBgfHo6Ykwm2eVcEyEEprlHrQ5WV1/h2eQLDFZERCTd+fPlAIDs7ELJlVy71NRsmEyx6OxsxsWLvGYsUSgpq6oCAMwaN05yJdenKMe1ZnX/uXOSKwkPDFZERCTVwEAPmpurYDAYPduXBxOdTucZtVJH3ogoNHzpDlbFQRqsZrqD1QEGq4BgsCIiIqnOnz8KRVFgNhcgIiJSdjnXZezYKQBcfwsRhQ7PiFVuruRKrs/MYSNW3MDC/xisiIhIKjWMqOEkGKm119QwWBGFis6+PlQ2NSEyIiLoNq5QjU1JwcjYWLT19KCm7WuXYiMfY7AiIiKpqquPAAjO9VWqMWPUEatjPCtMFCL2u0erpo8dC6MhODfSFkJcMmpF/sVgRURE0iiKgupqdeOKqZKruX4jR45GbGwSens70N7eILscIvKBYF9fpZrprl8NiuQ/DFZERCRNZ2cTurtbER0dj9TUsbLLuW5CCIwd67pOLKcDEoWGYN8RUMURq8BhsCIiImmG1ldNhRBCcjXeGZoOyGBFFOwURfGMWAXrxhWqouxsAK5rWTmdTsnVhDYGKyIikkZdXxXMG1eoxoxxjVgxWBEFv5q2Nlzo7kZyXByyU1Jkl+OV9MREjE5MRM/gICqammSXE9IYrIiISJqh9VXBu3GFSg2HtbUneFaYKMiVnT0LwLW+KthH04GhdVa8npV/MVgREZEUDocNtbXHAYTGiFVCQgoSE0dhcLAXLS08eCEKZl+owcq9PinYqeusvmSw8isGKyIikuL8+aOwWPqRlpaN+Phk2eX4RE7OdADA2bMHJFdCRN7YdfIkAOCmCRMkV+Ibc9zrxPZWVEiuJLQxWBERkRSnT+8DAEyYcKPkSnwnL68YAFBZWSa5EiK6Xj097SivrYUpIgI35uXJLscnZuflwWgwoLy2Fn19F2WXE7IYrIiISIrTpz8HEFrBKj9fDVZf8kLBREFKPTEyNz8fJqNRcjW+EWU0onjcOCiKgrNn98suJ2QxWBERUcBZrQM4d+4whBDIz58luxyfSU/PQ0xMIrq6mtHWViu7HCK6DupJn5KJEyVX4lvz3dMaKyu/lFxJ6GKwIiKigKuqOgS73Qqz+QbExibKLsdndDqdZ9SqooLTAYmCkRqsvhNiwWrBDTcA4FRlf2KwIiKigBuaBjhHciW+pwarM2d48EIUbDo6GnHhQg3io6Iww31h3VAxJzcXBr0edXUnMTDQI7uckMRgRUREAReKG1eo8vJcUxu5zooo+KgnfeYXFMCg10uuxrdiTCbMzMmBoji5c6mfMFgREVFA9fd3o6bmGHQ6A3Jzi2SX43OjR49HdHQCOjoa0d5eL7scIroG6kmfUJsGqFpQUACA0wH9hcGKiIgCqrKyDIriRE5OIUymGNnl+JxOp0Ne3kwAPHghCiaKoqCiwhWsStzrkULNfE+w4gYW/sBgRUREAXX06E4AQEHBPMmV+I+60yGDFVHwqK09jq6uFsTHJ2NSZqbscvzixrw86HR61NYe5zorP2CwIiKigLHZLDh8+AMAwIwZiyVX4z8FBXMBAMeP74bT6ZBcDRFdjf373wcATJ++GEIIydX4R1xUFLKzC+F0OnDy5Keyywk5DFZERBQwJ09+iv7+bpjNBUhPz5Vdjt9kZOQjJSULPT0dOHv2oOxyiOgKnE4nDhzYAgAoLr5NcjX+NW3aIgDA4cMfSq4k9DBYERFRwOzfvxkAMHPm9yVX4l9CCBQWug5ejhz5SHI1RHQlVVUH0dnZjKSkDGRnT5Ndjl+pvenYsd2w2SySqwktBtkFEBF5y263oLm5yv3d0PSN4VM51K9d9+KS+6Gf6dzfu+51Oh2E0LvvdZ57vd7geQ5dPYulH+XlOwAARUWhHawA11nh7dtfw5EjH2HZsseC7vOiKAqcTjtsNiucTgccDhucTof75oSiuG5Op9P9fCcURRm2xbxy2e3mr/axUHG5/vTVz8JQHxLDfjbUn4b60vDedGlf0un0nluwfda0QJ0GWFT0feh0oT3ukJKSBbN5AurrT6OiYh8mTVogu6Rr5nQ6Ybdb4XDY4HDY3T3K7ulJan8a6knK177+Kl/0JgYrIgp6jY1nsGbNooC/r05ngF6vh14fAb3eAL0+AgZDBAwGIwwGIyIiIt03E4xG9RaNyMgoREbGwGSK8dxHRcXCZHLdoqLi3PexiIgwhcxB0tGjH8NqHUBOzjQkJ5tll+N32dnTEB+fgvb2BtTVnURWlvztm+12K1pba9HSUo3W1hp0dV3AxYst6OnpQH//RfT398Bi6YPVOgCrdRCK4pRdctCT0Z/UE0CX3tS+ZITBEImICOOw/hSFyMgod3+KhskU7e5NsTCZYjz9aHh/MplioNOFxnWeHA4bDh7cBiD0pwGqCgsXob7+NA4f/kgTwUpRFHR3t6KlpRotLdXo6GjExYsX0N3dhr6+LvT3d2NwsM/dnwbhcNhkl3xZDFZEFPQMBiNGjjQDGDqzdLmz5q67oTNWANxn2xXPz4bOdCnuTQeGHlPP1DudDvf3dvcZff9NpdDp9O4DnRgYjdEwGqNgNJo8B0g6ncF9dlW4/0anu0b7JWfx1L9br49AREQkIiOjER+fjISEFIwaNQ5mcwFSUsb49UxtuEwDVOl0OhQWlmLPnj/jyJGPpAQrm82Ciop9OHlyL86dO4K6uhOw261X/fs6nR4GgxF6vcFzIsE1IqLzjIwMH+X96iiw63t4vvZ8dZmTBV99rL7+9LX9sRr11f40vDep31/am4a+/uoZ9kt7kjKsFw3vUa7H7HbrNf27vh5GY5SnN7mCWRQiIiKHfWZcnxX1b1L7p6s32T0jDIqiQAgdDAYjjEYTYmMTkZCQiqSk0TCbJ8BsnoDIyGi//R2nT+9Db28H0tJyYDYX+O19tKSwcBE2b34Z5eU7sHLl0wEPyYqioLm5CseO7cLZswdQXV2O7u7Wa3oN9SSmTqd39ybX/w+HPncCOp3al1yfw0tHh4e/2uVHk7/psW/qTwxWRBT0MjLy8dhjmwL6nq4DGdcBgutmg92u3lwHNDabBTbboOfeYhmAxdIPq3UAFksfBgeHbhZLHwYGejA42Dvsvhd2uxUDAz0B2RY3OjoBkyffgqlTSzF58i0wGk0+e+3W1locO7YbQugwY8atPntdrZs27bvYs+fPOHz4Q9x++8MBeU+n04lTp/Zi7951OH58N6zWgUt+npycibS0bKSmjkViYjpGjEhDXFwSoqMTEB0dj8jIGM9BsswRiQceGCftvX0p0P1JDVzq9E2Hw+HuT9ZLbjabBVbroPs24L7vh8XS7+lJrv7k6kVDvcn12OBgr/v3Bq5clJeE0CEnZxoKCxdi+vTvITnZt1uh7979JwDAzJm3hcwMgSsxmycgOTkLbW21qKo65Ln2nr+1tzfgs8/Woazs72hrq73kZ9HR8Rg1ahzS0rKRlDQaI0akISEhBTExIxAdHY+oqDj3CUbXyUWZ/66+qT8xWBERXQfXyI4Oen2EX9/Hbrd6DnRcgazfc1Bkt6trX4a28xYCnrN26hTF4WsuHA7XCNvgYC+6u9vQ1dWCxsZK1NWdRFdXC8rKNqKsbCNiY5Nw883/gAUL7kFCQqrXf8eWLf8HTqcdc+bciYSEFK9fL1jk589CVFQcGhvPoLHxDDIy8vz2XjabBXv3rsP27a+hvb3e83hm5kRMmjQf+fnFGDNmCmJiEvxWA8knhPBM/4uIiPTb+zidTlitagjr94QstT85HA4oisM9K8DVf1x9yeAeYTAMG3F3BUK73QqrdQA9PR24ePECWltrUFd3Co2NZ1BVdRBVVQexYcNzmDy5BKWl/4j8/NleH1xXVx/B0aMfIzIyGvPn3+3tP5agIYTAtGkLsX376zhwYIvfg1V1dTm2bPkPHD++yzMyGxubhEmTbsaECXORkzMNqaljgz7YMlgREWmYOtUhJmaE39+rpaUaR45sx4EDm1FbewJbt76C7dtfQ2npanzvew/AZIq9rtdtbq7CF19shE5nwK23/tzHVWubwWBEUdGt+PTT/8auXe9g5cqnff4eTqcTn3++Hps3v4zOzmYAwMiRZsyduwxz5tyJpKQMn78nkU6n86wL9bfBwV6cOLEHR45sx6FDH+Do0Y9x9OjHyM+fhWXLfo2srEnX/dqbNr0IACgpuQ/x8cm+KjkoFBffge3bX8cXX/wNS5c+gqioOJ+/R0NDBTZs+D2OH98NwNUTp0//HubNW468vOKQWaenYrAiIiIAQFpaNr773X/CokX3o6rqID766I8oL9+BbdtexWefrcOddz6K2bN/cM1nFN9//yUoihM33bQCKSlZfqpeu0pKVuHTT/8b+/ZtwB13PIzY2CSfvXZt7Qm8++5vcP58OQBg9Ojx+P73H0Jh4aKQ39mMwofJFIsZM5ZgxowlWLbsMXzyyVrs2vU2KivL8OyzSzFnzl24665fIjY28Zpet6LiC5w69RmiouKwcOH9fqpeu7KyJiI/fxYqK8uwd+86LFy42mevbbH0Y/Pml7Fjx5twOu2IjIzGggU/xsKFqxEXN9Jn76M1DFZERHQJIQRyc4uQm1uEqqpDWL/+WVRXH8Zbb/0ryso2YuXKp5GSMuaqXqum5hgOHNgCg8GIJUt+5ufKtSkjIw+TJs3H8eOfYM+eP/vkn4PDYcP777+MDz74AxTFiREj0vDDH/4KM2bcykBFIS0+Phm33fYQSkruw9atr2DXrnfw+ed/wdGjO7F8+eMoLr79qk7+OJ0ObNr0AgBg4cLVYTtFtrR0NSory7Bz51soKbkPer330eDMmf14881/QXt7PYQQuPnmu3H77b8I6UClYvclIqJvNG7cdDz66HqsWvV7xMSMwKlTn+HJJxdj69ZXr7jjWFtbPV599QEAwPz5K5GYmB6IkjWptNR1JnjXrv/yehfJlpZqPPfcMmzb9ioABSUlq/Db336ImTNvY6iisBETk4Bly36NNWu2Yfz42ejt7cAbb/xPvPTSKrS0VH/r7yqKgnfffRxVVYcQG5uEkpJVgSlagyZPvgVpadno6GjE4cMfevVaDocNGzf+b7zwwt1ob69HZuZEPProX7Fy5dNhEaoABisiIroCIQTmzLkLTz75EYqL74DNZsGmTS/gmWduQ3n5Ds8FYofr7m7DSy/di66uFuTlFWPp0n+RULl2TJhwI8zmCejubvVciPR6lJVtwu9+dztqao5h5MjReOSRP2PFit/4ZW0EUTBIS8vGww//Cffe+5z75M9ePPXUEmza9CJ6ezsv+zt/+9vz2Lt3HSIiTHjwwf8M6/9+dDodvvOdnwAAtm9//bov1t3e3oDnn/8Rtm37TwDA4sX/jF/96q/Izp7qs1qDAacCEhHRVYmLG4nVq1/EjTfehbVrn0BT01m8+uoDSE/Pw003rUB6eh5iYhJw+PCH2LdvA7q6WpCVNRE/+9n/8+nW7cFICIHS0p/grbf+DRs3voApU0quaa2V1TqI9957Cnv3vgfAtS30ypVPh/UBIZFKCIG5c3+IKVNuwV//+r+wb98GbN36CnbseANz5y5DXl4xUlPHoKGhAp9//hdUVHwBnc6ABx74D+TmFskuX7o5c36ATZtexPnz5fjss/WYN2/5Nf1+efnHeOutf0V//0UkJqZj9ep/D9j27VrDYEVERNekoGAunnhiKz755F3s2PE6mprOYN26Z772vMzMG/Dzn7/Bg3+3WbOWYu/e9Th7dj/eeedXePDBP1zVWpCGhgq89tr/QGPjGRgMRvzoR2swb96KoN+WmMjX4uJGYtWq5zFv3gps3foKTpzYg1273sGuXe9c8ryICBPuu+85TJ58i6RKtcVojMLy5Y/jzTcfwXvvPYXc3CKMGpVzxd+z2SzYsOE57Nz5NgDXtMJVq56/5k1EQgmDFRERXbOIiEiUlv4ECxbcgwMHtqCysgwXLtSgq6sZeXnFmDPnLuTmFnHNzzA6nR6rV7+Ip55agvLyHdizZy3mz1/5jc93Oh3YvftP2LDhOdhsFqSl5eD++19GZmZBAKsmCj65uUV46KE3UVd3CmVlf0NLy3m0ttYgJmYEZs1aiqKiWxEdHS+7TE2ZPXspTpzYgy+/3ITXX/8FHn30LzAYjN/4/Lq6U3j77X9DXd1J6HQGLF36CBYu/GnY93wGKyIium4GgxGzZ/8As2f/QHYpQSEpKQP33PM7/PGPD2Hdumdgs1lQUnLf167lcu7cYaxduwZ1dScAAHPnLsOKFU8gMjJaRtlEQSkzs4AnIq7B3Xc/iaqqg6itPYFXXvkn/PjHz37tOngDAz34+9//Hbt2/RcUxYmUlCz89KcvYezYKZKq1hYGKyIiogAqKroV584dwccfv4H163+HQ4e2obj4DsTGJqK9vQEHDmxBbe1xAEBiYjpWrPgNpk37ruSqiSjURUXF4f77X8bLL6/CyZOf4sknF6O0dDWSk80QQodjx3bi6NGdsFoHIIQOJSX34fbbH+Z072EYrIiIiAJs+fLHMH78LLz77m9QVXUIVVWHLvl5ZGQMbrnlXixZ8s8cpSKigMnOnoo1az7A2rVPoLx8BzZvfulrzxk/fjaWLXuco4GXwWBFREQkwdSppcjNnYk9e9aio6MBvb2diIgwobBwESZNmh/2OykSkRwjRqThwQf/gPLy7aioKENvbycslj6MGzcDM2YsQXKyWXaJmsVgRUREJElMTAIWL35QdhlERJcQQqCwcBEKCxfJLiWohPfWHURERERERD7AYEVEREREROQlBisiIiIiIiIvMVgRERERERF5icGKiIiIiIjISwxWREREREREXmKwIiIiIiIi8hKDFRERERERkZcYrIiIiIiIiLzEYEVEREREROQlBisiIiIiIiIvMVgRERERERF5icGKiIiIiIjISwxWREREREREXmKwIiIiIiIi8hKDFRERERERkZcYrIiIiIiIiLzEYEVEREREROQloSiK7BqIiLwihGgFUCO7DiLyqTGKoqTILsJb7E9EIemy/YnBioiIiIiIyEucCkhEREREROQlBisiIiIiIiIvMVgRERERERF5icGKiIiIiIjISwxWREREREREXmKwIiIiIiIi8hKDFRERERERkZcYrIiIiIiIiLzEYEVEREREROSl/w+VBlw8DzRb3gAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1080x576 with 6 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mglearn.plots.plot_decision_threshold()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.97 0.89 0.93 104\n", " 1 0.35 0.67 0.46 9\n", "\n", " accuracy 0.88 113\n", " macro avg 0.66 0.78 0.70 113\n", "weighted avg 0.92 0.88 0.89 113\n", "\n" ] } ], "source": [ "print(classification_report(y_test, svc.predict(X_test)))" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "y_pred_lower_threshold = svc.decision_function(X_test) > -.8" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 1.00 0.82 0.90 104\n", " 1 0.32 1.00 0.49 9\n", "\n", " accuracy 0.83 113\n", " macro avg 0.66 0.91 0.69 113\n", "weighted avg 0.95 0.83 0.87 113\n", "\n" ] } ], "source": [ "print(classification_report(y_test, y_pred_lower_threshold))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Precision-Recall curves and ROC curves" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import precision_recall_curve\n", "precision, recall, thresholds = precision_recall_curve(\n", " y_test, svc.decision_function(X_test))" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x20b5c75cf48>" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4NS43NzgxMjUgMjYyLjE4Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nJWZTW8dSxGG9/MrZgkLJl3d1V/LRIClu+KGSCwQC+T45kNOAg7cSPx6nuqZ8XTPObYhUZScN33qu+qtbsv8eXr1WuYP32c3f+bPj/mv89/4+/0s88386vd3v366vXt782a+/T458C9TKHHJuYiPfLzvP/rkFykhR2A3fPo4TV8ntPCNGwR/mCYN+7dCXqLaMUTnssQTet+jPupSN5mHhB5F0y945FePPqAMr5bS+WUm8D9TqUuWGJL0FnSgLm4zYHqD7T+mN+/mV3+UWdz87pepyJKT95wkALP3S43zu/fTb9zifzu/+zz/4d3U1E4SyyI+RZd7PT36vCKJbpEcQpGkNQyadNTkfVpiyCn6XlOPPq/JC3EuGn2W5GTQlE6aKgHXkmsZNHXoC5pKWmqNKfuUR0VlVBRSWEKsVcNQJh36vKIQ46IuFWm/O02yuF3TGO1SlhQ1FUTWxa/1ZV/408Pd7afvn759HQ08ilDzoj6HkjBQ3f7VA30iEojJYtqQlIKLIniXtmi4p5RZ/JLU4AdlB/qSshIWofiiRcZfr9tDGXW6aE2a86Ctg19SJwQ+1Zqc99nn69Xb6UtpcUGcD6O+A35RH6PHBxVsI/jXa7gbHy4uMUWCMejr4Jf0eWfToKQaWpldLeVOn8ZFnBPRUd8Bv6hPZQkueOoqJH22oB0T8HfCwBNdcrVOkSCLMONaZX9pQ90EvL27/fv9/S7jn/OVAR3oNppIqGmdH+7mv8xf51evwz5qPUPWButk5knF1DBLRi3jJ1psvfol+iC19rg3TTW6djouvrhYKigHAqMog6aF2eS9zreTRSllFxhnkvMiMZYmIx0ai7VcVj+idddnMg6cOe5yzVRJL7l4Bgwdkgc76Bpfqq/SZBxWF12YstWnufewdB4e8ThQZIRqGRUqrD8dGMO1+qKDZLKQknHAyY6QluzVSRysDlc9DE/EI1yNXie5i3Rnx5CXzuoui52H+Wo8chcPuPvP08/z/1x7fv5pKzp+Y9X2K89vb6Zxc5miDfMYdWw+SJipFFxuRagpaTQm4TBH1NcRTkbEKkb3p9OlJPxtfhVqpaYVRnYJMsJQl6pEiRewYIeYStTUKiGvMC7Hkk4w6WAQSD7BJKx4kr3WEDyWywqXAtnqCYbpqJVcLuDAqBVtBdAmWl1h9cWXcAHDw6kJGeGkTtUqkWKoLC8bWrM2+w6U2mK7qeZjj5o0V5NJgBmJNStJO+wExtcRLjbvrSdOMGOZPlE77SEPV9SvcCk5xxMM9dpWEnO6xAPE2nrC8U8q12a0MJCdSo1ywqUuKoHlkIWjQAyMFCsUIVeBjcfkDDhNkjxNQFw8mSUEKbXziiul2TPi2KmVDgKPxsHkHNw79q8Ey6YzbvaHaLmDiNFdSt3OB6fuAg5LdNrCg4exxsa43tHtSAnlBKOpFJcwnv2RMMUsDc8WNFvvRjjZjqm2X9LLVv5iMfbEGJHOjBlxT02LS4Yzn6sSqIarFTUuXOKO4eSIcfuni1UbbvUrzmI54gyYymQw8z1H4HCLsQUw2xALZ5wYu1Ksf8UZo/q2/1iCuAsUi/GIP27f3jFWIpEo2/lcarNnxKn7mEM7j2meoLSk+LpECi6eYVoK69uyQvm3EARbDpya6T3KxhWrjSPS7hkpKtvh4jhdzrjDDvE2NBzLm9daWj5oDDaHZINqxAXxSSyvjq8ykTa1niFXktX2gGN44BO8UDmBOt/8YcoDOE1n3Kit0rTwGZGgSWU1M1qVraw44JSTp3WMy6lb8lJXc9Jit46Qzzg0RCCTNnZ1VilxOx+KmtATTtVLtDlk/BoKvNDKgxbXECChE06LK8NWB+a18+hVNOgZNwbkMpUaI5N4V1scbEdhMMVwxslF0FBtKzLOoHtaWth0lJOiZ1zNL0czS6qW6eJaOyhpIUMmf8RhTet44pbi4th7fCtv7jeUgNHCCecD9c2KIokhXNhLtuNSncvhBNNUEb+QDiWzwpD8/TglaNaPeOS+nwvGR+M2Wj9sxtOsZOuMR2NoegYcdpDIyDCcmzUyi612A07QKslFKxIzcz+UPfaJPQQxGOYYDrnF3mjXVkF/xjnvK70MTrkoe1zzNgsjkFmrJxx6FBdaT1BGkW7VFns4ryg3cjnj5DCwkbDRo0nVyBK4kKoMr+czTj9lGpbYWzflbF1z3+7iuVBTF3iwXCVuk+Rg0cxi1aJJXWOj2HmGZNHg2o3F5AgBjBc4kxrUboEMGAeFtCDTrqSKO9MZp6M108Cz8SgcHNpaYuZHmN8RHUnGu641Vsl23Ob3CCszWx0fxBgkh9yovHuiOOHwfS3BtDKOIxTidyud/SIIxn9kZ6XUTs6I20UwFduCGY9sBHnl1EJpZoVSK11ui5FsIWNrYFGaa6FfXFk5r1rk1YbIAGMLvInaGe1kTGscI2DfS3iRRgtHmEuko2TLjDhoMq60g1lQm1KTI9z2/uTqbA7gV2OdgMuBGJGwEfZ2l41wNUlkx44rlSCEjmAZnm0fC+pXBjgMLM72bRu+o+wBDnaRsIFiN5SUasszNYZvCA8zCyP5o6QMhuLxheF+gskyqzfZyTbPKm3YhFS7N7FuzcxIFuHqT17SsRB6m2zmZCWvBDA721bTSjhHANteTW5O9cbO7jBgpRuy4BIcmOdkBMYq2Jy0zcFoLo7wYQj3AcC6PosevttLKxGSU+K5sND8aWWUo0wYpUzDuhLHMVwioxzzdBxdMdpexpAcDenhTiNj1LbOlWM60cwV5klapzHRZj1mKDF/WdxyYxije/JklxcOODYJbU4eT31Pwd0L2xPwdqu066K7eA4eL4pXn6WvvzQj9dp79Zen3qs5/388eg+nDzHPSX/1WtenmJ/siZ0/P5qr24P7tkLZaVt6kzZZ8ihrxey1nQKnGWLZsWBdsZ9iP3Dtjj2g1c7dTj1GAnbbBpjsS7Znk14R6Hq4t+gRvB2Mf4TXrZNh5tpbzw63u9hxdtM2oLkTfMCrF/cj9uhvr2uNy2VE2xPGm6l7E7MfP/grP3xYN7DtyyyZsMSXdcMoETLZsbaKsMW2uzsVzdgJvjnA+lDdetEPrCpwxW1bgPh/Sqg9vEBqbR+3IOyesz8wP4qOqJiu22nAbFtMrr1THFIxmkZnrxtssC3GQ/G6va3tFvNPOtJGZe+Zbp4d/q/I+qbm4OBYj1PGp6xVaZTm7GpQVE66Q3uK8S4PloarXoUr/oerkeqk9lE9bBhzcFjcZ+zwLFz4Hzb/P65d3P3san1QHV+B01F1pri219t/fXy4+/7x2/37+T93D9/2V9xnHshOc88uQLtUtj3q3lqQkozX8DZuXBunu5U3z1vqmWXy+MOUf+w/TJkf2qvzfPvvh1/vdqt/nv4L0ya86wplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI1NDMKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJxFkEuOAyEQQ/ecwkeg/nCejrLq3H87LjrRbLAlKNczuQMTe/HITJRuvGS4O8wVn+EZMHP4SphsxEzoTlwjlK4U4VSfCI7L3rzpoIl7RM6jngVZ1c4NagFnkuaC7YIu54wVN87JrUblzfSj1xC+aXcf13mH9kjj3sNUvs451c67ighpC1nVtL6QbBTJDms/Kk3bzssQseBsGlboHN4Iu1d3J0sYfr/yMCUTPw/d+lF8XTej6xRnJ1cma8956EnpX/XKow/FcSnoF7HtzCT3X6dTkqlTe2fvaf2nuMf7D5BuVjkKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYzID4+CnN0cmVhbQp4nEWQuXUEMQxDc1WBEniAOuoZP0ez/acLabzeQPp4hHiIPQnDcl3FhdENP962zDS8jjLcjfVlxviosUBO0AcYIhNXo0n17YozVOnh1WKuo6JcLzoiEsyS46tAI3w6ssdDW9uZfjqvf+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2r8IuyKUtn1cTmWcunsHtMJnK1f7fQOo5zqACmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJw1jLERwDAIA3um0Ag2WGDvk0tF9m9DfE4DLx0Pl6LBWg26giNwdan80SNduSlFl2POguFxql9IMUY9qCPj3sdPuV9wFhJ9CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJw9jMENgDAMA/+dIiM0iU0yEOIF+39pCu3HPp1k0yhd4BVpQoSc2shJT1vunoSDgxSQsF9t6NW+Kkt7qiBqMv42fHfXC3ccF04KZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgODAgL1AKODIgL1IgOTcgL2EgOTkgL2MgL2QgL2UgMTA0IC9oIC9pIDEwOCAvbCAxMTAgL24gL28gL3AgMTE0IC9yIC9zIC90IC91IC92CjEyMiAveiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9QIDE2IDAgUiAvUiAxNyAwIFIgL2EgMTggMCBSIC9jIDE5IDAgUiAvZCAyMCAwIFIgL2UgMjEgMCBSCi9laWdodCAyMiAwIFIgL2ZvdXIgMjMgMCBSIC9oIDI0IDAgUiAvaSAyNSAwIFIgL2wgMjYgMCBSIC9uIDI3IDAgUgovbyAyOCAwIFIgL29uZSAyOSAwIFIgL3AgMzAgMCBSIC9wZXJpb2QgMzEgMCBSIC9yIDMyIDAgUiAvcyAzMyAwIFIKL3NpeCAzNCAwIFIgL3NwYWNlIDM1IDAgUiAvdCAzNiAwIFIgL3R3byAzNyAwIFIgL3UgMzggMCBSIC92IDM5IDAgUgoveiA0MCAwIFIgL3plcm8gNDEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAgPj4KL0E0IDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0MiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzQ0LTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDQzCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDExODM0IDAwMDAwIG4gCjAwMDAwMTE1NTggMDAwMDAgbiAKMDAwMDAxMTU5MCAwMDAwMCBuIAowMDAwMDExNzcxIDAwMDAwIG4gCjAwMDAwMTE3OTIgMDAwMDAgbiAKMDAwMDAxMTgxMyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMDE2IDAwMDAwIG4gCjAwMDAwMTAxOTggMDAwMDAgbiAKMDAwMDAwOTk5OCAwMDAwMCBuIAowMDAwMDA5NTUyIDAwMDAwIG4gCjAwMDAwMTEyNTEgMDAwMDAgbiAKMDAwMDAwMzAzNyAwMDAwMCBuIAowMDAwMDAzMjc1IDAwMDAwIG4gCjAwMDAwMDM1NzUgMDAwMDAgbiAKMDAwMDAwMzk1MiAwMDAwMCBuIAowMDAwMDA0MjU1IDAwMDAwIG4gCjAwMDAwMDQ1NTUgMDAwMDAgbiAKMDAwMDAwNDg3MyAwMDAwMCBuIAowMDAwMDA1MzM4IDAwMDAwIG4gCjAwMDAwMDU1MDAgMDAwMDAgbiAKMDAwMDAwNTczNiAwMDAwMCBuIAowMDAwMDA1ODc2IDAwMDAwIG4gCjAwMDAwMDU5OTMgMDAwMDAgbiAKMDAwMDAwNjIyNyAwMDAwMCBuIAowMDAwMDA2NTE0IDAwMDAwIG4gCjAwMDAwMDY2NjYgMDAwMDAgbiAKMDAwMDAwNjk3NSAwMDAwMCBuIAowMDAwMDA3MDk2IDAwMDAwIG4gCjAwMDAwMDczMjYgMDAwMDAgbiAKMDAwMDAwNzczMSAwMDAwMCBuIAowMDAwMDA4MTIxIDAwMDAwIG4gCjAwMDAwMDgyMTAgMDAwMDAgbiAKMDAwMDAwODQxNCAwMDAwMCBuIAowMDAwMDA4NzM1IDAwMDAwIG4gCjAwMDAwMDg5NzkgMDAwMDAgbiAKMDAwMDAwOTEyMyAwMDAwMCBuIAowMDAwMDA5MjY5IDAwMDAwIG4gCjAwMDAwMTE4OTQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDMgPj4Kc3RhcnR4cmVmCjEyMDQ4CiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXhU1fnA8e+bBcIS1gBhSQhIECHIFojKqrggRQICIkpbxKVVQFsrovWnRVprXWpV3FoUXKqIgEgULQqCIAgSQAGBIEtIwk4gLAnZ398fE8YEEjJAJjOTeT/Pkydz7zlz580l3Df3nHPPEVXFGGOM/wrwdADGGGM8yxKBMcb4OUsExhjj5ywRGGOMn7NEYIwxfi7I0wGcr7CwMI2KivJ0GMYY41PWrl17WFUblVbmc4kgKiqKxMRET4dhjDE+RUR2l1VmTUPGGOPnLBEYY4yfs0RgjDF+zuf6CIzxF3l5eaSlpZGdne3pUIwPCQkJoUWLFgQHB7v8HksExniptLQ0QkNDiYqKQkQ8HY7xAapKeno6aWlptGrVyuX3ua1pSESmi8hBEdlURrmIyMsisl1ENohIV3fFYowvys7OpmHDhpYEjMtEhIYNG573XaQ77wjeBl4B3i2j/EYguugrDni96Lsxpsj5JIGUlBQSEhLIyMigXr16xMfHExER4cbojDe6kD8c3HZHoKrLgCPnqBIPvKsOq4B6ItLUXfEsWLCPuLjFvPTSz+76CGM8Yv/+/QwfPpxWrVoxYcIEHn/8cSZMmEBUVBTDhw9n//79ng7ReDlPjhpqDqQW204r2ncWEblHRBJFJPHQoUMX9GHr1h3l+++PsGFDxgW93xhvtH//fnr27MncuXMJDAxk2LBh/PnPf2bYsGEEBAQwd+5cevbsyYEDB8772BkZGbz22mvO7aVLlzJo0KCKDB+At99+m/Hjx5/Xe6Kiojh8+PBZ+ydPnszzzz9fUaH5DU8mgtLuX0pdJUdV/6Oqsaoa26hRqU9Ilysp6QQA06cns3Ch/YVkqobx48ezc+dOunbtys6dO5kzZw5PPfUUc+bMYdeuXc7948aNO+9jn5kIXFVQUHDe7/FW+fn5ng6hUngyEaQBxRswWwB73fVhgwc3c76+9951/PWvm3n66S3s2pXpro80xq1SUlKYN28ewcHBzJ8/nxYtWpQob9GiBZ988glBQUHMmzeP1NTUMo5UukceeYQdO3bQuXNnJk6cCMDJkycZPnw47dq14/bbb+f0CodRUVFMmTKFXr16MXv2bHbs2MGAAQPo1q0bvXv3ZuvWrQDMnj2bmJgYOnXqRJ8+fZyftXfvXgYMGEB0dDQPP/ywc//MmTPp2LEjMTExTJo0qdQ4n3rqKS699FKuvfZakpKSSq3TuXNn51eNGjX45ptvyMzMZOzYsXTv3p0uXbowf/58wHGHMmLECG666Sauv/56VJWJEycSExNDx44dmTVr1nmdR5+gqm77AqKATWWU/Qr4AsedwRXA964cs1u3bnqh+vdfqvBRia9bb/3ugo9njDtt3rz5nOVTp05VQIcNG3bOesOGDVNAX3nllfP6/F27dmmHDh2c20uWLNE6depoamqqFhQU6BVXXKHLly9XVdWWLVvqM88846x7zTXX6LZt21RVddWqVXr11VerqmpMTIympaWpqurRo0dVVXXGjBnaqlUrzcjI0FOnTmlkZKSmpKTonj17NCIiQg8ePKh5eXl69dVX67x585yfd+jQIU1MTNSYmBjNzMzUY8eO6SWXXKLPPfdcmT9TQkKC9urVS3Nzc/XRRx/V9957zxlLdHS0njx5UmfMmKHNmzfX9PR0VVWdM2eOXnvttZqfn6/79+/XiIgI3bt373mdy8pW2u8OkKhlXFfdNmpIRGYC/YAwEUkD/gIEFyWfN4DPgYHAdiALuMNdsZz24oudmT07jcJCZcmSg6xYkc6HH6aSmHgUgLCwarz/fhytW9d2dyjGXLSMDEd/16WXXnrOem3btgXg6NGjF/2ZPXr0cN55dO7cmeTkZHr16gXAyJEjAcddw8qVKxkxYoTzfTk5OQD07NmTMWPGcMstt3DzzTc7y/v370/dunUBaN++Pbt37yY9PZ1+/fpxujn49ttvZ9myZQwZMsT5vuXLlzN06FBq1qwJwODBg8uM/eeff2bixIl8/fXXBAcH8+WXX5KQkODsU8jOziYlJQWA6667jgYNGgDw7bffMmrUKAIDA2nSpAl9+/ZlzZo15/wsX+O2RKCqo8opV+D8Gy4vQkxMXWJiHL9sM2bsYsWKdAC2bz9Z9B2mTt3OX/8aQ+3a9qyd8W716tUDKLM55LRt27YBUL9+/Yv+zOrVqztfBwYGlmhDr1WrFgCFhYXUq1ePH3744az3v/HGG6xevZoFCxbQuXNnZ53SjqtaapfhWVwZLpmZmcktt9zCtGnTaNbM0UysqsydO/esRLp69Wrnz3K6XlXnt3MN3XFHK9LSBrFt2wC2bRtAZKTjL4oXX/yZPn2WeDg6Y8o3ePBgAgICSEhIIC0trdQ6qampzJ8/n4CAgPP+CzY0NJQTJ06cd1x16tShVatWzJ49G3BcSH/88UcAduzYQVxcHFOmTCEsLOyc/RZxcXF88803HD58mIKCAmbOnEnfvn1L1OnTpw/z5s3j1KlTnDhxgk8//bTUY91xxx3ccccd9O7d27nvhhtuYOrUqc4L/fr160t9b58+fZg1axYFBQUcOnSIZcuW0aNHD9dPiA/w20QA0Lx5DaKjQ4mODmXixEu59NJQANavzyA3t9DD0RlzbpGRkQwdOpS8vDzi4+PPuqimpqYyZMgQ8vPzGTp06Hk/XNawYUN69uxJTEyMs7PYVe+//z5vvfUWnTp1okOHDs6O2IkTJzo7f/v06UOnTp3KPEbTpk15+umnufrqq+nUqRNdu3YlPj6+RJ2uXbsycuRIOnfuzLBhw0pc6E/bvXs3c+bMYfr06c4O48TERB5//HHy8vK4/PLLiYmJ4fHHHy81jqFDh3L55ZfTqVMnrrnmGp599lnCw8PP63x4O/G1257Y2Fh118I0X3yxj4EDvwVg9er+9OjRwC2fY4wrtmzZwmWXXXbOOqefI9i5cydBQUHEx8fTtm1btm3bxvz588nPz6d169asXLmSJk2aVFLkxtNK+90RkbWqGltafWsIL6Z//1/+o8TFLaZWrcBS64WEBPLvf3dj2LAWpZYbU1nCw8NZsWIF48ePZ968ecydO9dZFhAQwLBhw3j11VctCZhzskRQTLVqAfTo0YDvv3fMjJGZWfqDMZmZBTzyyEaK91GFhgZzzTWNCQy0CcJM5QoPD2fOnDmkpqaSkJDA0aNHqV+/PoMHD7a5hoxLLBGc4bvvriErq+wnI2+9dRULFuxj+/aTDBv2XYmy11/vyu9/f4m7QzSmVBERERf0BLExlgjOEBAg5xw6+tBDbalRI5CCgl/6VhYtOsCJE/nce+86/ve/yp++QhXCw0P41786UbOm/ZMaY86PXTXOU79+jenXr3GJfVdcsZjVqx3NSfPnu22WjHINH96CuLiSHdwhIYFUq+bXg8OMMeWwRFABFizoxfLlZ8+EWBl+/DGDyZM3A3D99cvOKq9ZM5A1a66lffs6lR2aMcZHWCKoAA0bVmfIkFJn0Ha7bt3q8+67u9m1K7NEk1ZOTiG5uYVkZRXw4ovb6NSpXoV8XrVqAdx8c3MaNqxefmVjynDVVVexcuXKMssHDhzIBx984Hx62tuMGTOGQYMGMXz4cPr168fzzz9PbGypIzN9giUCHxcRUZMdOwaetf+779K56qqvAZg2bVeFfubPP5/k2Wcvr9BjGt9VUFBAYGDpQ63Lcq4kAPD5559fTEilys/PJyjINy55F3JOL4ZvnBVz3mJj6/Pkkx04cOD81i4tiyq8/voOAJ57LolvvjmEqpKfrwwe3IzJkztUyOcY75GcnMyAAQOIi4tj/fr1tG3blnfffZeaNWsSFRXF2LFj+fLLLxk/fjzdu3dn3LhxHDp0iJo1azJt2jTatWvHgQMH+P3vf8/OnTsBeP3117nqqquoXbs2J0+eZN++fYwcOZLjx4+Tn5/P66+/Tu/evYmKiiIxMZGwsDBeeOEFpk+fDsBdd93FH/7wB5KTk7nxxhvp1asXK1eupHnz5syfP58aNWqU+BnGjBlDgwYNWL9+PV27dmXKlClMmDCBjRs3kp+fz+TJk4mPj6egoIBJkyaxcOFCRIS7776bCRMmMGXKFD799FNOnTrFVVddxb///W+Xl4Jcs2YNDzzwAJmZmVSvXp3Fixczd+5cEhMTeeWVVwAYNGgQDz30EP369aN27do8+OCDLFy4kEGDBrFx40Y++ugjwLEo0D//+U8+/fRTvvzyS/7yl7+Qk5PDJZdcwowZM6hd++ImyrREUEUFBwfwxBPtK+x4+fmFfPhhCkeP5gE4n7UAx5Qco0ZFVthnebuwsGqV3jQmMtstx1Udcc7ypKQk3nrrLXr27MnYsWN57bXXeOihhwAICQnh228dT+L379+fN954g+joaFavXs19993H119/zf3330/fvn2ZN28eBQUFnDx5ssTxP/jgA2644QYee+wxCgoKyMrKKlG+du1aZsyYwerVq1FV4uLi6Nu3L/Xr1+fnn39m5syZTJs2jVtuuYW5c+cyevTos36Gbdu2sWjRIgIDA/nzn//MNddcw/Tp08nIyKBHjx5ce+21vPvuu+zatYv169cTFBTEkSOO3+/x48fzxBNPAPDrX/+azz77jJtuuqnc85qbm8vIkSOZNWsW3bt35/jx42clqTNlZmYSExPDlClTnE+EZ2ZmUqtWLWbNmsXIkSM5fPgwf/vb31i0aBG1atXimWee4YUXXnDGeKEsERiXBAUFsHXrgBIL+Ywe/b1z5tZ27f7nqdAqXVCQkJQ0wC+mK4+IiKBnz54AjB49mpdfftmZCFyZdvrrr7/m3XffBRyzip6eavq07t27M3bsWPLy8hgyZAidO3cuUf7tt98ydOhQ52ygN998M8uXL2fw4MG0atXKWb9bt24kJyeX+jOMGDHC2cxS1tTTixYt4ve//72z6ej0FNRLlizh2WefJSsriyNHjtChQweXEkFSUhJNmzale/fugGMivvKcXmoUICgoiAEDBvDpp58yfPhwFixYwLPPPss333zD5s2bnf8mubm5XHnlleUeuzyWCIzLGjcOoXHjEOf2I4+04/nnk8jMzKdGjcprz/SUY8fyOHAgh8BAITQ0uFI/u7y/3N3lzGaQ4tuuTDtdnj59+rBs2TIWLFjAr3/9ayZOnMhvfvMbZ/m55kI7c+rqU6dOlVrvzCmlS5t6WlXP+lmzs7O57777SExMJCIigsmTJ5Od7VpTa2nHA8cFvrDwlwktix8vJCSkRL/AyJEjefXVV2nQoAHdu3cnNDQUVeW6665j5syZLsXhKksE5oLdeWcr7ryzlafDqDSjR6/m/fdTuOuuVjRq5B+jplJSUvjuu++48sormTlzpnMRmuKKTzs9YsQIVJUNGzbQqVMn+vfvz+uvv84f/vAHCgoKyMzMLPHX8e7du2nevDl33303mZmZrFu3rkQi6NOnD2PGjOGRRx5BVZk3bx7vvffeBf88p6eenjp1KiLC+vXr6dKlC9dffz1vvPEG/fr1czYNBQQ4nr8JCwvj5MmTzJkzh+HDh7v0Oe3atWPv3r2sWbOG7t27c+LECWrUqEFUVBSvvfYahYWF7Nmzh++//77MY/Tr148777yTadOmOe++rrjiCsaNG8f27dtp06YNWVlZpKWlORcfulD2pJExLti9O5P333esXuVPz2RcdtllvPPOO1x++eUcOXKEe++9t9R6ZU07/dJLL7FkyRI6duxIt27d+Omnn0q8b+nSpXTu3JkuXbowd+5cHnjggRLlXbt2ZcyYMfTo0YO4uDjuuusuunTpcsE/T1lTT991111ERkY6p5s+PXT17rvvpmPHjgwZMsTZzOOKatWqMWvWLCZMmECnTp247rrryM7OpmfPnrRq1YqOHTvy0EMP0bVr1zKPERgYyKBBg/jiiy8YNGgQAI0aNeLtt99m1KhRXH755VxxxRXO9aAvhk1DbYwLtm49zmWXLQTghhua8Je/dKB79/oEBbnvbylXpqF2p+TkZAYNGsSmTZs8FoO5MOc7DbXdERjjguJ9AgsXHuCqq77mn//c5sGIjKk4lgiMcUHjxtW5444oYmN/Wff3mWe2sm7dxS8I762ioqLsbsBPWCIwxgXBwQFMn96d2bN/Gap39Gger7yy3a2f62tNt8bzLuR3xhKBMechKqoWX3zxy7q4M2YkExQ0x/klMhuR2dx118X3Y4WEhJCenm7JwLhMVUlPTyckJKT8ysVYZ7Ex5yknp4DOnb9i69YT56y3cuU1XHllwwv+nLy8PNLS0lweu24MOP6AaNGiBcHBJZ91OVdnsSUCYy6AqpZYnOi0yy5b6HzaWgT27r2J8PDz++vMGHewUUPGVDARISgo4KyvKVN+mXxP1fEQWv/+3/CrXy3nq68OeDBiY8pmTxYbU4FGjYpk48ZjPP204yGfxYsPlijv3Ln0+fUbNKhGYKBrs1oaU9GsaciYCpadXcCKFYfJy1Py8goZPHhFue+JianDhg3XuzzFsTHn61xNQ3ZHYEwFCwkJpH//JoBj+u7+/RuzePFBwsKqnVX38OFcADZtOs7UqdsZMaIFTZuee7piYyqaJQJj3CgoKIBFi/qWWT5gwDIWLnT0HTzwwA/8/PNJpk698Ll0jLkQ1llsjAf99a8xTJjQxrk9a1YqhYW+1VxrfJ8lAmM8qHv3Bjz55C8jjQ4dyuHHHzPIyys8x7uMqVhuTQQiMkBEkkRku4g8Ukp5pIgsEZH1IrJBRM5ehd2YKq5+/WrceGO4c7tr10XcfvtqD0Zk/I3bEoGIBAKvAjcC7YFRInLmIrr/B3ykql2AW4HX3BWPMd7s9tsjSwwtnT07jcce20hKStY53mVMxXDnHUEPYLuq7lTVXOBDIP6MOgqcXuWjLrDXjfEY47Vuv70l69ZdS2joL+M3/v73rfz73zs8GJXxF+5MBM2B1GLbaUX7ipsMjBaRNOBzYEJpBxKRe0QkUUQSDx065I5YjfE4EeGzz3oxadIv6+m++eYu8vOtv8C4lzsTQWlPxpw5HGIU8LaqtgAGAu+JyFkxqep/VDVWVWMbNWrkhlCN8Q59+jTi/vujndsHD+aQm2uJwLiXOxNBGhBRbLsFZzf93Al8BKCq3wEhQJgbYzLG6zVrVoPBg5s5t59/3lZCM+7lzkSwBogWkVYiUg1HZ3DCGXVSgP4AInIZjkRgbT/G7/3mNy2drz/5ZI+tSWDcym2JQFXzgfHAQmALjtFBP4nIFBEZXFTtT8DdIvIjMBMYo/YbbwwdO9Z1vl6/PoPjx/M9GI2p6tw6xYSqfo6jE7j4vieKvd4M9HRnDMb4orZtQ4mKqklychbDh7egbt3g8t9kzAWyJ4uN8UI//pjB7t1ZBAcLzz57uafDMVWcJQJjvNCkSRtQhfvua0OrVrU8HY6p4iwRGONlFi8+wMKFB6hTJ4j/+7/LPB2O8QOWCIzxIoWFysMPbwBg0qR2hIVV93BExh9YIjDGi8yalcq6dRk0axbCH/4QXf4bjKkAtjCNMV4iJ6eAxx7bBECbNrX5179+dpbVrh3EHXdEUaeOjR4yFc8SgTFeYt26DHbtygRg2bLDLFt2uER5SEgAv/vdJZ4IzVRxlgiM8RI9ejTgxRc7c/BgtnPfpk3HSUjYS/XqAQwYEH6Odxtz4SwRGOMlAgOFBx74pV9AVenVawkAgwY1JT09l+bNaxAUZF17pmLZb5QxXmrFinRWrkwHYO7cPXTrtoiJEzd4OCpTFVkiMMZLtW1bmwEDwkusXNa6tT1cZiqeJQJjvFTjxiF88UVv50ykbdvWts5i4xaWCIzxYllZ+Tz55GYAdu3KJCxsPrfdtsrDUZmqxhKBMV4sP1+pWTMQgLw85cSJfLZuPeHhqExVY6OGjPFideoEk5LyK3buzKRLl6/IyirgqadiAEhJSSEhIYGMjAzq1atHfHw8ERER5RzRmLNZIjDGywUFBfDss0lkZRUAUFBwguHDJzBv3jwKC39Zz/iBBx5g6NChvPLKK4SH2zMHxnWWCIzxAatWpTtfjxo1g5MnPyMoqCaDBw+kffs2JCUlMX/+fObOncv69etZuXIlTZo08WDExpdYH4ExPuDVV7s6X5882RV4j/z86XzyyXCCg29jzpw57Nq1i65du7Jz507GjRvnuWCNz7E7AmN8QNu2tYmMrE5KSg6QTUhITbKzHc1CL774M02ahAAwbNgb/Pjjr5k3bx6pqanWZ2BcYncExviApk1rMHFiCnALw4bN54cfrneWHTuWx333reO++9bx2GPJiDxBYWEhCQkJngvY+BS7IzDGR2RkZABw6aWXEh1dm6eeimH37iwCiv6ce+ONnQDk5wcDN3L06FEPRWp8jSUCY3xEvXqOqSaSkpIICBD+/OeSy1gmJh4lMfH0xb839evXqeQIja+ypiFjfMTgwYMJCAggISGBtLS0s8r/+98452uRjxk8eHBlhmd8mCUCY3xEZGQkQ4cOJS8vj/j4eFJTU0uUP/zwmqJXa7j55pbWUWxcZk1DxviQV155hfXr17Nu3Tpat25NfHw8bdu25dtvM1i+/Gogh4iIr3n11QWeDtX4ELsjMMaHhIeHs2LFCoYNG0ZhYSFz587l6aefZvnyNgAEBASh+gRXXbWWd95J9mywxmfYHYExPiY8PJw5c+aQmppKQkIC6elHefHFZhw9CoWFgaSl5QA5rF17lN/+NsrT4RofIKrq6RjOS2xsrCYmJno6DGO8SnZ2Afv3ZzNv3h4efPBH6tQJYuvWATRtWsPToRkvISJrVTW2tDJrGjKmCggJCaRhw2o8/3wSAOHhITz++E/cd986tm497uHojLezpiFjqohNm46zd282ANu2nWTbtpMA1KoVyHPPdfJkaMbLufWOQEQGiEiSiGwXkUfKqHOLiGwWkZ9E5AN3xmNMVXbFFQ345JOrmDatG7/+tWN5y5CQAO65p7WHIzPezm13BCISCLwKXAekAWtEJEFVNxerEw08CvRU1aMi0thd8RhT1YkI8fHNyczM56mntgAweXIHoqNDPRyZ8XbuvCPoAWxX1Z2qmgt8CMSfUedu4FVVPQqgqgfdGI8xfuGJJ34iOTmLTp3q8uCDbT0djvEB7kwEzYHijz6mFe0rri3QVkRWiMgqERlQ2oFE5B4RSRSRxEOHDrkpXGN83/r1R3nhhW2AY1bS7dtPejgi4wvcmQiklH1njlUNAqKBfsAo4E0RqXfWm1T/o6qxqhrbqFGjCg/UmKril0nnIDk5iy++2O/BaIyvcGciSAOKT3bSAthbSp35qpqnqruAJByJwRhzAe64I4qBA39Zr/jOO1t5LhjjM9yZCNYA0SLSSkSqAbcCZ66U8QlwNYCIhOFoKtrpxpiMqdK2bz/J55877gKGDWtOUFBpN+bGlOS2RKCq+cB4YCGwBfhIVX8SkSkicnp+3IVAuohsBpYAE1U1vfQjGmPKM316svP13Ll7mDkzxXPBGJ9hU0wYU4Xs3HmSnj2XsH+/48GylJRfERFR08NRGW9gU0wY4yeCggLIysoH4OmnO1oSMC6xRGBMFTJ58k8cP+5IBI8+upEvv7RRQ6Z853yyWEQePFe5qr5QseEYYy7GNdc0ZsaMZOf29OnJdO1an7Cw6p4Lyni98u4IQsv5MsZ4kdGjWzJmTJRze9asVGbNSi37DcZQzh2Bqj5ZWYEYYyrGk092YMuW46xefYTGjaszfHgLT4dkvFx5TUMvn6tcVe+v2HCMMRfr0KEc1q1zPGE8enRLNmw4hsgxevRoQJ06wR6Oznij8mYfXVspURhjKszjj28iL88xLPyFF7Y55x4aPLgZ8+f39GRoxkuV1zT0TmUFYoypGHfcEUV+vqKqHDmSy7p1GQBceWVDzwZmvJZL6xGISCNgEtAeCDm9X1WvcVNcxpgLNGJEBCNGRFBYqNx443IArr66ERMnXurhyIy3cvU5gvdxTBPRCngSSMYxl5Axxks991wSX355gLCwavz3v3EEBtq8Q6Z0riaChqr6FpCnqt+o6ljgCjfGZYy5CN99l85jj20C4J13etCsWQ0PR2S8matLVeYVfd8nIr/CMZ20jUkzxgulp+dw662rKChQ/vSntgwc2NTTIRkv52oi+JuI1AX+BEwF6gB/dFtUxpgLduediaSkZAGwevUR+vf/5qKPmZGRy/XXh/P00x0v+ljG+9jso8ZUIapKePinHDyY45bj7979qxJrHISHhxAQYH0PvuBcs4+6OmroHeABVc0o2q4P/LOor8AY4yVEhPXrr2PLluMVcryCAuWGG5Y7t1u2XFCi3J5NqBpcbRq6/HQSAFDVoyLSxU0xGWMuQrNmNSqsc7iwUBkypBmffLKXJk2qExAgFBSo846jbl17UrkqcHXUUEDRXQAAItIA15OIMcZHBQQI8+b1RHUE+/cPZu/em7j/fsey4s2ahfCvf3XycISmIrh6Mf8nsFJE5gAK3AI85baojDFe6fvvj/CXv/wEOIalNmxo01tXBS4lAlV9V0QSgWsAAW5W1c1ujcwY41VOnMjjttscw1IHDWpKvXrBJCYeKbVuZGRNGjcOKbXMeJ/zad5pAGSq6gwRaSQirVR1l7sCM8Z4l6lTt7NjRyYAn322j88+21dm3Vq1Atm37yZCQ60PwRe4OmroL0AscCkwAwgG/gvYcAFj/ETv3mH07NmQ7OzCMuts2JBBXp7SsmUtatWybkRf4eq/1FCgC7AOQFX3ioitUGaMH+nduxHfflv2PJPz5u3h5ptXUq1aAB98EGfPF/gQV0cN5arjyTMFEJFa7gvJGONr9uw5xV13OR70fOaZjnTqVM/DEZnz4eodwUci8m+gnojcDYwF3nRfWMYYX1FYqPzmN99z5EguLVvWpFWrWnz66d4y64eGBtG7dyObDdWLuDpq6HkRuQ44jqOf4AlV/cqtkRljfMLixQf5+nl46bwAABbZSURBVOuDAOzencWQISvLfc9//9uD229v6e7QjItc7s0puvB/BSAigSJyu6q+77bIjDE+oVu3+vz2ty1JT889Z71Nm46RnJxFSEgA3bs3qKTojCvKW7y+DjAOaA4k4EgE44CJwA84FqwxxvixBg2q8fbbPc5ZZ+/eU3Ts+CUATz7ZgYiImhQWqnUoe4nyOovfw9EUtBG4C/gSGAHEq2q8m2MzxlQRDz+8gSNHHHcMkyZtpGbNj+nS5Svy88seimoqT3lNQ61VtSOAiLwJHAYiVfWE2yMzxlQZERE1qVEjEFV1Podw6lSBdRh7ifLuCE6vTIaqFgC7LAkYY87X0093JCvrZubMuQqAoCDhvfd6IGKJwBuUd0fQSUROT2wuQI2ibQFUVeu4NTpjTJWxZ88pxoz5HoCnnoohLq6hhyMyp53zjkBVA1W1TtFXqKoGFXtdbhIQkQEikiQi20XkkXPUGy4iKiKlrp5jjPFtBQXK6NGrOXw4l+uvb8JDD13q6ZBMMa4+WXzeRCQQeBW4EWgPjBKR9qXUCwXuB1a7KxZjjGf97W+bWbr0EE2aVOfdd3vYaCEv47ZEAPQAtqvqTlXNBT4EShtp9FfgWSDbjbEYYzzkf//bz+TJjlnr27SpzSuvbOfFF7eRlZXv4cjMae6cHrA5kFpsOw2IK16haLnLCFX9TEQeKutAInIPcA9AZGSkG0I1xrjL66/vcL5esSKdFSvSAceaBTff3MJTYZli3HlHUNq9nzoLRQKAfwF/Ku9AqvofVY1V1dhGjRpVYIjGGHf7+99jmDy5PY8/flmJ/ffcs5bWrT8nJmYh33572EPRGXDvHUEaEFFsuwVQfCaqUCAGWFo0hCwcSBCRwaqa6Ma4jDGVqEOHunToUBeAzZuPM3fuHgDS03Od01Js2XKcXr3CPBajv3PnHcEaIFpEWolINeBWHNNUAKCqx1Q1TFWjVDUKWAVYEjCmCvvooyvZuXMgP/10A61bO2azv/76Jowd28rDkfk3tyUCVc0HxgMLgS3AR6r6k4hMEZHB7vpcY4z3CggQoqJq8txzSezcmUlUVE0++CDOnjD2MLeuJaeqnwOfn7HviTLq9nNnLMYY7/D66zt4++1katQIZN68njRsWN3TIfk9dzYNGWNMCd98c4gHHvgBgDffjKVzZ1vJzBtYIjDGVIotW44zZMgK8vOVBx9sy2232VBwb2GJwBjjdgcOZDNw4HIyMvKIj2/Gs89e7umQTDGWCIwxblVYqMTHryA5OQuA48fzGDJkBcOGrWTNmiMejs6AmzuLjTHm0KEcvv/+lwv+kiWHnK+jo2vbspVewBKBMcatmjQJYcOG69m1K5OcnELGjVvHwYM5tGsXysSJNgupN7BEYIxxu5iYurRvX4dRo1Zx8GAOAAMHNuX991PKfE9kZE3i45vZ4jWVwBKBMaZSbNp0jI8+SnNuv/DCtnLfs23bAKKjQ90ZlsESgTGmknToUJd//KMje/acKrNORkYe7723G4Crr25E69a1Kys8v2aJwBhTKQIDhUmT2pVZnpNTwIABywHo0KEOH398lU09UUls+KgxxuMKCpTf/nYNS5ceIjw8hAULelGvXjVPh+U3LBEYYzyqsFD53e/WMmtWKqGhQSxY0IuWLWt5Oiy/YonAGOMxqsqDD/7IW2/tokaNQBYs6EXXrvU9HZbfsT4CY4zHvP76Dl566WfAcWdw662rnGWRkTX58ss+hIYGeyo8v2GJwBjjMaefKQDIySlk795s5/bhw7mcPJlviaASWNOQMcZjJk/uwP79N5GWNoi0tEHceadjpbKgIGHOnCtp2rSGhyP0D5YIjDEe1aRJCM2ahfDWW7t4661dBAYKH354BTfd1MzTofkNaxoyxniUqjJp0kaeey6JgAB4770eDBvWwtNh+RVLBMYYjykoUO69dy3Tpu0iKEh4770e3HqrLVhT2SwRGGM8Ije3kN/85ntmzUolJCSAuXOvYuDApp4Oyy9ZIjDGVLqMjFyGD/+OxYsPEhoaxGef9aJPn0aeDstvWSIwxlSqzMx8IiIWcPJkPgDBwQH87W9bgC0AhIYG8dxzl9uEc5XIEoExplLt2HHSmQQAjhzJ5auvDpSoM3Roc0sElcgSgTGmUl1+eT02bryePXtOIQKq8PzzSSxadBCAe++9hFtvjfBwlP7FEoExptLFxNQlJqYuubmF3HffOhYtOogIPP98J/74x2hblaySWSIwxnjEvn2nGDHiO1asSKdGjUDefz+OoUObezosvySq6ukYzktsbKwmJiZ6OgxjzEU4eDCbJk0+LbEvJqZOie2WLWsxe/aV1KgRWJmhVVkislZVY0srszsCY0ylS0nJOmvfpk3HS2wnJZ3gyJFcmje3+YbczRKBMabSxcY2YM+eQaSn5zr3/fBDBvfeu5bMzALCwqrx4YdXWBKoJJYIjDEe0axZDZo1c1zoP/44jXvuSSQ7uxCAPn0a8dln+/jss30A7NuXTXR0bSZMaEPjxiEei7mqcmsiEJEBwEtAIPCmqv7jjPIHgbuAfOAQMFZVd7szJmOM9/n737c6kwDAxx/vKbVes2Y1uPfeSyorLL/hts5iEQkEtgHXAWnAGmCUqm4uVudqYLWqZonIvUA/VR15ruNaZ7ExVc+mTcfOeqgMYNGiA3z++X7ndlCQUKfO2QvVVKsWwNSpXRg+3GYtLYunOot7ANtVdWdREB8C8YAzEajqkmL1VwGj3RiPMcZLnX6u4EwRETVLJIL8fOXIkdyz6kHpHdDGNe5MBM2B1GLbaUDcOerfCXxRWoGI3APcAxAZaVPUGuMvhg9vwfHjQ8jNLSyx/8SJfO64Yw1Llx5CBJ56KoY//jHaQ1H6PncmgtIeDSy1HUpERgOxQN/SylX1P8B/wNE0VFEBGmO835lrFv/00zFuuWUVmzcfp27dYGbOjOPGG2366ovhzkSQBhSfMKQFsPfMSiJyLfAY0FdVc84sN8YYgMJC5eWXf+aRRzaSk1PIZZeFMn9+T6KjQz0dms9zZyJYA0SLSCtgD3ArcFvxCiLSBfg3MEBVD7oxFmOMD0tNzWLMmDV8/bXjMjF2bBQvvtj5rLsFc2HclghUNV9ExgMLcQwfna6qP4nIFCBRVROA54DawOyiSaZSVHWwu2IyxvgWVWXmzFTGjVtHRkYejRpVZ9q0bsTH25xEFcmtzxGo6ufA52fse6LY62vd+fnGGN+1c+dJxo1bz//+5xg1NGhQU958M5YmTeyBsopmTxYbY7zOxx+nMWzYdyX2ZWTkMWLEd2fVXb36CK1b1+LNN2Pp2TOsskKsUiwRGGO8zoIF+87a9+23h8usv3XrCRYtOmCJ4AJZIjDGeJ033ujGmDFRlDXxwRdf7Ocf/9jq3B4ypBmTJrWrpOiqHksExhivExwcQO/ejc7af+xYHm3bfsHBg7+MNB80qCldu9bnueeSSj1Wbm4hmZn5/O53l3DppTbUtDSWCIwxPuPdd5NLJAGgxCyl55KcnMXHH1/lrtB8miUCY4zPuO22SDIy8ti1K/OcaxVkZRXwwgvbSuz7v/+7zN3h+SxLBMYYn9GwYXUef7x9meWqyqef7uP++9c7940f34Z//KMjtWrZ5a4sdmaMMVVCYuIRHn54A0uWHAKgU6e6vPpqVxtJ5AJLBMYYn7Z163GefHIzH37omOy4fv1gJk/uwH33XUJQUICHo/MNlgiMMT5p48Zj/O1vm5k9Ow1VqF49gPvvj+bRR9tRv341T4fnUywRGGN8hqqyaNFBXnrpZ+dDZ8HBwtixrXj00Xa0bFnLwxH6JksExhivd+JEHh98kMLLL29n8+bjAISEBHDPPa2ZOPFSWrSo6eEIfZslAmOMV1JVvv32MNOnJzN7diqZmQUANGsWwrhxbbjnntaEhVX3cJRVgyUCY4xX2bz5OLNnp/Lf/6awfftJ5/7evcO4775LGDasBcHB1glckSwRGGM8bt26o3zwQQoffZRKauop5/7atYMYMyaKMWOiiI6uDcCpUwWcOlVQ7jFr1w4iIKC0FXPNmUTLmtXJS8XGxmpiYqKnwzDGVJDp03dx550V/3+6b99GLF3ar8KP66tEZK2qxpZWZncExhiPOnOoZ/XqAVSr5nrTz4kT+aXur13bLm+usjNljPGooUObozrC5fqqypYtJ5g3bw/z5u1h7dqjzrL69YMZNSqS3/42iu7d67sj3CrJEoExxusdO5bH0qUHWbz4IAsX7mfbtl86kWvWDGTAgHBGjYrkppuaUr16oAcj9U2WCIwxXicrK59Vq46wePEBFi8+yJo1Rygs/KW8YcNq3HRTM4YObc511zWhRg27+F8MSwTGGI8qLFSSkk6wevURVq9OZ/XqI2zYcIyCgl8GsgQFCVde2YBrr21C//6NufLKhjaPUAWyRGCMqTR5eYVs23aCTZuOs2FDBt9/f4Q1a45y7FheiXoBAdC5cz2uuaYx/fs3pnfvMEJDgz0UddVnicAYU+EKC5VduzLZtOkYmzYdL/p+jKSkE+TlnT1kvUWLGsTFNSAuriFxcQ3o2rW+jfqpRHamjTEXJDe3kJSULHbsOMnOnZns3HmSHTsc33/++SRZWWc/9CUCl1xSi5iYunToUIfY2AbExTWgWbOyVxsz7meJwBhzTsnJmTzzzNaii30mO3acxNXnUKtXDyAmpi4xMXWIianLZZfVoVatkh2727adYNu2ExcUmyrs25dNUJAwdGhzm3riAlkiMMaUKT+/kPbtF7o0pUNpcnIKWbv2aImx/u7y5z+346mnOrr9c6oiSwTGmDIFBQVw//1teOaZpBL7mzevQWRkzfN6Arg0qkp6ei7792eTnp57Uce68camF/V+f2ZzDRljKlxOTgH792ezf382+/ad+f2Uc/vAgexSO4/P1KBBNaKjaxMdXZs2bWoTHR3qfG2rkbnG5hoyxrhEVcnOLuTYsTyOHcvj+PGS3x2v888qP/P16bUDXFGvXjDh4SE0bRpS9L0G4eEhNG9egzZtHBf7Bg3sYu9OlgiM8TGFhUpOTiHZ2QXk5BSSk1NAdrbje8n9jtfZ2QWcOJHv0gX9+PE8l/5CL09QkBAeHlLiAl/8Il98X0iIPRXsaZYIjHHB6YtvWRdbVy7IFVUnP9+9zbnVqwdQp04wdes6vurUCSr2+pf9Z24Xr1erlq0F4EvcmghEZADwEhAIvKmq/zijvDrwLtANSAdGqmqyO2My5rT09Bw6dFjIgQM5ng7FY4KD5ayLevXqZ3cAn14MZv/+bA9EaQCqVQvg0Ucv48orG1b4sd2WCEQkEHgVuA5IA9aISIKqbi5W7U7gqKq2EZFbgWeAke6KyZjiNm485tdJACAvTzl8OJfDhy9uxI6pHHXqBPtWIgB6ANtVdSeAiHwIxAPFE0E8MLno9RzgFRER9bWhTMYn9e3biE8/7cmyZYcJCQmgevVAqlcPICTE8b3462rVAhCxpg7jGUuXHuSZZ5Lc1izozkTQHEgttp0GxJVVR1XzReQY0BA4XLySiNwD3AMQGRnprniNnxERBg1qxqBBzTwdijHndOpUAWFh1QgNdc8l252JoLQ/n85MZ67UQVX/A/wHHM8RXHxoxhjjO4YObc7Qoc3ddnx3TsyRBkQU224B7C2rjogEAXWBI26MyRhjzBncmQjWANEi0kpEqgG3Agln1EkAflv0ejjwtfUPGGNM5XJb01BRm/94YCGO4aPTVfUnEZkCJKpqAvAW8J6IbMdxJ3Cru+IxxhhTOrc+R6CqnwOfn7HviWKvs4ER7ozBGGPMudnk3cYY4+csERhjjJ+zRGCMMX7OEoExxvg5n1uYRkQOAbs9HccFCOOMJ6b9nJ2Ps9k5KcnOx9ku5py0VNVGpRX4XCLwVSKSWNbqQP7IzsfZ7JyUZOfjbO46J9Y0ZIwxfs4SgTHG+DlLBJXnP54OwMvY+TibnZOS7HyczS3nxPoIjDHGz9kdgTHG+DlLBMYY4+csEVQwERkgIkkisl1EHiml/EER2SwiG0RksYi09ESclaW881Gs3nARURGp8sMFXTknInJL0e/JTyLyQWXHWJlc+D8TKSJLRGR90f+bgZ6Is7KIyHQROSgim8ooFxF5ueh8bRCRrhf9oapqXxX0hWO67R1Aa6Aa8CPQ/ow6VwM1i17fC8zydNyePB9F9UKBZcAqINbTcXv6nADRwHqgftF2Y0/H7eHz8R/g3qLX7YFkT8ft5nPSB+gKbCqjfCDwBY4VHq8AVl/sZ9odQcXqAWxX1Z2qmgt8CMQXr6CqS1Q1q2hzFY6V26qqcs9Hkb8CzwLZlRmch7hyTu4GXlXVowCqerCSY6xMrpwPBeoUva7L2SsdVimquoxzr9QYD7yrDquAeiLS9GI+0xJBxWoOpBbbTivaV5Y7cWT2qqrc8yEiXYAIVf2sMgPzIFd+R9oCbUVkhYisEpEBlRZd5XPlfEwGRotIGo71TSZUTmhe63yvM+Vy68I0fkhK2Vfq+FwRGQ3EAn3dGpFnnfN8iEgA8C9gTGUF5AVc+R0JwtE81A/HHeNyEYlR1Qw3x+YJrpyPUcDbqvpPEbkSx6qGMapa6P7wvJLL1xlX2R1BxUoDIoptt6CU21gRuRZ4DBisqjmVFJsnlHc+QoEYYKmIJONo70yo4h3GrvyOpAHzVTVPVXcBSTgSQ1Xkyvm4E/gIQFW/A0JwTL7mr1y6zpwPSwQVaw0QLSKtRKQajjWYE4pXKGoK+TeOJFCV236hnPOhqsdUNUxVo1Q1CkefyWBVTfRMuJWi3N8R4BMcgwoQkTAcTUU7KzXKyuPK+UgB+gOIyGU4EsGhSo3SuyQAvykaPXQFcExV913MAa1pqAKpar6IjAcW4hgNMV1VfxKRKUCiqiYAzwG1gdkiApCiqoM9FrQbuXg+/IqL52QhcL2IbAYKgImqmu65qN3HxfPxJ2CaiPwRRxPIGC0aPlMVichMHM2CYUX9In8BggFU9Q0c/SQDge1AFnDHRX9mFT6fxhhjXGBNQ8YY4+csERhjjJ+zRGCMMX7OEoExxvg5SwTGGOPnLBEYvyQiBSLyg4hsEpHZIlKzAo4ZKyIvn6O8mYjMudjPMaai2fBR45dE5KSq1i56/T6wVlVfKFYuOP5/+Os0BsaP2B2BMbAcaCMiUSKyRUReA9YBESJyvYh8JyLriu4cTieP7iKyUkR+FJHvRSRURPqJyGdF5X2L7jh+KJpHP7To+JuKykNEZIaIbCwqP/0k8RgR+VhE/iciP4vIsx46J8aPWCIwfk1EgoAbgY1Fuy7FMcVvFyAT+D/gWlXtCiQCDxZNhTALeEBVOwHXAqfOOPRDwDhV7Qz0LqV8HICqdsQxqdo7IhJSVNYZGAl0BEaKSATGuJElAuOvaojIDzgu7inAW0X7dxfN8Q6OSfDaAyuK6v4WaIkjWexT1TUAqnpcVfPPOP4K4AURuR+oV0p5L+C9ovdvBXbjmFMIYHHRPEzZwOaizzTGbWyuIeOvThX9te5UNPdTZvFdwFeqOuqMepdTzrS/qvoPEVmAY06YVUUzzhZfeKe0qYRPKz4jbQH2/9S4md0RGFO2VUBPEWkDICI1RaQtsBVoJiLdi/aHFjUxOYnIJaq6UVWfwXHX0e6MYy8Dbi+q2xaIxDHdtDGVzhKBMWVQ1UM4Fs2ZKSIbcCSGdkVLKo4EporIj8BXOKZGLu4PRUNTf8TRP3DmSnSvAYEishFHf8OYKr42hfFiNnzUGGP8nN0RGGOMn7NEYIwxfs4SgTHG+DlLBMYY4+csERhjjJ+zRGCMMX7OEoExxvi5/wdAFVVdL6n0QAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Use more data points for a smoother curve\n", "X, y = make_blobs(n_samples=(4000, 500), cluster_std=[7.0, 2], random_state=22)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n", "svc = SVC(gamma=.05).fit(X_train, y_train)\n", "precision, recall, thresholds = precision_recall_curve(\n", " y_test, svc.decision_function(X_test))\n", "# find threshold closest to zero\n", "close_zero = np.argmin(np.abs(thresholds))\n", "plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,\n", " label=\"threshold zero\", fillstyle=\"none\", c='k', mew=2)\n", "\n", "plt.plot(precision, recall, label=\"precision recall curve\")\n", "plt.xlabel(\"Precision\")\n", "plt.ylabel(\"Recall\")\n", "plt.legend(loc=\"best\")" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x20b5ce47348>" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4NS43NzgxMjUgMjYyLjE4Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nJ2aS68UyRGF9/0ramkvXOQr8rEcZBtpVh6M5IXlhXWHgUEwI4M1SP71/k5WN5WZtwHjGSHuPVRnREZGnIiTXX57c3nynd9efdjc9oY/H7e/b//g7x83vz3bnvzx5W8/P7x8/uzp9vDh4sDfXWK1vZTqg/Hr2/HXkMPuaywG7KbfXl8uv1ywwieesfCryyXF26di2S3pMZYudbcFfTuiwdLermueK4woln5iR+HY0SuMsau9DvuSC/zLpbndQnI+jR4MYNrd1YHLU3z/eHn6YnvyZ795t7346VIDPrlamy8ubyHszbYXP15+5/bw++3Fm+1PLy7d7MVb3UsMreXRzoh+2ZA3xz5bLT6FmCZLabYUQt5b8q200dKIftlS8JUw1moxlxwmS3mx1GzHr5b9ZGlAv2Kplh2ParQW2mSozoZijjsPtRSnNBnQLxuKZntyufr+/2DJ7+5maY52rXu2lCtLtj0c+aUP/OX9y4efP/z86y+zg2cSprKnUGLNOJjc7aMn+plIsEzxssZKOTrznt3lazTc54xVzjT7FsNk7ES/ZqzG3WdzpsiE+3l7GvNkUGo5lTJZG+CvmfMEPpPrLoQSyv3sHezlvLvoXYizvRP+qj2oh2Lx+Ebw7+fwQB/OdstGMCZ7A/w1e8H5veSaW+xpdjeVB3uJOnHOQzKTvRP+qr3k9+hiIK9iTl9MaAcD/sFDeD7tpalSfPS79xZ7Zr/rpK4Fnr98+Ofbt7c1/rXdIehItVFEnpxO2/uX29+2X7awfc+fj5uWIca3/8r2/Nll7h6X7HZfOJQ8R8DaXptRI8BxTzknUzkDt9bMwgxnNlqcj7bAkGSN2R2xqTGUlg+4thjF0BOc9qio+0ew8wQpAuNraz6WA/YuEYIFLjh43c4MZ6vmeDpWJVAq9YBLZnG/wG2HbrO2s8Aw0bEIRa20agdMy6gpPIIrcciPnxadQPwhGh+sPl/RXIN2M6C0WM+6fkFxuhSaToScsOD8AVbD5TDDUIojG60sMJUfzDlONwbq18n7DhffLC6wV5bGoCA8wn1M8ipEt8dGHahMPDVRsmv1Ds7zpDmcT6clwEFp4jmpVq3K+RUPlegLpzcRgJw7bnv0icxa8bRbK1b1vIkGg9PhizMolZzbikeOCH4nvnAhtpkcOs5+S3LWVjzurdDy5T8jSbPOesHlvRhMUxfY6GtKRHXw7K34juqgyh3UpZJb6IWs1PeKcCDCjiKHzRc84lZ2iow3WDwF6zb5BQJq2VacyLjsqtZhSUqypY7XvaYW5fqKu1CjKtcHmiUkqghrbOEEIfAV14kUiAHcidJCb0A6Ho6zZ+uMfxp/gqOqjEjUjivjW3Fpxdk82416HuILBLmfSICPHCdeHuOuRMae3jBqO04Ejs087mxGoSPjzIkBBx+Mqu1nEjUp18pDCw7NE1fT86qj1Gq4Pk87rY9guCxZ1dE68hxCuprVESYG9QVXBbTqcNK3sGPehb4laB4+LpznglO0SYY3IrebkVGHm1IAqbSy4iQxrT8BZ8qrxna40zMQDl9xmkIqSlMvMuEY+1wnTitMe7GuuOmYLWRwAlXpLT1Dko6fBK8LHqFJuJGMJX9Ykh32E6fGHbMkNbvg4hxYAZhcIXStXR9v5l1sKx4UWm+4Xwi419Y7npWYkVNZcFGdZbkPJ7Nkdb0gEhNoIQ3TijOOpJS0rYzH5mroCc6IyRidXFpx+CdU65OTV3c0f3s8RlrVjFJVVCR9SMrE+LcWrk9zVJX2uOB5Zxoo5IW3vJO6rHl1npZdkq04B80HaANMHjtkBGkIN1UE9R8WHLuqMCoF9t279qnXdRgb4DJw0qg6Kz34tFeXU6MKF5zD8tWIjcJB8oa+3UKlZJpSW/BcyRejb2zqCJbgqB57DtpJgtmKqw2kqjCQjTlB+D329ZAdLLrgzN2soO1STLAVPnccn13W+LLgUfJBbckHnQSDVQ8n7ZPzENkxoFH00fWpkWSFMCjpsOIkRi00RHAIxnHQPcyUKyNUJVYLTq7R+YmybyQG2rpezRY4XCnoOYjkXb56bwUitwVOTEIM4BiFwQuM0nv5IBMXPMiU6gRCpoekcPORoukp5ZRFzR8tdVhmxj2ts/bHqchCkR6hrF2tUG6NIncpHe2QiEGglexqVZNlPbpeI/AuiKMmGF/o6JrLGqOwI9Y2B6BJWLV6tKrTwxn2GjMJ6lbVU4IdjQe3mCaRSAtMPzJO02/sgAStve0w0lKNrau+CaZVWiOVNh2583Y0kqZBjg6ASYqennI0gNPB6jSQW07L2hMsrY0msI1yIG1aP2ZSTA4qWQoVHzW9CabJZ0iPo51hphyUCx8tpqHZau2LaFZ1NJENjmQMbmHZJRVL4nVmY4pCSJjpYadZNR/t5gwgZcwAynQ0b1IkgQNHt2ldeFUGcjiCwTHHvkkvxeB1rhN8OpKj6LwdN1Pn3nXZhWN+OXgECFmXj4ZypglcWjMOt5lcDNbDvTQxl5kGPZT67McIDwZhUQ2dR4sZVqa2YJN8kDFZDPNzBtAvk1vpDab3emqRA+EBl6V5ZPK8bPkcPNxxfAa+/PXyw/Y/a8on38Xb9d0hLV9dLhJqDEJelA3rXrv0u952KyJB1HnivXdb7gRPngX6AT8enT4Wkt+TlJyEhpOHo6tEmBpeQ9147PQ18mmxai/iqQn9NC0ca9zwKo3K+B63cWXIk1zpAmnwA4aHVeCEvsbpNeTJ6NqC1OW5wzrs8IzHiT706YdBzas1DE9HSQCNcePCUaM3iWaLGxrQ1JX95HS8u8H4mXDEu8EbVh4CPfgxHcvp9HiG5/7K3WiUIRqvvzHzbrcZfkNMIp2DMVOEy/jL9ny9Fr9Qza0h7sp8saEBywfKPM263GfxQF9rFNvaOzYWCc70B9e6I04jHDUVVcmRCWb+IrzFL3DryiCvMvks+Uc40a6SlKOMPXD8B5agDRrQBPe7y9zV9oST/fwoQbLijX4obTeq3o5bjtrUIG/pErqUz7qyWGCIVQQzK1anCa111TTjnpNuRdc7I651irT8qkylrcgpi4sCpQ8alJ5WxSqh5zv1zopSOpxhSNUy4bQa5ooY/aIo1SJh80cKlNkqk4f+Do7uCDqsQWuiq2NO1flFUwbf5UtZNWjoTbV2qxNu8sbrRmMWjxQ4QiyUx/hVbyuw0ZhZezQ1X3IqXnhiSMm51qtdOlMQQ05iM4gjdWMA7iXV4yHndQWWunhcYMax2tIqQT3DkWnWmnGkL7OC7od8H1M5ncNL2CBmzSqz1gRvyRwTxawp8ZJ4q2XPYlDrkOyalGfcxOVJ17CTGOzTfap5FY+6Y3dJrAbBMQ3kNcaTRNQqLas8vJQMria7RoeJWKogk0PYr/kaBA9rS9yNWlDXAqhh7VVXtuiJKy7NF6TyJ2kXdPvjUlylnR5nVvCSduQchWT5mpge1at2RmfDfna3C6XMDK+ThaOZXSSNj4QVc0iHzzi1h16BjGaNpURWcUh76UKXsaxe/UE3tv78qLEgPoRmKKsmi1EXVlDFor0UTFeCpCxs1GjMRwpGhZZRtC2iKYpeyNm84JLElRRJK/5pOltwUpDhUIUCfWVmZd/W5wf1RSfS/aQtaopVYAXdjXnxEvKsX2jSd5B2sKytuJo351gWlaV7eChZMPUDy3dmD6Vv6jFO0UiTd3cmXCoVTs6zWtOInwsaieBoxo7w5CwTRhE3TMV0EJq7tzjrhM/IMom/2FVCVDbFxMP6biwS0H6lFnVrqTCmWQrpIq80lfEkhZQnmVi1WdwwfNCJdak9iRsmmUzWQCSjjBkm6FHGjPAgNQZ40gkDPEz+3zbL/99Du94kuA3uA4PlG4O960V9oDkPvBbvoZ9mOA1n7tHX+fMsdve1gvtvCrDqvfcN3n3ufQOe/4aXFqanz2W+tPqT79IRwe/1igR/PvatXl+Y6Bd3129CJfmZyY7l/GNY70wEDQWpC48bHJV+57NgDXYbUYni/ujDZYA79dTbyxgD3HQVr+Y6mBN6PDy4doIP40ZO+MqHFLSGxU9wv/R8ZG1Cy7CwPd7I2wk+dz2YOwN0N8ZdRTy9vVMS+ukc+X2+UfLou88lLeX8J4+hwqYayCvWs8D1LL8e//VVlflr4HLGD4XEwKavbz/89nD77vaufLbTmEZu33+UE7QwekYa4f7mTkF5HWihtUoAZl1exty/q4Kea++xhF1fm1q/VtGQ1y8fGEVzOg32qdTrK5IRLTd7xxqf8Kp7bnk0Lsx85w+PBjegYaSeftQSp9P925fjg+f+4rm/IRgn+tCbXWB88fPDDFv12NOwrqnV9gjMXpgE4BGvwWe7tz37TCzsbuTGhc8oD25MZzI4PZzgub9wNxhhCMbrg5KGF6k+fjkXgxTpp/dl/v36/csPr399++P2n5fvf92G9Lyvsbcva+yxgNBHtIZr+t6Bv72MGCtc/6g8f//TnUKaWtoQMYYWtMD1/afz4LqUKddWMCT3hD+O8JuvRlnaKR4LzFFG826n5z9c/gv2rvx/CmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMzM5NwplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nEWQS44DIRBD95zCR6D+cJ6OsurcfzsuOtFssCUo1zO5AxN78chMlG68ZLg7zBWf4Rkwc/hKmGzETOhOXCOUrhThVJ8IjsvevOmgiXtEzqOeBVnVzg1qAWeS5oLtgi7njBU3zsmtRuXN9KPXEL5pdx/XeYf2SOPew1S+zjnVzruKCGkLWdW0vpBsFMkOaz8qTdvOyxCx4GwaVugc3gi7V3cnSxh+v/IwJRM/D936UXxdN6PrFGcnVyZrz3noSelf9cqjD8VxKegXse3MJPdfp1OSqVN7Z+9p/ae4x/sPkG5WOQplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicTY9BEsMwCAPvfoWegLEB8550ekr+fy2QNu4F7YyAkYYwCDxiDOswJbx6++FVpEtwNo75JRlFPAhqC9wXVAVHY4qd+Njdoeyl4ukUTYvrEXPTtKR0N1Eqbb2dyPjAfZ/eH1W2JJ2CHlvqhC7RJPJFAnPYVDDP6sZLS4+n7dneH2Y+M9cKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYzID4+CnN0cmVhbQp4nEWQuXUEMQxDc1WBEniAOuoZP0ez/acLabzeQPp4hHiIPQnDcl3FhdENP962zDS8jjLcjfVlxviosUBO0AcYIhNXo0n17YozVOnh1WKuo6JcLzoiEsyS46tAI3w6ssdDW9uZfjqvf+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2r8IuyKUtn1cTmWcunsHtMJnK1f7fQOo5zqACmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nD2MwQ2AMAwD/50iIzSJTTIQ4gX7f2kK7cc+nWTTKF3gFWlChJzayElPW+6ehIODFJCwX23o1b4qS3uqIGoy/jZ8d9cLdxwXTgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MiAvZm91ciAvZml2ZSAvc2l4IDU2IC9laWdodCA4MAovUCA4MiAvUiA5NyAvYSA5OSAvYyAvZCAvZSAvZiAxMDQgL2ggL2kgMTA4IC9sIDExMCAvbiAvbyAxMTQgL3IgL3MgL3QgMTE4Ci92IDEyMiAveiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9QIDE2IDAgUiAvUiAxNyAwIFIgL2EgMTggMCBSIC9jIDE5IDAgUiAvZCAyMCAwIFIgL2UgMjEgMCBSCi9laWdodCAyMiAwIFIgL2YgMjMgMCBSIC9maXZlIDI0IDAgUiAvZm91ciAyNSAwIFIgL2ggMjYgMCBSIC9pIDI3IDAgUgovbCAyOCAwIFIgL24gMjkgMCBSIC9vIDMwIDAgUiAvb25lIDMxIDAgUiAvcGVyaW9kIDMyIDAgUiAvciAzMyAwIFIKL3MgMzQgMCBSIC9zaXggMzUgMCBSIC9zcGFjZSAzNiAwIFIgL3QgMzcgMCBSIC90d28gMzggMCBSIC92IDM5IDAgUgoveiA0MCAwIFIgL3plcm8gNDEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAgPj4KL0E0IDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0MiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzQ1LTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDQzCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEyNjY4IDAwMDAwIG4gCjAwMDAwMTIzOTIgMDAwMDAgbiAKMDAwMDAxMjQyNCAwMDAwMCBuIAowMDAwMDEyNjA1IDAwMDAwIG4gCjAwMDAwMTI2MjYgMDAwMDAgbiAKMDAwMDAxMjY0NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzODcwIDAwMDAwIG4gCjAwMDAwMTEwMjkgMDAwMDAgbiAKMDAwMDAxMDgyOSAwMDAwMCBuIAowMDAwMDEwMzc5IDAwMDAwIG4gCjAwMDAwMTIwODIgMDAwMDAgbiAKMDAwMDAwMzg5MSAwMDAwMCBuIAowMDAwMDA0MTI5IDAwMDAwIG4gCjAwMDAwMDQ0MjkgMDAwMDAgbiAKMDAwMDAwNDgwNiAwMDAwMCBuIAowMDAwMDA1MTA5IDAwMDAwIG4gCjAwMDAwMDU0MDkgMDAwMDAgbiAKMDAwMDAwNTcyNyAwMDAwMCBuIAowMDAwMDA2MTkyIDAwMDAwIG4gCjAwMDAwMDYzOTggMDAwMDAgbiAKMDAwMDAwNjcxOCAwMDAwMCBuIAowMDAwMDA2ODgwIDAwMDAwIG4gCjAwMDAwMDcxMTYgMDAwMDAgbiAKMDAwMDAwNzI1NiAwMDAwMCBuIAowMDAwMDA3MzczIDAwMDAwIG4gCjAwMDAwMDc2MDcgMDAwMDAgbiAKMDAwMDAwNzg5NCAwMDAwMCBuIAowMDAwMDA4MDQ2IDAwMDAwIG4gCjAwMDAwMDgxNjcgMDAwMDAgbiAKMDAwMDAwODM5NyAwMDAwMCBuIAowMDAwMDA4ODAyIDAwMDAwIG4gCjAwMDAwMDkxOTIgMDAwMDAgbiAKMDAwMDAwOTI4MSAwMDAwMCBuIAowMDAwMDA5NDg1IDAwMDAwIG4gCjAwMDAwMDk4MDYgMDAwMDAgbiAKMDAwMDAwOTk1MCAwMDAwMCBuIAowMDAwMDEwMDk2IDAwMDAwIG4gCjAwMDAwMTI3MjggMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDMgPj4Kc3RhcnR4cmVmCjEyODgyCiUlRU9GCg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxU5f7A8c/DIigqoKCogKi4a5Jbi20udTW7ImVq2lXbF23xlla/sixbbbl1UysttW6ZqVyV0laz626iYO4KuICoLAoiAjLM8/vjwAgy4CAzDMv3/Xqd15w555kzX0acL895NqW1RgghRN3l4uwAhBBCOJckAiGEqOMkEQghRB0niUAIIeo4SQRCCFHHuTk7gIry8/PTISEhzg5DCCFqlO3bt6dprf2tnatxiSAkJITo6GhnhyGEEDWKUupoWefk1pAQQtRxkgiEEKKOk0QghBB1XI1rIxBCXF5+fj5JSUnk5uY6OxRRxTw9PQkMDMTd3d3m10giEKIWSkpKolGjRoSEhKCUcnY4ooporUlPTycpKYk2bdrY/DqH3RpSSs1XSqUopXaXcV4ppf6tlIpTSv2llOrpqFiEqGtyc3Np2rSpJIE6RilF06ZNK1wTdGQbwUJgcDnnhwDtC7eHgU8cGIsQdY4kgbrpSv7dHXZrSGu9TikVUk6RcOArbcyDvUUp5aOUaqG1PuGQgL76ihPr/mLvcUVg5+Z07NMKGje2vlXg3poQQtR0zmwjaAUkFnueVHisVCJQSj2MUWsgODj4yt4tPp4W6fG08AQOx8HhcsrWr192krC2eXmB/PUlhKihnJkIrH1zWl0lR2s9F5gL0Lt37ytbSefhh3lmwhqO7zuFX708XnqyFQH1L0BWFmRmGo9nzxpbTo6xnTpl27VdXaFRo9IJolEj8PaWWocQolpzZiJIAoKKPQ8Ekh32bq1a0S7iej74LQaAnZF+3HZbczw9XRk3qTXNm3sa5bSG8+eNhFCUIC73eP48ZGQYm61srXUUJZMGDcBFhn2ImiM7O5uRI0eSlJREQUEBU6ZMYdWqVSxZsgSAP/74g/fff5/vv/+en376if/7v/+joKAAPz8/1qxZ4+To6xZnJoIoYJJSajFwDZDpsPaBQo8/HsrHH8exf38WGzaksWFDGgBpaXm8885VRiGljFs9Xl7QooVtF87Pt54grCWTK611uLiUTAyXPkqtQ5RBqaUOua7Wd5d7/qeffqJly5asWrUKgMzMTKZNm0Z2djZeXl589913jBo1itTUVB566CHWrVtHmzZtOH36tEPiFWVzWCJQSn0L3AL4KaWSgFcAdwCt9afAauB2IA44D9znqFiKW7CgD6tWGflm5cpkdu3KZObMA/z3v8cBCA5uQGTkdfj41LP9ou7u0KSJsdmisrWOxMTLvweAp6f1pFHWo9Q6hB11796dZ599lueee4477riDG2+8kcGDB/P9998zYsQIVq1axcyZM/njjz+46aabLP3em9j6/0jYjSN7Dd1zmfMamOio9y/Ltdc25dprmwJQr54Lu3ZlAhAXd87y+NVXR3n00XbUq+egL8XK1DqKahTFt7JqHbm5xlaZWkfxGoa15CG1jmrvcn+5O0qHDh3Yvn07q1ev5oUXXuC2225j1KhRzJ49myZNmtCnTx8aNWqE1lq6ujqZMr6Pa47evXtre05DfeRINvn5ZrSGbt1+Jj/f+DzuvLMVkZHX2+19qlxFah1FieP8+Yq/jy21jkt7WEmtw+H27dtH586dnRpDcnIyTZo0wdPTkxUrVrBw4UIiIyNp164dffr04e6772bkyJGkpqbSs2fPEreGpFZQOdb+/ZVS27XWva2Vr/NTTISEeFn2p0zpyDffHOPo0fOWW0U1VnWudVyaHHx9oWNH6NbN9ttrotrbtWsXU6ZMwcXFBXd3dz755BNcXV254447WLhwIV9++SUA/v7+zJ07lzvvvBOz2UyzZs349ddfnRx93VLnawSXmjMnjokTjZ5FKSnD8Pf3cNh71Xjl1TqsJRNbah2tWhkJoXt36NoVfHyq5mepZapDjUA4j9QIKun221sARiJo3XpVmXcxfHzqsXz59fTpU4f/grVXrePUKdizB/btg+PHje3nn43ynp72j/vvf4cxY+x/XSFqKEkEl2je3JPg4AYcO3aenJyCMstlZ+fw6qt7uf/+EMuxFi3qc+21TaThqzxl9bC66y4wmSAuDnbvNrZ9+4zbTva2ahWMHAlu8usvBEgiKKV+fVcSEm4vNwn06vUrBw+eY9WqE5auqEXWr+/PDTf4OTrM2snNDTp1MrYRI6CgAC5csO97TJli1DgOHoQuXex7bSFqKEkEVri6Kho2LPujmT69K0uXJlmea61ZscIYFD1+/J907+7t8BgvpTXccIMfU6Z0rPL3dhhXV2MEtj2FhRmJIDZWEoEQhSQRXIF77gnmnnsuTn5nNmt8fFaQlWUiISGbhIRsp8QVFZXMI4+0LXW8YUM3XFzkdhVgJIJVqyAmBoYPN455eBhJpw47duwYUVFRZGRk4OPjQ3h4OEFBQZd/oagVJBHYgYuL4q+/biM2tgJzDdnRBx8cZP16Y7oMb+8Vpc537tyI3bv/JskAjJ5Ibm5GW8TYscaxFi3g44/rZDI4efIkkyZNYvny5ZjNZsvxp556ioiICGbNmkVAQIATIxRVQRKBnYSEeJUYk1CVlIL9+7NIS8srcUsrK8sEwL59WcyZE2+3mbIDAjy5885WNbNRvH59GDIEfvvNuJ+WmwsnThiPXs7593OWkydP0q9fPxISEnB3dyciIoKOHTty4MABVq5cSWRkJDExMWzatInmzZtX6NoZGRksWrSIxx9/HDAmmHvvvff44Ycf7PozLFy4kOjoaGbNmmXza0JCQoiOjsbPr2Rb3vTp02nYsCHPPvusXWOsCSQR1ALh4a0ID29V6vgrr+zhtdf2AvDEEzF2fc/o6EH06uVr12tWmfvvN7ZTp+DRR40BbXUsCQBMmjSJhIQEevbsycqVKwkMDLScS0pKIjw8nB07djBx4kSWLVtWoWtnZGQwZ84cSyKwVUFBAa61pGZmMplwqyE902pGlOKK3H9/COfOmcjNLbsHVEXs2HGGLVuMmSHHj/8TLy838vPNeHm5MWNGV265pZld3qfKJBU2+Bf7Aqwrjh07xvLly3F3dy+VBAACAwNZsWIFbdu2Zfny5SQmJlaozeD5558nPj6esLAwbr31VoYOHcq5c+cYMWIEu3fvplevXnz99dcopQgJCeH+++/nl19+YdKkSfTp04eJEyeSmppKgwYNmDdvHp06dWLp0qW8+uqruLq64u3tzbp16wBjKovBgwcTHx9PREQEM2fOBODbb7/lzTffRGvN0KFDeeedd0rF+cYbb/DVV18RFBSEv78/vXr1KlUmLCzMsn/gwAF++uknevfuzRNPPMGuXbswmUxMnz6d8PBwFi5cyKpVq8jNzSU7O5s1a9YwdepUfvzxR5RSvPTSS4waNarE9S+drnvatGk0btyYBQsWVNmU3ZIIarHWrb14//0edrvejz+e4PbbNwCwZ8/ZEufmzImnRQs79/BxMN+YeJoBZ7yakXIgy+bXuboq2rb1qtFtLlFRUZjNZiIiIkolgSJBQUGEh4cTGRlJVFQUEyfaPkfk22+/ze7du4mNjQWML7KYmBj27NlDy5Yt6devHxs3buSGG24AwNPTkw0bjN+tgQMH8umnn9K+fXu2bt3K448/zu+//85rr73Gzz//TKtWrcgotvZHbGwsMTExeHh40LFjR5544glcXV157rnn2L59O76+vtx2222sWLGC4UUdBIDt27ezePFiYmJiMJlM9OzZ02oiKPoZvv/+e2bOnMn111/PK6+8woABA5g/fz4ZGRn07duXQYMGAbB582b++usvmjRpQmRkJLGxsezcuZO0tDT69OnDTTfdRItiAzCtTdft5eXFI488UmVTdksiEDYbPDiAffv+RmZmPgB5eWZuvvkPAJYuTSrRpbYm+CzsTx4OgZfnZjDr+Z8q9NqJE9sxa1ZPxwRWBYq+SDt2LL+7cYcOHQA4c+ZMpd+zb9++lqQTFhbGkSNHLImg6K/kc+fOsWnTJu6+++KMqXl5eQD069ePCRMmMHLkSO68807L+YEDB+LtbXTZ7tKlC0ePHiU9PZ1bbrkFf39/AMaOHcu6detKJIL169cTERFBgwYNABg2bFiZsR86dIgpU6bw+++/4+7uzi+//EJUVBTvvfceALm5uRw7dgyAW2+91TJp3oYNG7jnnntwdXWlefPm3HzzzWzbtq3Ee1mbrhuo0im7JREImyml6NSpseV5QYHm7rsD2bIlnfr1a9593ZaFTRzD26TRpYVx+yzL7MFXp7uRr63/PPHx2RQUaLy9a/b02z6FczgdOHCg3HIHDx4EwNe38u1BHh4X5+1ydXXFZDJZnnsVttGYzWZ8fHwsf4UX9+mnn7J161ZWrVpFWFiYpYy169o6h5otHR6Kbt3MmzePli1bAsbYocjIyFKJdOvWrZafpajc5Vibrvvll1+u2im7tdY1auvVq5cWwi7mzNF6+PDS2+LFVovv3HlGwxJdv36kPnUqp4qDrZi9e/eWe/7o0aPaxcVFu7u768TERKtljh07pt3c3LSLi4s+duxYhd4/LS1NBwcHW56vXbtWDx061PJ84sSJesGCBVprrVu3bq1TU1Mt56677jq9ZMkSrbXWZrNZx8bGaq21jouLs5QJCwvTMTExesGCBXrixImW40OHDtVr167VycnJOjg4WKempmqTyaQHDhyoV6xYUeL9tm/frrt3767Pnz+vz549q0NDQ/W7775b6me5++679UcffVTi2AsvvKAnTpyozWaz1lrrHTt2aK11qXgiIyP1bbfdpk0mk05JSdHBwcH6xIkTJa51/PhxnZNj/D4tX75ch4eHa621NplMunXr1nrEiBH6u+++01prnZKSogMDA3VCQoLWWuv09HRrH7/Vf38gWpfxvSo1AlF3jRoFAQHGHEcA2dmwcqWx3XFHqZ5E775r/PWck1OAn1/NnpU2ODiYiIgIIiMjCQ8PZ8WKFSUagxMTExk+fDgmk4m77rqrwoPLmjZtSr9+/ejWrRtDhgxh6NChNr/2m2++4bHHHuP1118nPz+f0aNH06NHD6ZMmcKhQ4fQWjNw4EB69OhhteYA0KJFC9566y369++P1prbb7+d8PDwEmV69uzJqFGjCAsLo3Xr1pZbMsUdPXqUZcuWcfDgQebPnw/A559/zrRp03j66ae56qqr0FoTEhJitWtsREQEmzdvpkePHiilmDlzZqlxGdam6waqdMpumYZaiOImT4YjR+ChhyA4GEJDLTOgBgb+wPHjOQCsWXMzHTs2olWr6tlAbss01MXHEbi5uREeHk6HDh04ePAgK1euxGQy0bZt2ysaRyCcS6ahFqIyGjY0HufNMx579oRp0wDo39+fr782GgQHDvwfTZrUIzV1WI3tPRQQEMDGjRstI4sjIyMt51xcXLjrrruYPXu2JIE6QBKBEMUNG2YM1c7NhUOHjFHHhUaNCiI5OZfff08B4PTpC7z77gGmTu1YM0dZYySDZcuWkZiYSFRUFGfOnMHX15dhw4bJXEN1iNwaEsKatDTj9lDTpvD55yVOjR69he++S7Q8T00dVu3aDGSFsrqtoreGZBVxIawp6pKYnm4smlNsioV//asHoaENLc8DAr7HzW2ZZVNqKQEBUcTFnavqqIW4IpIIhLDGy8tYIAfAbDYSQqEWLerz9NPtLcuYFhToEhvAqVN5fP31UbKy8qs6ciEqTBKBENa4uMATT1x8fsmo04kTQ7lwYQT5+XeV2ObMuTja+NVX9/L22/urKmIhrpgkAiHKUnQ7qH9/Y82CS7i6KtzcXEpsw4a1ZNy41pYyb765n8GD1zFo0P+YPDkWs7lmtcnZ09KlS+ncuTP9+/d3dijiEtJrSIiyHD9uPG7aBM2bw623GovXNG5MWYs7tGpVn7ff7s7XXx+laJ2Xn38+BcCaNSk89lg7fH3rlXpd/fqu5S6PWtNprZk3bx5z5syRRFAN1d7fPCEq69lnYcEC2LwZFi82NoDeveHFF8t8WYsW9fnrr9tITDQGnz3//F/s3JkJQMeO1ie3c3VV/PbbTTVvKu9yHDlyhCFDhtC/f3/LaNmjR48ybNgw3n33XSdHJ4qTRCBEWfz9YepU2LMHvv4akpPh3DmIjjbWMihnHYOuXb3p2tWYEfPUqVyef34XJ0/m4udXsjZw9qyJCxfMFBRoPvroEGYzDBhg52QQEWHf6xVZvvyyRQ4cOMCCBQuYM2cOt9xyC++99x69e1vtwSicSBKBEJfTtSu89ZaxP3u2sczl77/DuHE2vXz8+BDGjw+xem7lyuMMH74JgBUrkvnxx5OcP39njR2tfKnWrVtz7bXXOjsMcRmSCISoiIEDjUSwejXExBiT1t13HzS7sr/ib721OTNmdGXatD2AscbD7t2ZXHWVj/1ituEvd0fxqoNLgNZE0mtIiIro2BHatYO8PGNyui1bjInq1q6Fw4etb4ULq1jToIEbL73UhQkTQizHFi48QkpKruN/FiEKObRGoJQaDHwEuAKfa63fvuR8MPAl4FNY5nmt9WpHxiREpSgFb7xhtBeYzfDdd7BtG/z732W/pm1beP/9ci97330hLFx4BIB//esQs2fHc+zYUJo397Rf7EKUwWGJQCnlCswGbgWSgG1KqSit9d5ixV4ClmitP1FKdQFWAyGOikkIu/DwgMKlAnnhBfj5Z1iz5uK6BsUdOwYJCcZaB+XcJunQoRH9+/uzdm0qABcumHn11b0MGRLA3//e0hE/hcOFhISwe/duy/M//vjDecGIcjmyRtAXiNNaJwAopRYD4UDxRKCBorUPvYFkB8YjhP0pBYMHG5s1zz0HBw/Cf/4DjzxS5viDgABPfv/9Fp59difvv28sD/nJJ/FERiZx6lTZa+kKYQ+OTAStgMRiz5OAay4pMx34RSn1BOAFDLJ2IaXUw8DDYKysJESNMWECvPKKUWvYtKlkIvDwMKax6N7dcmjq1I4EBzfgqaeMlbdSUvLYtCmN66/3q+LARV3iyMZia3/6XDq+/h5godY6ELgd+I9SqlRMWuu5WuveWuve/v7+DghVCAfp3NloTPb0hKwsOHv24paaCrNmlWhMbtbMkyefbM/dd18co7B5c7q1KwthN45MBElA8ZUtAil96+cBYAmA1noz4AnInz6idrnuOli40BilXLTNn2+0M6SkGA3Ol3joobaW/aJbRUI4iiMTwTagvVKqjVKqHjAaiLqkzDFgIIBSqjNGIkh1YExCOIeHB/j4XNx8feHRR41bRStXwgcfwI4dluI9e14cR3DiRC5HjmQ7NDyTycSHH37Ihx9+iMlao7eo1RyWCLTWJmAS8DOwD6N30B6l1GtKqaLWr2eAh5RSO4FvgQm6pi2ZJsSV6tABhgwxuqGuXw+ffgqFv/5Nm3pw440XK8crVhx3aCiLFi1i8uTJTJ48mUWLFjn0vUT149ABZVrr1VrrDlrrdlrrNwqPvay1jirc36u17qe17qG1DtNa/+LIeISodiZMMOYz8vIy2gxOnbKceuSRi7eH7rnHcZ0kTCYTM2bMsDyfMWNGpWsFGRkZzJkzx/L8jz/+4I477qjUNa1ZuHAhkyZNqtBrQkJCSEtLK3V8+vTpvPfee6WO5+XlMWrUKEJDQ7nmmms4cuRImdft3r07YWFhNs+nlJeXx6BBgwgLC+M7K7cIq4qMLBbCmdzdjekpsrPBzQ3q1weMaZs//jgOgOnTuzh0YNmiRYuIi4sjNDSU0NBQ4uLiKl0ruDQR2KqgoKBS7+sIX3zxBb6+vsTFxTF58mSee+65MsuuXbuW2NhYbFlX3WQyERMTQ35+PrGxsYwaNcqeYVeIJAIhnElr+PJLY//228HbmLE0MvI4W7eepnlzD555pqPD3r54bWDatGlMmzYNqHyt4Pnnnyc+Pp6wsDCmTJkCwLlz5xgxYgSdOnVi7NixFN0FDgkJ4bXXXuOGG25g6dKlxMfHM3jwYHr16sWNN97I/v3GKm9Lly6lW7du9OjRg5tuusnyXsnJyQwePJj27dszdepUy/Fvv/2W7t27061btzK/vN944w06duzIoEGDOHDggNUyK1euZPz48QCMGDGCNWvWcKV3sCdMmMA///lP+vfvz0MPPcS9995LbGwsYWFhxMfHX9E17UJrXaO2Xr16aSFqjehorYcP13rsWK3PntVaa33hQoFu3361hiV6zpy4K7rs3r17bSr35ZdfakCHhobq/Px8nZ+fr0NDQzWgv/zyyyt6b621Pnz4sO7atavl+dq1a3Xjxo11YmKiLigo0Ndee61ev3691lrr1q1b63feecdSdsCAAfrgwYNaa623bNmi+/fvr7XWulu3bjopKUlrrfWZM2e01lovWLBAt2nTRmdkZOicnBwdHBysjx07po8fP66DgoJ0SkqKzs/P1/3799fLly+3vF9qaqqOjo7W3bp109nZ2TozM1O3a9dOv/vuu6V+lq5du+rExETL87Zt2+rU1NRS5UJCQvTVV1+te/bsqT/77DOrn8v48eP10KFDtclksnwuQ4cOtfFTtZ21f38gWpfxvSo1AiGcpaAAvvrK2B8xAho1AuDzzw9z6NA5OnRoyIMPtnHY219aG3Bzc8PNzc1utYJL9e3bl8DAQFxcXAgLCytxr73otsi5c+fYtGkTd999N2FhYTzyyCOcOHECgH79+jFhwgTmzZtX4hbSwIED8fb2xtPTky5dunD06FG2bdvGLbfcgr+/P25ubowdO5Z169aViGf9+vVERETQoEEDGjduzLBh1kdwayt//SsrI8Q3btzIjh07+PHHH5k9e3ap9yty99134+rqWv6HVcUkEQjhLGvXGnMR+fsbt4WAc+dMvPqqMSX1m292x93dcf9Fi7cNjBkzxnJ8zJgxdmsrKM7Dw8Oy7+rqWiLJFE1XbTab8fHxITY21rLt27cPgE8//ZTXX3+dxMREwsLCSE9PL/O61r68rbH2hX6pwMBAEhONSRJMJhOZmZk0adKkVLmWLY05oZo1a0ZERAR//vmn1etVx6m5JREI4Qw5OVD0JXvvvVDPWLns/fcPcOpUHl5eruzbd5Y33thn2XbsOGO3t7dWGyhij1pBo0aNyMrKqvDrGjduTJs2bVi6dClg/DW+c+dOAOLj47nmmmt47bXX8PPzs3w5W3PNNdfwv//9j7S0NAoKCvj222+5+eabS5S56aabWL58OTk5OWRlZfH9999bvdawYcP4srAdZ9myZQwYMKBUAsnOzrb8vNnZ2fzyyy9069atwj+/s8jCNEI4w+7dcOYMuLhA0MUB+MuWJQGQnV1gWaymSFRUMlu3DrTL25dVGygyZswYZsyYYakVjLNxNbYiTZs2pV+/fnTr1o0hQ4YwdOhQm1/7zTff8Nhjj/H666+Tn5/P6NGj6dGjB1OmTOHQoUNorRk4cCA9evQgNjbW6jVatGjBW2+9Rf/+/dFac/vttxMeHl6iTM+ePRk1ahRhYWG0bt2aG2+80eq1HnjgAf7xj38QGhpKkyZNWFy4dnVycjIPPvggq1ev5tSpU0QULglqMpkYM2YMg8uaiLAaUrZWoaqL3r17a1u6ZglRreXlGesa7NplzEPUtCkA58+bOHsefmz+N+IahlJQoPngg4Pk52veeqs7zz/fyabL79u3j86dO1s9ZzKZ6Ny5M3FxcTZdKzQ0lH379pWoNYjqzdq/v1Jqu9ba6gAHuTUkhDN4eMBLLxnzEOXmwvHjcPw4Dc6cIiDvFPd5buGNhxrRPrQh+fmaRo3cuO66pqSllb3ama2KagO2sndbgah+pEYghLOdOgX5+cb+hQvGSOPCXjGvn+zHtC2tLUWbNKlHSsowXF3Lb+Qsr0Ygaj+pEQhR0zRvDoGBxta2LRTrxtiuXzv69PGlcWPjtkzr1g0umwSK1LQ/8oR9XMm/uyQCIaqb7MKZRsPCuOfd4Sxf3g+TyfjP/cEHPWy6hKenJ+np6ZIM6hitNenp6Xh6VmxKEmn9EaI6OXwYfv0VXF3h/vtBKV5/fS/nzxu3ioYN24ifnwe//XYTbds2LPMygYGBJCUlkZoqs7rXNZ6engQGBl6+YDGSCISoLrSGzz83Hm+/3dKttF69ixX3rCwTWVkmzp0rv2+/u7s7bdo4blSyqF0kEQhRXWzYAHv3QuPGUGwmyo8+uprXX+/Gvff+SVRUMiNHBnLVVcbCNceOHSMqKoqMjAx8fHwIDw8nKCiorHcQwipJBEJUB7m5xnKWYIw0vmQagp07M4mKMlZ6bd7ck5MnTzJp0iSWL1+O2Wy2lHvqqaeIiIhg1qxZBAQEVFX0ooaTRCBEdXDyJJw+bUw8N7D06OGtWy8uYP/xx9F8//3bHDmSgLu7O8OHR9CpU0cOHDjAypUriYyMJCYmhk2bNtG8efOq/ClEDSW9hoSoDgIDjRHGWVlgZfWsiRNDiz37giNHEoA25Of/m717H2T69BksW7aMw4cP07NnTxISEpg4cWKVhS9qNkkEQlQHu3YZt4fq1YMGDUqd9vR05eGH2wJpwJ8YlfmpQFP2789i7twEPvkknu+/z+P++2fj5ubG8uXLy52YTYgicmtICGfLy4O5c4390aOhofVuoZ991ovu3TfzxBOau+4KJzGxPX/+eRqASZNiSpS9/vrb2LRpNVFRUVIzEJcliUAIZ1u50mgjAGjRotyiGRkZAHTs2JFHHulGZKQxW6lSsGrVCRITcwBISjJ6FZ05Y7+pq0XtJYlACGc7fvzi/ubNcO21ZRb18TG+4A8cOMAbbzTn1lsvNgZ/+OFBJk825u4/dsxY/9bX19cBAYvaRtoIhHAy0yOP8GFSEh/GxWG6zERxw4YNw8XFhaioKJKSkkqce/LJ9gQF1QfSUCoaFxeXMpdfFKI4SQRCONmib75hcnQ0k3fvZlGxdXytCQ4OJiIigvz8fMLDw0s0Bhu3hhJxcXkPrQuIiIiQwWXCJjINtRBOZDKZ6BwSQlzh7SFbFoE5eZBXmyIAACAASURBVPIk/fr1IyEhATc3N8LDw2nTJpQ5czZw/vwWoIC2bdvKOAJRgkxDLUQ1tWjRIuKOHyfUy4tQLy+bFoEJCAhg48aN3HXXXZjNZiIjI3nvvXc4f34jYMbT83ouXHiVp58+LLOPCptIjUAIJym+ZOSXPXsCMH7HjgotDZmYmEhUVBSLF+9jw4YcoDfgB4C/vwenTv291ELrom6SGoEQ1ZBlAfmQEMYEBjImMJDQNm0qtDRkUFAQEydOZN26jzl27GN27BhNo0ZGAnn77e6SBIRNJBEI4QQmk4kZM2YAMO3ZZ3FzccGtfn2mvfgiADNmzMBkKn+q6eKUUgQFNWDu3ASysky4uys2bEjjwQejWbJERheL8kkiEMIJLLWB0FDGPPIIdOgAeXmMCQ0lNDT0iheM/+knY2Bafr5mwYIjfPHFYZ59dqe9wxe1jEMTgVJqsFLqgFIqTin1fBllRiql9iql9iilKv6bL0QNU6I2MG2a0RZw/fUAuK1ezbRnngEqXisA+P77G5g3rxcffNDDsrbxU0+1t2P0ojZyWCJQSrkCs4EhQBfgHqVUl0vKtAdeAPpprbsCTzsqHiGqixK1gTFjjIM332wsSHPwIGM2byY0KOiKagXdunnz4INtOXIkm4ICTa9evpIIxGU5rNeQUuo6YLrW+m+Fz18A0Fq/VazMTOCg1vpzW68rvYZETVa8p5AtKtKDqMjWrelcd93vuLgooqMHERbmc6XhilrEWb2GWgHFW6mSCo8V1wHooJTaqJTaopQabO1CSqmHlVLRSqloWYxb1GRFtQFbVbRWYDZrxo/fhtZQUKD566+MKwlT1DGOTATW+q1dWv1wA9oDtwD3AJ8rpUr9+aK1nqu17q217u3v72/3QIWoKuPGjUNrXfY2axZ6+HD0N99Yjo0bN87m62dm5hMff87yfNYs25OOqLscmQiSgOITnQQCyVbKrNRa52utDwMHMBKDEHWPyQRbthj7/fpd0SV8feuxdOl1lufTp3e1R2SilnNkItgGtFdKtVFK1QNGA1GXlFkB9AdQSvlh3CpKcGBMQlRfO3fCuXMQFAStW1/RJQoKNC+8sMvyvF0764vcCFGcwxKB1toETAJ+BvYBS7TWe5RSrymliubG/RlIV0rtBdYCU7TW6davKEQtt2+f8XjVVVd8iV27Mtm/P8vyfOLEHZWNStQBDl2YRmu9Glh9ybGXi+1r4J+FmxB1W8eOxuPOKx8A1r27N5Mnt+df/zoEwMiRMg21uDwZWSxEdVG0XOXZs3CF3bpdXODgQaOx+Oqrfbj//hA7BSdqM0kEQlQH8fHw1VfG/mOPGYsQX4E1a1JYteoEADExGTz88HZ7RShqsXJvDSmlyr1lo7X+wL7hCFEH5eTAe+8ZvYaGDCl3zeLLCQ1tSFiYD7GxxviBBQuO8NBDbbnuuqb2ilbUQperETS6zCaEqKwNG4zbQiEhMGFCpS4VEuLF2293L3Hsuef+qtQ1Re1Xbo1Aa/1qVQUiRJ1VNNK4f3+oV6/SlxswoBlTp3Zk5swDAEyaFFrpa4ra7XK3hv5d3nmt9ZP2DUeIOiihcOhM27Z2uZzW8OuvpwDo2dMHX996/PrrKdq29ZJxBcKqy3UflZYmIRwtsXBKrsBAu1zuu+8SiYkx2gh27MjgttvWAVCvngupqcNo3NjdLu8jao/L3Rr6sqoCEaLOCgoybg/t2gU33ljpy91wgx933tmKs2fz0Rr+979UTCZN9+7elmUshSjOpt8KpZQ/8BzGugKeRce11gMcFJcQdUNeHpjNxv7Ro3ZJBG3aeBEZaSx08/nnCaxZk0LDhm4sXnytrGEsrLJ1HME3GNNEtAFeBY5gzCUkhLhSWsOcOUYbgb8/3HGHXS+/Z08mTz4ZC8Cnn/YkNFTaB4R1tiaCplrrL4B8rfX/tNb3A1fe2VkIAZGRsG4deHrCiy+Cj/0WkMnJKWDUqC3k5BQwYUIIY8de2SR2om6w9YZhfuHjCaXUUIzppO3TsiVEXbRlC3zzjTGCePLkK55ttCxPPhnDnj1n6dixER9/fLVdry1qH1sTwetKKW/gGeBjoDEw2WFRCVGbHT4MH35o7N97L/Tta9fLL158jM8/PwxAWloe4eEbK33NjIwLtGvXkE8+6UnTph6Vvp6oXmxKBFrrHwp3MylcP0AIcQUyMuDNN41G4ltugYgIu7/Fpk0XZ3JPT7/A77+n2OW6O3ZkEB7ekv79m1mONWlSD09PV7tcXziPTYvXK6W+BJ7SWmcUPvcF3i9sK6hSsni9qLEuXICXX4YDB4wpp197zS4jiS+Vl1fAli2nMZnMdrnehAnbSErKsXrO39+D+PghNGokYxOqu/IWr7f11tBVRUkAQGt9RiklNx6FsJXW8MknRhLw84Pnn3dIEgDw8HDl5pvtt7b3M8904NVX95KZmU9AgNF7PCUlj4ICjYeHi9QIagFbew25FNYCAFBKNcHBi9oIUausWAF//AEeHvB//2fXHkKO9vTTHThzZjhm890kJ/+dZcuuQ2uNUvDVV31xd5fZ7Gs6W7/M3wc2KaWWARoYCbzhsKiEqE1iY+E//zH2n34a2rRxbjyVcPZsPvfe+ydmM0yd2rFEe4GouWxtLP5KKRUNDAAUcKfWeq9DIxOiNjCbYf5849bQ6NGVWmugOnjyyRgOH86mRQtPwsNbEh192mo5X996MsFdDVKR2ztNgGyt9QKllL9Sqo3W+rCjAhOiVti0yZhUzs8P7rzT2dFUyo4dZ/jyy6MAnDiRS79+a8st//vvN0uNoYawda6hV4DeQEdgAeAOfA30c1xoQtRwBQXw3XfG/ogR4F6ze9aEhHgxZEgAKSl5ZZY5fDib06cv4OnpQuvWDaowOlEZttYIIoCrgR0AWutkpZSsUCZEeTZtgqQkYx6hATV/fsYmTeqxenXZk+IdPZpNjx6/AvDBB2G0bSu3hmoKWxPBBa21VkppAKWUlwNjEqJ2WLbMeDxzBu67r+S5Fi2McQT161d9XA5QUKD5xz/+JDMzn2HDWvLoo/ZZZEdUDVsTwRKl1GeAj1LqIeB+4HPHhSVELeBW+N/LZDK24uLiYP16uO22qo/LAd56ax/r16fh6qoID2/JDz+cKLOsm5vixhv9adhQeqBXFzaNLAZQSt0K3IbRa+hnrfWvjgysLDKyWNQYZjOcP1/6+KZNxuCy0FB4992qj8vOcnMLaNx4Ofn5tn2XADz2WDvmzOnpwKjEpewxspjCL/5fCy/oqpQaq7X+xk4xClH7uLhAQyv3yW++Gb76yqgVREdDb6v/N2sMDw8XnnuuE7GxGeWWS07OYccOo8yNN/pVRWjCRpdbvL4xMBFoBURhJIKJwBQgFmPBGiFERXh4wKBBsHIlvPEG9OkDY8dCQEDJcm5u4Fr9p29QSjFjRrdyy5hMZm666Q8AwsNbEh7eEpPJjJubjEquDsq9NaSUWgmcATYDAwFfoB7GBHSxVRLhJeTWkKgV8vPhv/81pp7IzbVepmFDeOstuy1q70yffRbPo4/uKHHM19ed7dtvpU0b6XtSFcq7NXS5dNxWaz1Ba/0ZcA/GWII7nJUEhKg13N1h1ChjqcrBg6FBA2MSuqLNzQ3OnYPPPzdGJddwfn4e+Pi44+npQtGyyefPF+DmJmsoVweXqxHs0Fr3LOu5M0iNQNQJZ8/CxIlGMpg6Fa67ztkR2cWRI9mEhf1KZmY+s2ZdzcSJoc4Oqc6oTI2gh1LqbOGWBVxVtK+UOmv/UIUQADRuDPfcY+wvWGAsZFPD5eebGTNmK5mZ+YSHt+Txx9s5OyRRqNxEoLV21Vo3Ltwaaa3diu03vtzFlVKDlVIHlFJxSqnnyyk3QimllVI1u/uEEPb0t79BSAikpsLy5c6OptKmT9/D5s3pBAbW54sveqOU3BaqLhzWZK+UcgVmA0OALsA9SqkuVso1Ap4EtjoqFiFqJFdXeOABY3/5csjOdm48lfDrr6d46639uLjAN99cI+seVzOO7LvVF4jTWidorS8Ai4FwK+VmADOBMrpOCFGHJSQYj40bO2xFM0dLTDzPbbetQ2tjjN1vv53izTf3kZhoZbCdcApHjvFuBSQWe54EXFO8QOFyl0Fa6x+UUs+WdSGl1MPAwwDBwcEOCFWIaiglBRYtMvYfeaTGzl66ZEliieczZuwDID39Au+/38MZIYlLODIRWLsBaOmipJRyAf4FTLjchbTWc4G5YPQaslN8QlRfWsNnnxmNxP361ejRx+PHh1BQoMnKMhEZmcS+fVkAfPDBQZYvP46LCzz/fCcefFAmqnMWRyaCJCCo2PNAILnY80ZAN+CPwkajACBKKTVMay39Q0XdtmED7NhhjC8oaieoofz8PJg6tRNgTGX9z3/utJw7fNho99i8OV0SgRM5so1gG9BeKdVGKVUPGI0xTQUAWutMrbWf1jpEax0CbAEkCQiRlQVffGHsjx8Pvr7OjceOJk/uQFLSHcTHD+GOO1oAEBzcgHfeucrJkdVtDksEWmsTMAn4GdgHLNFa71FKvaaUGuao9xWixvvqK8jMNOYe6lf7FgFs1ao+a9ak8MMPJ/DwcOG//70ePz/pReRMNk9DXV3IyGJR602YYCQCMGYwbd0aOne+uDVt6tTwKmvr1nRuuukPLlww8+WXfRg3LsTZIdUJdpmGWghRRV58ETZuhH37jO6jhw8b2+rVxnl3d7B1MNaFC8bjjTfCP//pmHgrIDk5h7vu2syFC2YmTQqVJFBNSCIQorpp397YwOg1dOiQkRT27YMDB6wvdnM56en2jfEKZGXlM3ToBo4fz+HGG/344APpOlpdSCIQojrz8IBu3YwNjBFZ+fm2vfb992HbNmNd5Oeec1yMNjCZzIwevYXY2Azat2/If/97Pe7ushZBdSH/EkLUJC4uRnKwZRswwCifk2Ose+BEU6f+xerVJwHw8nLjvvu28fe/b+C77xIv80pRFSQRCFFbXXstjBhh7K9f79RQfvzxpGU/NjaDH344wQ8/nGD27DgnRiWKyK0hIWqrvDxYu9bYj4hwaihr1tzM9u1nAHjrrf1s3pxOw4ZufPhhmFPjEgZJBELUVpGRxhTWbdoYU1o7UcuW9WnZsj4ffXSIzZuNhutBg5qxYUMaGzakWX2Nt7c7o0YF4elZ/ddtrukkEQhRG504cXENg4cfNqa0djKzWfPyy7stz1esSGbFiuRyXgEeHi6MHi0TTTqaJAIhahutjbWOTSajwbhTJ2dHBICLi+Kzz3qxaVPZXVkLCjTz5x8mN9dM69YNGDSoeRVGWHdJIhCitvnzz4sT1v3jH86OpoTRo4PL/Qt/8uRYcnPN+Pi48+OPN8rUE1VEeg0JUdssXmw83nor+Pg4N5YKePfdA3z44SHc3RXLl19P586XXQ1X2InUCISobUJD4cgR+OEHY/CZp+fFc97e0KWL0YBcDdoNinz6aTxTp/4FwIIFfbjllmZOjqhukUQgRG3z2GPg5QUrV16cn+hS9esbbQdduxpbu3ZOWwHt66+P8vjjOwCYPftqxo5t7ZQ46jKZfVSI2mr7dqNmUERrOHkS9uwxHourV89oWB47Fho2rLIQt25Np1+/tRQUaFxcICDgYu3F29ud7767ju7dvassntpMZh8Voi7q1cvYrElPh717jaSwZw8kJcFPP8GWLUYyaGbnWzNNmkBgYKnDqal5FP0xajZDcnKu5Vxyci4nTuRIIqgCUiMQQsDRo/Dpp7B/v+Peo0MHY2Bbv37GXEiFzpy5wPnzBQBERibx1FOxAMyY0ZWXXuriuHjqmPJqBJIIhBAGsxl+/91YC6GgwH7X1dpYV6Fo+mwvL+jbF/z8jF5Nhdua7RcY8dA+MvJcefHFLrz+ejf7xSAkEQghnCw3FzZsgF9+MdZXKMcF5YZ7s6Yob29jveaix2JJw7IV7xElyiVtBEII5/L0hEGDjO3wYWOBnYwMyMjgcMxxTuw/SYBHDoENL1BP58OpU8Z2OX5+EBYGV18NPXoYtQ1RYVIjEEI4zcyZ+3nuuV0AvPVWd55/vpOxfkJhkrBsZ84Y6zgXPRYdL1qKE4y1Fzp0MJLCoEFGA7WwkBqBEKJaKSjQPPPMTj766BBKwezZPXnssXbGyfr1ja1Fi/IvYjYbjdw7dkBMjNHQXXx7+WXH/yC1hCQCIUSVGzfuTxYtOgYYbcnLlx9n+fLjALi5KaZO7Xj50cUuLsYI6TZt4K67jPaHTz4xzt10kyPDr3UkEQghqpTJZOaHH0pOP/3rryXbA9q3b1ixaSZ27IC5c439cePgllsqGWXdIolACFGl3Nxc2LPnb+zZcxaljGPff3+CWbOMZSv79/dn+vSutl9w926YOdPo8hoe7vTV2GoiSQRCiCoXGNiAwMAGaK35+OM45swxksC4ca2ZN6839erZODHyzp3w5ptGo/GAAUZtQFSYJAIhhFPk5hYwceIO5s8/AsCrr3Zl2rTOqKJqwuVs3w7vvGPMsDpokDHZnovMrH8lJBEIIaqc2azp3/8Ptmw5bTm2dGkiS5cmWp77+NRj/vzetG/fqPQFNm6EDz80VmEbPBgeekiSQCVIIhBCVLm8PDP792eVOLZ799lS5eLizpVMBGYzfPstLFtmPB86FB54AGytRQirJBEIIapc/fquHD58O4mJOZZjJ0/m8tBD0Rw9eh53d8XHH1/N4MEBF190/rxRC9i2zfjrf8IEuOMOSQJ2IIlACOEUPj718PGpB8CuXZlMmPCnZRrqvn2bsH9/Fv/8504A6mekMOncUlqa0oz1Ep55xphaQtiFQxOBUmow8BHgCnyutX77kvP/BB4ETEAqcL/W+qgjYxJCVD+ffhpfYi2CjRvT2bgxHYBb/U/wXZ8N+NbLJ9nVj5YzX7v8qGNRIQ5LBEopV2A2cCuQBGxTSkVprfcWKxYD9NZan1dKPQbMBEY5KiYhRPU0bVoXOnduTH6++eJBrWmz+3f+fvoPXJVm5YlW/GP79biv/bPU65WCKVM68txznaow6trDkTWCvkCc1joBQCm1GAgHLIlAa722WPktwL0OjEcIUU0FBHgyaVLoxQMXLhgL5ZxZCwpmHOjKK/uuQqPg9AWr1zh4MMvqcXF5jkwErYDEYs+TgGvKKf8A8KO1E0qph4GHAYKDg+0VnxCiuvrlF1h78e/EF8MO88LALMxN/TE3aUq+rx9f/3yeL1ef5+h5L4aO6cTsOT2dGHDN5shEYK0p3+qc10qpe4HewM3Wzmut5wJzwZiG2l4BCiGqqR49jPWWT56E1FRccs7jknQMkoyJ6jyBx4DHCr8xdJYb6mk/8Pe3vvn5gbu7036c6s6RiSAJCCr2PBBIvrSQUmoQ8CJws9Y6z4HxCCFqiqAgeOklY19rOHsWUlP5c/UBvp//F03NmbT3yeGmztAo5wwqK8tIGidPWr+eUsaKZmUlCn//Or2ojSMTwTagvVKqDXAcGA2MKV5AKXU18BkwWGud4sBYhBA1lVJkuTRg8tsZfPHFeSCUgQObsXBhHxoFNjDK5OZCaqqxpaVBSsrF/dRUSE83FrU5cwYOHrT+Pvfea0xnXQc5LBForU1KqUnAzxjdR+drrfcopV4DorXWUcC7QENgaeH8Ise01sMcFZMQoubZsCGN8eP/JCEhGw8PF9555yqeeCIUF5did589PY1aRFCQ9YsUFMDp0xeTRdH255/GSmdgjFquoxw6jkBrvRpYfcmxl4vtD3Lk+wshaq4zZy7wwgu7+OyzBADCwnz4+uu+dO3qXfGLubpevAVUZPVq+PVXYz88HEaMsEPUNZOMLBZCVDu7dmVy1VW/lDjm4eHCY4/tKFU2ISGbc+dMzJ3bi5Ejy6gRXGrVKvj8c2M/OBg6dTKWvWze3Fgms46RRCCEqHY2bEgrdWzr1tNWSl60bFmS7YkgNvbi/rFjxnTWRby9ISCg9BYcDA0a2Hb9GkZpXbN6Y/bu3VtHR0c7OwwhhANprdmxI4OsrPySbQGFYmIyePrpi1/mnTs3Yt26/vj5edj2Brm5sGuX0cvo1KmLPY5SUoz1Dazx8oLPPquxvYuUUtu11r2tnZMagRCi2lFK0auXb6njBQWa8PCNrFp1wnKsZ08fhg9vxSefxFu9ltaQkpLLP/7RmmuuaWoc9PSEPn1KFzabjUblosSwbx/8/rtxztsb6tWr9M9WHUkiEELUGBs3ppVIAgA7dmSwY0fGZV/7v/+lsmvX38ov5OJiDD7z84NmzSAy0jgeFATTp9faQWmSCIQQNcY11zRh1qyr2bQpnbZty75FYzJpPvkknszMi7d5Zs68yvY3yskxBrSlphrPW7c2agZNmpTcvLxqxXoI0kYghKhVtmxJ5/HHdxATY9QSIiJa8cknPWne3NP2i6SlwcSJxuR35alXr3RyKNr8/aFDh2qzhKa0EQghar2EhHO8+OJuFi825roMCqrPRx9dzfDhLVEV/avdzw/mzYPkZKPNoGhkcvH99HSj0bm8qS3GjYOIiEr+ZI4niUAIUaOdOJHDO+8cYM6cOPLzNR4eLkye3IGXXuqMl1clvuIaNza28uTkXEwOp08bCWLLFmMaC6WgXbsrf/8qJIlACFEjJSaeZ+bMA8ybl0BenhmlYNy41syY0Y3g4Crq71+/PrRqZWxgjElYssTYHzMGrqpAu4QTSSIQQtQoMTFn+OijQyxadIz8fKONMyKiFa+80oUePXycF5jWMHOmcbsIYNs22L8fGjUytoYNSz4W369f36mNzpIIhBDVXn6+maioZD766BDr1xujjpWCUaOCePHFznTvfgXzD9mb2VyyYbisWU6tcXGxniCKH/P2hp49wcPGQXMVIIlACFFt7d17lvnzD/Of/xwlJcVYrqRxYzceeKANkyaF0rZtQydHWIyrK/zrX5CVZWznzpV8tHas6DE311hz4ezZ8t9j6FB48EG7hy6JQAhRrSQn5xAZmcQ33xwrMb9Qly6NefTRtkyYEEKjRtV0YJerq7EAjk8Fb1Hl55edOM6dg7g42LkTMjMdErYkAiGE0x09ms033xxjyZJEdu4s+WV3zz1B3H9/G/r0aYJSRQuWlTEfUDENGrji5lY9+vBflrs7+PoamzXr1xuJwEEkEQghnGr79jP07v1bmee//TaRb79NrPB1g4MbcODAYDw9XSsTXp0giUAI4VT165f+om7UyPavpqwsk9XjubkFFBTUrJkTnEUSgRDCqbp0aYzWd1foNYmJ51mx4jjLlx9n3bo0yxe+p6cLd94ZyIQJIQwY0AxX15o/D1BVkEQghKj2cnML2LQpnTVrTvHLL6eIjj5jOefmphg0qBkjRwYxcmQQ3t7VtCG5GpNEIISodkwmM7GxGaxZk8Jvv51iw4Y0cnMvLi7foIErgwcHMHx4K+64owW+vrVznYCqIolACOFUWmuSknLYuvU0W7ems3XraaKjz5CTU1CiXI8e3gwc2JyBA5txyy3+NGggX1/2Ip+kEKLKmM2ao0fPs3t3Jrt2ZRIdfYatW9NJTs4tVbZdOy8GDGjGwIHN6d/fn2bNKjCNtKgQSQRCCLvTWnPqVB67d2cWbmfZvTuTPXvOcu5c6V4+vr7u9O3bhGuuaco11zShb98mtq8/LCpNEoEQ4oqYzZoTJ3KJjz9HQkI2CQnniI83Hg8dOkd6uvVFXVq08KRbN2+6dWtMWJgP117blPbtG1Z8zQBhN5IIhBDlOn/exHvvHSQm5ozliz47u+DyLyzUqVMjyxd/167e+PmVbNhNTs4hOTnnimLTGtLTL5CVlc/IkUGVW3+gDpNPTQhRrvvu28aSJUlX/Pr9+7PYvz+LZcvsGJQVK1cms2JFP8e+SS0liUAIUa6RI4NKJQJfX3fatPGq9ORvWmvOnjVx8mQuJ0+WbjCuiFGjgir1+rpMEoEQolx33RVY4ZG/BQWalBTjy/3ECWMz9nMsx4oeL+0mao2Xlyvt2zeiffuGhIY2pH37hpbnzZp5SPtCJUkiEEKUkJ9v5uzZfDIzL25nz5qK7eeXsV+yjLZxmp8GDVxp0cKTFi3qExDgSYsWnpbHdu2ML/2AAE/5sncgSQRC1DBaay5cMJOXZ2y5uQUlHvPyCsjNNR6LjmdnF9j8RW7LX+iXoxT4+3uU+FK39kUfEOBZfdcWqEMkEQhhA601JpMu9mVr/Yv30i/g8sqWVcaWso7k4gLe3u54e7vTuLG7Zf/S540bu5V5rlEjt5qzFoBwbCJQSg0GPgJcgc+11m9fct4D+AroBaQDo7TWRxwZkxDFLVp0jLFjtzo7DKdRilJf9g0auJZaRz0/30xaWh5paXnOCbSOu9n1AC/Ug7S0PPwccH2HJQKllCswG7gVSAK2KaWitNZ7ixV7ADijtQ5VSo0G3gFGOSomIS41b16Cs0NwKq2x3BoS1ZdPqwzoA4cOnatZiQDoC8RprRMAlFKLgXCgeCIIB6YX7i8DZimllNa2NjMJUTn//e/1fPjhIfLzzXh4uODp6YqHhwseHq54ehqPxnMXudUhnOZ01AU4YdyidARHJoJWQPH15ZKAa8oqo7U2KaUygaZAWvFCSqmHgYcBgoODHRWvqIN8fevx6qtdnR2GEOXacsCXtGMemBo6ZuI9RyYCa329Lk1ntpRBaz0XmAvQu3dvqS0IIeqUa5+6HZ66nZscdH1H1nWTgOJD/QKB5LLKKKXcAG/gtANjEkIIcQlHJoJtQHulVBulVD1gNBB1SZkoYHzh/gjgd2kfEEKIquWwW0OF9/wnAT9jdB+dr7Xeo5R6DYjWWkcBXwD/UUrFYdQERjsqHiGEENY5dByB1no1sPqSYy8X288FKjaJiRBCCLuS/nBCCFHHSSIQQog6ThKBEELUcZIIhBCijlM1rbemUioVOOrsOK6QH5eMmq7j5PMoST6PkuTzKK0yn0lrrbW/tRM1LhHUZEqpaK11+uYPXwAABdBJREFUb2fHUV3I51GSfB4lyedRmqM+E7k1JIQQdZwkAiGEqOMkEVStuc4OoJqRz6Mk+TxKks+jNId8JtJGIIQQdZzUCIQQoo6TRCCEEHWcJAIHUEoNVkodUErFKaWet3L+n0qpvUqpv5RSa5RSrZ0RZ1W53OdRrNwIpZRWStXqLoO2fB5KqZGFvyN7lFKLqjrGqmTD/5dgpdRapVRM4f+Z250RZ1VRSs1XSqUopXaXcV4ppf5d+Hn9pZTqWek31VrLZscNY8rteKAtUA/YCXS5pEx/oEHh/mPAd86O25mfR2G5RsA6YAvQ29lxO/n3oz0QA/gWPm/m7Lid/HnMBR4r3O8CHHF23A7+TG4CegK7yzh/O/AjxgqP1wJbK/ueUiOwv75AnNY6QWt9AVgMhBcvoLVeq7U+X/h0C8bqbbXVZT+PQjOAmUBuVQbnBLZ8Hg8Bs7XWZwC01ilVHGNVsuXz0EDjwn1vSq90WKtorddR/kqN4cBX2rAF8FFKtajMe0oisL9WQGKx50mFx8ryAEZ2r60u+3kopa4GgrTWP1RlYE5iy+9HB6CDUmqjUmqLUmpwlUVX9Wz5PKYD9yqlkjDWN3miakKrtir6HXNZDl2Ypo5SVo5Z7aOrlLoX6A3c7NCInKvcz0Mp5QL8C5hQVQE5mS2/H24Yt4duwagtrldKddNaZzg4Nmew5fO4B1iotX5fKXUdxqqG3bTWZseHVy3Z/B1jK6kR2F8SEFTseSBWqrJKqUHAi8AwrXVeFcXmDJf7PBoB3YA/lFJHMO55RtXiBmNbfj+SgJVa63yt9WHgAEZiqI1s+TweAJYAaK03A54Yk6/VVTZ9x1SEJAL72wa0V0q1UUrVw1iHOap4gcJbIZ9hJIHafP8XLvN5aK0ztdZ+WusQrXUIRpvJMK11tHPCdbjL/n4AKzA6FKCU8sO4VZRQpVFWHVs+j2PAQAClVGeMRJBapVFWL1HAuMLeQ9cCmVrrE5W5oNwasjOttUkpNQn4GaNHxHyt9R6l1GtAtNY6CngXaAgsVUoBHNNaD3Na0A5k4+dRZ9j4efwM3KaU2gsUAFO01unOi9pxbPw8ngHmKaUmY9wCmaALu8/URkqpbzFuC/oVtou8ArgDaK0/xWgn+f/27qclyiiO4vj3UAuTBloLVpCYBJZFripqIUG9gSFaZGuhIlr2AqqFiwJ3EREhUbQqCKRNYUl/xGmkhNrYpkW7yGyR/FrcqwzDWIFa4T2flTz3mfvAwHjmzjxz7nHgA/ANOL3ia67j59PMzP6APxoyMyucg8DMrHAOAjOzwjkIzMwK5yAwMyucg8CKJGlB0pSkaUl3JbWvwpz7JV39xXiHpHsrvY7ZavPto1YkSV8jYnP++zbwOiKGG8ZFen2UWmNgBfGKwAyeAl2Stkt6J2kEmAQ6JR2V9FzSZF45LIZHv6RnkmqSXkiqSDoi6UEeP5xXHFO5R7+S55/O422Sbkiq5/HFXxIPSrov6ZGk95Ku/KPnxAriILCiSdoIHAPq+dBOUsXvXmAOuAgMRMQ+4BVwPlch3AHORsQeYACYb5r6AjAUEX3AoRbjQwAR0UsqVbspqS2P9QFVoBeoSurEbA05CKxUmyRNkf65fwSu5+OzueMdUgHeLmA8n3sK2EYKi08R8RIgIr5ExI+m+ceBYUlngC0txg8Ct/LjZ4BZUqcQwOPcwfQdeJuvabZm3DVkpZrP79aX5N6nucZDwFhEnGg6bze/qf2NiEuSHpI6YSZy22zjpjutqoQXNbbRLuDXqa0xrwjMljcBHJDUBSCpXVI3MAN0SOrPxyv5I6YlknZERD0iLpNWHT1Ncz8BTuZzu4GtpLpps7/OQWC2jIj4TNowZ1TSG1Iw9OQtFavANUk1YIxUjdzoXL41tUb6fqB5F7oRYIOkOun7hsF1vi+F/cd8+6iZWeG8IjAzK5yDwMyscA4CM7PCOQjMzArnIDAzK5yDwMyscA4CM7PC/QRY8dvzLPHKKAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rf = RandomForestClassifier(n_estimators=100, random_state=0, max_features=2)\n", "rf.fit(X_train, y_train)\n", "\n", "# RandomForestClassifier has predict_proba, but not decision_function\n", "precision_rf, recall_rf, thresholds_rf = precision_recall_curve(\n", " y_test, rf.predict_proba(X_test)[:, 1])\n", "\n", "plt.plot(precision, recall, label=\"svc\")\n", "\n", "plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,\n", " label=\"threshold zero svc\", fillstyle=\"none\", c='k', mew=2)\n", "\n", "plt.plot(precision_rf, recall_rf, label=\"rf\")\n", "\n", "close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))\n", "plt.plot(precision_rf[close_default_rf], recall_rf[close_default_rf], '^', c='k',\n", " markersize=10, label=\"threshold 0.5 rf\", fillstyle=\"none\", mew=2)\n", "plt.xlabel(\"Precision\")\n", "plt.ylabel(\"Recall\")\n", "plt.legend(loc=\"best\")" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f1_score of random forest: 0.610\n", "f1_score of svc: 0.656\n" ] } ], "source": [ "print(\"f1_score of random forest: {:.3f}\".format(\n", " f1_score(y_test, rf.predict(X_test))))\n", "print(\"f1_score of svc: {:.3f}\".format(f1_score(y_test, svc.predict(X_test))))" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average precision of random forest: 0.660\n", "Average precision of svc: 0.666\n" ] } ], "source": [ "from sklearn.metrics import average_precision_score\n", "ap_rf = average_precision_score(y_test, rf.predict_proba(X_test)[:, 1])\n", "ap_svc = average_precision_score(y_test, svc.decision_function(X_test))\n", "print(\"Average precision of random forest: {:.3f}\".format(ap_rf))\n", "print(\"Average precision of svc: {:.3f}\".format(ap_svc))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Receiver Operating Characteristics (ROC) and AUC\n", "\\begin{equation}\n", "\\text{FPR} = \\frac{\\text{FP}}{\\text{FP} + \\text{TN}}\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x20b5c9ddcc8>" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4NS43NzgxMjUgMjYyLjE4Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nJWZy24dNxKG9/0UvUwWochiXcilnZkYyGYSjYAskiwGsmLFkBJEnomAefr5i336NFtuHk0sCNL51M0ii39dSKf543T1Js0fPs1x/ojv5/nH+Wf8fD+n+d189be7P3+9vbt+93a+/TRF8McpFwlmJZHg40P/kZRCKtkEOO4+3U/TbxOs4I13GPjDNHFe38oWhP0xDG0lyAv60FMSDvU05jZCT2HpF6yIlhV9gDGsKpRuXT4F/GWSEmrVHK2fQQc5xNMEpreY+/P09ma++ibNKc43v0yS/M+p+BfNRKHKfPN++iKG+OV883H++83UzE4p1VC0xsy9nZ5eNpRSCjVJje1rZ4leWCoxGCfTtLPU0VcsGQUrRXP72lnivSXiFDQxl9pb6ullS5RzUE2LId5Z0r2lHClwMUq600lHX7FUOUjmxXlpZ6m8sKQ5ZKmV885SRy9byiKBo5ZFEp2ltCliP7WYQkmx+pA10CJlf+Gb7673U9uUzhaYLBfF1DiuL2104AQMY6nADkaCuCU11x/rdTNWNFRNNdPO2EZfM1ZySCpRtIXIoWQ3Y4k0cFU221nr8GvmElyuCN5IZGTHwu3sqYaYU6S8t7fhV+0hv1HmhLnB+cfy7XJUlCAqcMbOXodfs+d6MUXSaFnnWMSdPZaQYkyJ9/Y2/Ko9hHOOmXJpQXpJyhFp9quErJo4WBN0StAk0lvT9GOrHD7AzXfX809fPN3d/uvh4acv17H+mA+qQUa8IYx8HJ6f7uYf5t9mmr/F9/Psw8HX6z+br99N+1LVJfI+ZjpaQ9QU2cNZEH4IcSkDisiW6jJeKBSmyMTHVCXkapp5oTWK6TE0DSVnYle2YoNiqSkNKHI4dk2UFyqJotKIlkBaitSFliSU8oj6ZEiSq09TSKjXGO2YVg9nlFldKFOSJCNaQrSIDV2oEWObBjRFRRzVFNuSKUSXqg1xQpGybEwLhlNRS8cY4cwYaqGQJtkAEsPZFVncaQ7EEWsZYwmFc2xhBAzJitEQZwrZTLkuuLAaEswQS1BG0msLR0CJonoPMWJbWCo3k3hERfOQokSxVnLJItGRtTw+xBZigVTb9Apyq2FdAyooLC6p5qbqeYOxFUMMkReSnBesUaXmMUb7l1ByaMEo5MY8xC6sksXXYoifRKXKkEqIEgvZgjFcZB1jGEFQRPepISwI2b8MsUEsqeLTgo2KypAWvBZjdZ+iCUPaLDGNccXmI0WWBVeG7HiIC7J4QQPoaof1IghBG+OMQEPM+YYZB2xgwYBDDLGUkmtesGnEeCNag4hYaluAfKjKLskBrhQKoc1rS1e0/zVC+AMMHyGtI5zygiEi8hZshJEeiGtpe2A4o0jWOsZIAFKU04IZOZSGFOFfF3NIdZVhcARR5gjloy7YUJGJx7jC5ei62taiRCEHtYbgGKfoRZhaywSMeib4fYjRShOaChcCRGGZvE4NMZpgjUgsjl1kgv5gjJF5KiOiHSMdojTwkFrA5GorDjhSqqHtLmNcvAuFbhx7ykKQHEM0NHBo83/xXUUuz0OKjg7SLXXBXEkij7F4a0qtQKFGok5Gj74xhyGqRd2l3qyiDzfXwpBDAJqhB+dMnsRrvcBz9C4jFd8EVGFogyH4C9xTSiytZLrv2LPHGPuRjSW6cymr7zE6qQtc0D6Vll8IwReFUGPGGC96X1sbhzq9ASkXePG2mc2lTxULRB+E7D/kqIfJc4HvSYYATbH56QLH2cx15/PM8LGxQHoXeA7sbmj3FeK8qtgF3rXh3Rlz357/c/p+/r9746s3eb3zWFrkD9OuaPBaHR4932dZuqkN4zelau1Z7BFKPPRufjqxnL1GIaBwjkM6um2pN3L196FdES8G+K2rW8hE3ov18FyebqcOI7dEq2jd5m1QZBCUavdTZx+ZAkWbcIi/nbq5FiRi5ClCP72tqmyr2jywwVuv6ob0V7THKOScMwTWj4oWx4NZbT8DxVYg/+fcz1aPlqXHLtAjd3Wjbo7tZtDvQTfbbr+2ddmRD6zzwf0qMD9Vxc+uyfbnqcPruuMbOIx6dI/3OLrHw/N/4TJw9/Q2zKXRr97wEhnf+tUjvp/bUk8XkXCs39v4NQp1ttM62Jn6RSRKG2LTD4orzZDd+qT3djhY2A7y6cHbqaMYqJTTmBt00UWc/ubOEGB7spvRim67ua8MWc9vMAwqtTMkle2xk4mO0Tbcys6zfujheX2djbMjDvzYNPZ2vY2l5v+PLTttd7GfHeRfCI9c521Y2FzuFh4nhOFL2HY6NiWftvh0zfviOnCdpJ/l2ot+LXH9j6/nr//z9OfdeiNxlEy9/JwW6AW73ZH4VKI3R/BShwk5Ad1YwskOULl4b02tMUK088yQavEjqjsdaaUY/tBuH1B9Kk51hAS02BLv2vBwj2i142+fKSoN6h46nm1AxAHOckgtvXFBFyXGsbbXzxPF4QsdUfQitC1JtiWdV78xvO8tbYmo6rtH0WvHdtrqBkWScjeg8u8mAEXWjHaD+sna54uyw9Xb527aBuzcuRnfuX6baLdN25L4YPXcrf5+yS7d/zU8X5IcTOvyqmvu3/dPd5/uf394P//37un3VXjfT/8D79UfhQplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE5NTgKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK40AANxGJMKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMiA+PgpzdHJlYW0KeJw1UDkOAzEI7P2K+UAkg20w79koXf7fhgGlWDFa5sJ+HRPH8JIFXwLfireMFRtmiu9YqoXUDmwdqC6cq3iGXMHRC7GJnRacyzY3idQVZEhEaWRbbugSijZFp+TvTXNLN+X2pEnTbVoZmHoZcnYEEUPJYAlquhZNWLQ9Ff9TnjqK933HDit03OHTkx/1PcNnPodLvcX2qNmJRLovyJDTmksJTTTZ0a/IFM48NqSQziBBUlyCa2WQ7emXowMSMDG3LEB2V6KcJWnH0v8znvH5AQHbU6kKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicRZBLjgMhEEP3nMJHoP5wno6y6tx/Oy460WywJSjXM7kDE3vxyEyUbrxkuDvMFZ/hGTBz+EqYbMRM6E5cI5SuFOFUnwiOy9686aCJe0TOo54FWdXODWoBZ5Lmgu2CLueMFTfOya1G5c30o9cQvml3H9d5h/ZI497DVL7OOdXOu4oIaQtZ1bS+kGwUyQ5rPypN287LELHgbBpW6BzeCLtXdydLGH6/8jAlEz8P3fpRfF03o+sUZydXJmvPeehJ6V/1yqMPxXEp6Bex7cwk91+nU5KpU3tn72n9p7jH+w+QblY5CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzIgPj4Kc3RyZWFtCnicNYyxEcAwCAN7ptAINlhg75NLRfZvQ3xOAy8dD5eiwVoNuoIjcHWp/NEjXbkpRZdjzoLhcapfSDFGPagj497HT7lfcBYSfQplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzQgPj4Kc3RyZWFtCnicPYzBDYAwDAP/nSIjNIlNMhDiBft/aQrtxz6dZNMoXeAVaUKEnNrISU9b7p6Eg4MUkLBfbejVvipLe6ogajL+Nnx31wt3HBdOCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIKL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgNjcgL0MgNzAgL0YgNzkgL08gL1AgODIgL1IgODQgL1QgOTcgL2EgOTkgL2MgL2QgL2UKMTA0IC9oIDEwOCAvbCAxMTEgL28gMTE0IC9yIC9zIC90IC91IC92IDEyMiAveiBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9DIDE2IDAgUiAvRiAxNyAwIFIgL08gMTggMCBSIC9QIDE5IDAgUiAvUiAyMCAwIFIgL1QgMjEgMCBSIC9hIDIyIDAgUgovYyAyMyAwIFIgL2QgMjQgMCBSIC9lIDI1IDAgUiAvZWlnaHQgMjYgMCBSIC9mb3VyIDI3IDAgUiAvaCAyOCAwIFIKL2wgMjkgMCBSIC9vIDMwIDAgUiAvb25lIDMxIDAgUiAvcGFyZW5sZWZ0IDMyIDAgUiAvcGFyZW5yaWdodCAzMyAwIFIKL3BlcmlvZCAzNCAwIFIgL3IgMzUgMCBSIC9zIDM2IDAgUiAvc2l4IDM3IDAgUiAvc3BhY2UgMzggMCBSIC90IDM5IDAgUgovdHdvIDQwIDAgUiAvdSA0MSAwIFIgL3YgNDIgMCBSIC96IDQzIDAgUiAvemVybyA0NCAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTMgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMCA+PgovQTQgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ1IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzNDUtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgNDYKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTE5NjUgMDAwMDAgbiAKMDAwMDAxMTY4OSAwMDAwMCBuIAowMDAwMDExNzIxIDAwMDAwIG4gCjAwMDAwMTE5MDIgMDAwMDAgbiAKMDAwMDAxMTkyMyAwMDAwMCBuIAowMDAwMDExOTQ0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI0MzEgMDAwMDAgbiAKMDAwMDAxMDI4MiAwMDAwMCBuIAowMDAwMDEwMDgyIDAwMDAwIG4gCjAwMDAwMDk1OTggMDAwMDAgbiAKMDAwMDAxMTMzNSAwMDAwMCBuIAowMDAwMDAyNDUyIDAwMDAwIG4gCjAwMDAwMDI3NTcgMDAwMDAgbiAKMDAwMDAwMjkwMyAwMDAwMCBuIAowMDAwMDAzMTg4IDAwMDAwIG4gCjAwMDAwMDM0MjYgMDAwMDAgbiAKMDAwMDAwMzcyNiAwMDAwMCBuIAowMDAwMDAzODYyIDAwMDAwIG4gCjAwMDAwMDQyMzkgMDAwMDAgbiAKMDAwMDAwNDU0MiAwMDAwMCBuIAowMDAwMDA0ODQyIDAwMDAwIG4gCjAwMDAwMDUxNjAgMDAwMDAgbiAKMDAwMDAwNTYyNSAwMDAwMCBuIAowMDAwMDA1Nzg3IDAwMDAwIG4gCjAwMDAwMDYwMjMgMDAwMDAgbiAKMDAwMDAwNjE0MCAwMDAwMCBuIAowMDAwMDA2NDI3IDAwMDAwIG4gCjAwMDAwMDY1NzkgMDAwMDAgbiAKMDAwMDAwNjc5OSAwMDAwMCBuIAowMDAwMDA3MDIxIDAwMDAwIG4gCjAwMDAwMDcxNDIgMDAwMDAgbiAKMDAwMDAwNzM3MiAwMDAwMCBuIAowMDAwMDA3Nzc3IDAwMDAwIG4gCjAwMDAwMDgxNjcgMDAwMDAgbiAKMDAwMDAwODI1NiAwMDAwMCBuIAowMDAwMDA4NDYwIDAwMDAwIG4gCjAwMDAwMDg3ODEgMDAwMDAgbiAKMDAwMDAwOTAyNSAwMDAwMCBuIAowMDAwMDA5MTY5IDAwMDAwIG4gCjAwMDAwMDkzMTUgMDAwMDAgbiAKMDAwMDAxMjAyNSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ1IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0NiA+PgpzdGFydHhyZWYKMTIxNzkKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df3RU1b338feXgAUrCgIVSgIBH0AhyK+IulDEX4igiamgUPs81Xp1rdZUe9vS+uNpq6jtrXrbXgteL23V1rYihIWZVnr11qqg+INQog9g+WEUEpGCFCxYkIR8nz9mSIf8nCRzZpg5n9darDXnnD1nvptAvrP3Pntvc3dERCS8uqQ7ABERSS8lAhGRkFMiEBEJOSUCEZGQUyIQEQm5rukOoL369u3r+fn56Q5DRCSjrFmz5kN379fctYxLBPn5+VRUVKQ7DBGRjGJmW1u6pq4hEZGQUyIQEQk5JQIRkZBTIhARCTklAhGRkAssEZjZo2a208zWtXDdzOwhM9tiZm+Z2figYhERkZYF2SJ4HJjWyvXLgGGxPzcB/xlgLCIi0oLA5hG4+wozy2+lSDHwK4+ug/2amfUyswHu/kFQMYmIHEtmzFjJ8uU72vUe91lJjyOdYwQDgeq445rYuSbM7CYzqzCzil27dqUkOBGRoLU3CQQlnTOLrZlzze6S4+4LgYUAhYWF2klHRI5p7f2mH8S3/PZIZ4ugBsiLO84FtqcpFhGRpGlPEpg+vX+AkSQmnS2CCFBqZouAs4CPND4gIkHpSH98Z6X7m36iAksEZvYkMAXoa2Y1wPeAbgDu/giwHJgObAH+AVwfVCwicmxLxy/poB0L3/QTFeRTQ3PauO7AzUF9vohkjlQlgenT+/PMM+el5LMyScYtQy0imeFYeTRS2qZEICJJ0dnunUzqSsk2SgQikhTNJQF1xWQGJQKRDJIJg6rq3sk8Wn1UJIMc60lA3TuZSS0CkRRI9jd5feuWZFIikEBkQhdGptK3bkk2JQIJhJJAUxo4lWOVEoF0SKLf+NWFIXLs02CxdEgiSUBdGCKZQS2CEAiyv17f+EUynxJBFkrVQK2+8YtkByWCLKQZniLSHkoEAUr3I5TqthGRRGiwOEDpTALqthGRRKlFkAL6Zi4ixzK1CAIyY8bKdIcgIpIQJYKAHOkWUheNiBzrlAgCpid1RORYp0QQAHULiUgmUSIIgLqFRCSTKBEk0YwZKzFb0nCsbiERyQRKBEkUP29ArQERyRSaR5Ak8eMCmjcgIplELYIkiF9KQi0BEck0SgRJEJ8ENC4gIplGiaATNDgsItlAiaATNDgsItlAg8UdpMFhEckWahF0kAaHRSRbKBF0ksYFRCTTBZoIzGyamW00sy1mdlsz1weZ2QtmttbM3jKz6UHGkyxaS0hEsklgicDMcoAFwGXASGCOmY1sVOz/AovdfRwwG3g4qHiSSd1CIpJNgmwRTAS2uHuVux8CFgHFjco4cGLs9UnA9gDjSTp1C4lINggyEQwEquOOa2Ln4t0FfMHMaoDlwFebu5GZ3WRmFWZWsWvXriBiTZi6hUQk2wSZCKyZc97oeA7wuLvnAtOBJ8ysSUzuvtDdC929sF+/fgGEmjh1C4lItgkyEdQAeXHHuTTt+rkBWAzg7q8C3YG+AcaUNOoWEpFsEWQiWA0MM7MhZnYc0cHgSKMy24CLAMzsdKKJIL19PyIiIRNYInD3OqAUeBZ4m+jTQevNbJ6ZFcWKfQO40czeBJ4ErnP3xt1HIiISoECXmHD35UQHgePPfTfu9QZgUpAxiIhI6zSzWEQk5JQIRERCTolARCTklAhEREJOiUBEJOSUCEREQk6JoB20zpCIZCMlgnbQOkMiko2UCDpA6wyJSDZRIkiQuoVEJFspESRI3UIikq2UCNpJ3UIikm2UCBKgbiERyWZKBAlQt5CIZLNAl6HOZNu2bSMSibB3717gXaCQZ56Zle6wRESSTomgkR07dlBaWsqyZcuor6+Pu/IYM2c+z/z58+nfXy0DEcke6hqKs2PHDiZNmsTSpUvJycnhqquu4o477gDOArqwdOlSJk2axF//+td0hyoikjRKBHFKS0upqqpi/PjxVFVVUVZWRmXlNKI7as5vOH/zzTenO1QRkaSxTNsiuLCw0CsqKpJ+323btjFkyBBycnKoqqoiNzcXALMlQHSg+JFH8hk6dCj19fW899575OXlJT0OEZEgmNkady9s7ppaBDGRSIT6+nqKiooakkD8Y6PPPHMeeXl5FBcXU19fTyQSSVeoIiJJpUQQE306CEaMGNFwrrnHRocPHw7Anj17UhidiEhwlAhievXqBcDGjRubXIufTbxp0yYAevfunZrAREQCpkQQU1RURJcuXYhEItTU1DRbprq6mvLycrp06UJRUVGKIxQRCYYSQcygQYMoKSmhtraW4uJiqqurj7peXV3NlVdeSV1dHSUlJRooFpGsoaeG4hyZR1BVVUXXrl2pq5sADOCqq3IoLy+nrq6OoUOHsmrVKk455ZRAYhARCYKeGkpQ//79eeWVV7jqqquoq6sHXgeeZunSpdTX13PVVVcpCYhI1tESE43079+fsrIyzP4TqGD4cOOWW8ZRVFSk7iARyUoJJQIzKwTOAz4LHADWAX90978FGFua9QWmsXGjFpoTkezWateQmV1nZn8Gbgd6ABuBncC5wP+Y2S/NbFDwYYqISFDaahF8Gpjk7geau2hmY4FhwLZkByYiIqnRaovA3Re0lARi1yvd/fmWrpvZNDPbaGZbzOy2FspcbWYbzGy9mf028dBFRCQZWm0RmNlDrV1391taeW8OsAC4BKgBVptZxN03xJUZRrTbaZK77zGzz7QneBER6by2uobWdOLeE4Et7l4FYGaLgGJgQ1yZG4EF7r4HwN13duLzRESkA1pNBO7+y07ceyAQPz23hugOL/GGA5jZK0AOcJe7/3fjG5nZTcBNEJ0BLCIiydNW19DvgBanHrt7awvuWHNvaebzhwFTgFxgpZkVuPveRp+zEFgI0ZnFrcUsIiLt01bX0IOduHcNED8DKxfY3kyZ19y9FnjXzDYSTQyrO/G5IiLSDm11Db3UiXuvBoaZ2RDgfWA28PlGZZ4G5gCPm1lfol1FVZ34TBERaadEZxYPA34AjAS6Hznv7kNbeo+715lZKfAs0f7/R919vZnNAyrcPRK7NtXMNgCHgbnuvrvDtUmS+J3JRESyXaJrDT0GfA/4MXABcD3NjwEcxd2XA8sbnftu3GsHvh77c8xobmcyEZFslejqoz1iE8fM3be6+13AhcGFdWyI35lMRCRbJdoiOGhmXYDNse6e9wFN/hIRyQKJtgi+BhwP3AJMAL4AfDGooEREJHUSahG4+5HHOfcTHR8QEZEskVCLwMz+x8x6xR33NrNngwtLRERSJdGuob7xs31jawNpjEBEJAskmgjq4zegMbPBtLL0RCbTHAIRCZtEnxq6E3jZzI7MNJ5MbBG4bKM5BCISNokOFv+3mY0HziY6kexf3f3DQCNLM80hEJGwSHSw2IBpwHh3/x1wvJlNDDQyERFJiUTHCB4GziG6QBzAPqK7j4mISIZLdIzgLHcfb2ZrIfrUkJkdF2BcIiKSIom2CGpjexA7gJn1A+oDiyoNZsxYidmSdIchIpJyiSaCh4BlwGfM7D7gZeD7gUWVBkeeFgI9MSQi4ZLoU0O/MbM1wEVEnxq60t3fDjSyFIqfO+A+K42RiIikXpuJILbq6FvuXgD8JfiQUk9zB0QkzNrsGnL3euDN+JnF2UpzB0QkjBJ9amgAsN7M3gA+PnLS3YsCiUpERFIm0URwd6BRiIhI2rSaCMzMPOqltsokP7TU0CJzIhJ2bY0RvGBmX208PmBmx5nZhWb2SzJ8pzINFItI2LXVNTQN+BLwpJkNAfYC3YEc4Dngx+5eGWyIqaGBYhEJq1YTgbsfJLrO0MNm1g3oCxyI36RGREQyW6KDxbh7LfBBgLGIiEgaJLrERFbSQLGISMgTgQaKRUQ6mAjMLMfMrk12MOmigWIRCbNWE4GZnWhmt5vZfDObalFfBaqAq1MTooiIBKmtweIngD3Aq8C/AHOB44DibHlsVEQk7NpKBEPdfTSAmf0c+BAY5O77Ao9MRERSoq0xgtojL9z9MPCukoCISHZpKxGMMbO/m9k+M9sHnBF3/Pe2bm5m08xso5ltMbPbWik308zczArbWwEREemctmYW53T0xrE9jhcAlwA1wGozi7j7hkblegK3AK939LNERKTj2npqqLuZfS321NBNZpbwTGRgIrDF3avc/RCwCChuptw9wP3AwXbcW0REkqStrqFfAoXA/wOmA//ejnsPBKrjjmti5xqY2Tggz91/39qNYkmowswqdu3a1Y4QRESkLW19wx8Z99TQL4A32nFva+Zcw74Fsb2Qfwxc19aN3H0hsBCgsLAwKXsfaHkJEZGo9jw1VNfOe9cAeXHHucD2uOOeQAHwopm9B5wNRFI1YKzlJUREotpqEYyNezrIgB6xYwPc3U9s5b2rgWGxfQzeB2YDnz9y0d0/IrqsdfTmZi8C33T3inbXohO0vISIhF1bieBNdx/XkRu7e52ZlQLPEt3I5lF3X29m84AKd4905L4iIpJcbSWCTvXHu/tyYHmjc99toeyUznyWiIh0TFuJ4DNm9vWWLrr7j5Icj4iIpFhbiSAHOIHmnwASEZEs0FYi+MDd56UkEhERSYu2Hh9VS0BEJMu1lQguSkkUIiKSNq0mAnf/W6oCERGR9Aj15vUiIhLSRKB1hkRE/imUiUDrDImI/FMoE8ERWmdIRCTkiUBERJQIRERCT4lARCTklAhEREJOiUBEJOSUCEREQk6JQEQk5JQIRERCTolARCTklAhEREJOiUBEJOSUCEREQk6JQEQk5JQIRERCTolARCTklAhEREIudIlA21SKiBwtdIlA21SKiBwtdIngCG1TKSISFdpEICIiUYEmAjObZmYbzWyLmd3WzPWvm9kGM3vLzJ43s8FBxiMiIk0FlgjMLAdYAFwGjATmmNnIRsXWAoXufgZQBtwfVDwiItK8IFsEE4Et7l7l7oeARUBxfAF3f8Hd/xE7fA3IDTAeERFpRpCJYCBQHXdcEzvXkhuAPzR3wcxuMrMKM6vYtWtXEkMUEZEgE4E1c86bLWj2BaAQeKC56+6+0N0L3b2wX79+SQxRRES6BnjvGiAv7jgX2N64kJldDNwJnO/unwQYj4iINCPIFsFqYJiZDTGz44DZQCS+gJmNA/4LKHL3nQHGIiIiLQgsEbh7HVAKPAu8DSx29/VmNs/MimLFHgBOAJaYWaWZRVq4nYiIBCTIriHcfTmwvNG578a9vjjIzxcRkbZpZrGISMgpEYiIhJwSgYhIyCkRiIiEXKgSgTalERFpKlSJQJvSiIg0Fejjo8cqbUoj0j61tbXU1NRw8ODBdIcibejevTu5ubl069Yt4feEMhGISPvU1NTQs2dP8vPzMWtuGTE5Frg7u3fvpqamhiFDhiT8vlB1DYlIxxw8eJA+ffooCRzjzIw+ffq0u+WmRCAiCVESyAwd+TkpEYiIhJwSgYhkhJycHMaOHUtBQQFXXHEFe/fubbi2fv16LrzwQoYPH86wYcO45557cP/n9id/+MMfKCws5PTTT+e0007jm9/8ZrOfkWi5bKNEICIZoUePHlRWVrJu3TpOPvlkFixYAMCBAwcoKiritttuY9OmTbz55pusWrWKhx9+GIB169ZRWlrKr3/9a95++23WrVvH0KFDm9w/0XItOXz4cHIqmgZ6akhE2sVsSSD3dZ+VcNlzzjmHt956C4Df/va3TJo0ialTpwJw/PHHM3/+fKZMmcLNN9/M/fffz5133slpp50GQNeuXfnKV77S5J6tlbvuuuu4/PLLmTlzJgAnnHAC+/fv58UXX+Tuu+9mwIABVFZWcsUVVzB48OCG991111307NmTb3zjGzzwwAMsXryYTz75hJKSEu6+++4O/k0ln1oEIpJRDh8+zPPPP09RUXRbk/Xr1zNhwoSjypx66qns37+fv//976xbt67J9eYkWq6xN954g/vuu48NGzYwe/ZsnnrqqYZrixcvZtasWTz33HNs3ryZN954g8rKStasWcOKFSva/VlBUYtARNqlPd/ck+nAgQOMHTuW9957jwkTJnDJJZfE4vEWn5RJxZNOEydObHhmf9y4cezcuZPt27eza9cuevfuzaBBg3jooYd47rnnGDduHAD79+9n8+bNTJ48OfD4EqEWgYhkhCNjBFu3buXQoUMNYwSjRo2ioqLiqLJVVVWccMIJ9OzZk1GjRrFmzZo2799aua5du1JfXw9EE8+hQ4carn36058+quzMmTMpKyvjqaeeYvbs2Q3vuf3226msrKSyspItW7Zwww03JF75gCkRiEhGOemkk3jooYd48MEHqa2t5dprr+Xll1/mj3/8IxBtOdxyyy1861vfAmDu3Ll8//vfZ9OmTQDU19fzox/9qMl9WyuXn5/fkCTKy8upra1tMb7Zs2ezaNEiysrKGsYULr30Uh599FH2798PwPvvv8/OncfONu1KBCKSccaNG8eYMWNYtGgRPXr0oLy8nHvvvZcRI0YwevRozjzzTEpLSwE444wz+MlPfsKcOXM4/fTTKSgo4IMPPmhyz9bK3Xjjjbz00ktMnDiR119/vUkrIN6oUaPYt28fAwcOZMCAAQBMnTqVz3/+85xzzjmMHj2amTNnsm/fvgD+ZjrG4p+1zQSFhYXeuBmYqCNPO6Srj1MkU7399tucfvrp6Q5DEtTcz8vM1rh7YXPl1SIQEQk5JQIRkZBTIhARCTnNIxCRpNu2bRuRSIS9e/fSq1cviouLycvLS3dY0gIlAhFJmh07dlBaWsqyZcsanrsHuPXWWykpKWH+/Pn076+tYo81SgQikhQ7duxg0qRJVFVV0a1bN0pKShgxYgQbN26kvLycpUuXsnbtWlatWsUpp5yS7nAljsYIRCQpSktLqaqqYvz48VRVVVFWVsZ9991HWVkZ7777bsP5m2++ud333rt3b8NqogAvvvgil19+eTLDB+Dxxx9vmH+QqPz8fD788MMm5++66y4efPDBZIUWKCUCEem0bdu2sWzZMrp160Z5eTm5ublHXc/NzeXpp5+ma9euLFu2jOrq6nbdv3EiSFQmLw3dWF1dXWD3ViIQkU6LRCLU19dTVFTUJAkckZeXR3FxMfX19UQikXbd/7bbbuOdd95h7NixzJ07F4gu3DZz5kxOO+00rr322oaNaPLz85k3bx7nnnsuS5Ys4Z133mHatGlMmDCB8847j7/85S8ALFmyhIKCAsaMGXPU4m/bt29n2rRpDBs2rGGZCoAnn3yS0aNHU1BQwLe//e1m47zvvvsYMWIEF198MRs3bmy2zNixYxv+9OjRg5deeomPP/6YL33pS5x55pmMGzeO8vJyINpCmTVrFldccQVTp07F3Zk7dy4FBQWMHj36qJVOO8XdM+rPhAkTvKNgscPiDr9fJKw2bNjQ6vV77rnHAb/jjjtaLXf77bc74Pfcc0+7Pv/dd9/1UaNGNRy/8MILfuKJJ3p1dbUfPnzYzz77bF+5cqW7uw8ePNh/+MMfNpS98MILfdOmTe7u/tprr/kFF1zg7u4FBQVeU1Pj7u579uxxd/fHHnvMhwwZ4nv37vUDBw74oEGDfNu2bf7+++97Xl6e79y502tra/2CCy7wZcuWNXzerl27vKKiwgsKCvzjjz/2jz76yE899VR/4IEHWqxTJBLxc8891w8dOuS33367P/HEEw2xDBs2zPfv3++PPfaYDxw40Hfv3u3u7mVlZX7xxRd7XV2d79ixw/Py8nz79u1N7t3czwuo8BZ+r2qwWEQ6rVevXgAtfgs+4siCbr179+70Z06cOLGh9XFkeepzzz0XgGuuuQaIthpWrVrFrFn/XFbmk08+AWDSpElcd911XH311Xzuc59ruH7RRRdx0kknATBy5Ei2bt3K7t27mTJlCv369QPg2muvZcWKFVx55ZUN71u5ciUlJSUcf/zxAA37JTRn8+bNzJ07lz/96U9069aN5557jkgk0jCmcPDgQbZt2wbAJZdcwsknnwzAyy+/zJw5c8jJyeGUU07h/PPPZ/Xq1a1+ViICTQRmNg34DyAH+Lm7/1uj658CfgVMAHYD17j7e0HEMmPGyiBuKyJEf+ndeuutRCIRampqmu0eqq6upry8nC5dunT6FxfApz71qYbXOTk5R/WhH1kUrr6+nl69elFZWdnk/Y888givv/46zzzzDGPHjm0o09x9PcE12RLZ/+Djjz/m6quv5mc/+xmf/exngWjPzNKlSxkxYsRRZRsvcJdoHO0V2BiBmeUAC4DLgJHAHDMb2ajYDcAed/9fwI+BHwYVz/LlOwCYPl3PMIsk26BBgygpKaG2tpbi4uImg8HV1dVceeWV1NXVUVJS0u7JZT179uzQap0nnngiQ4YMYcmSIwtOOm+++SYA77zzDmeddRbz5s2jb9++rQ5gn3XWWbz00kt8+OGHHD58mCeffJLzzz//qDKTJ09m2bJlHDhwgH379vG73/2u2Xtdf/31XH/99Zx33nkN5y699FJ++tOfNvyiX7t2bbPvnTx5Mk899RSHDx9m165drFixgokTJyb+F9KCIFsEE4Et7l4FYGaLgGJgQ1yZYuCu2OsyYL6ZmQeV9oBnnjmv7UIi0m7z589n7dq1/PnPf2bo0KEUFxczfPhwNm3aRHl5OXV1dQwdOrRhQ5n26NOnD5MmTaKgoIDLLruMGTNmJPze3/zmN3z5y1/m3nvvpba2ltmzZzNmzBjmzp3L5s2bcXcuuugixowZ02zLAWDAgAH84Ac/4IILLsDdmT59OsXFxUeVGT9+PNdccw1jx45l8ODBR/2iP2Lr1q2UlZWxadMmHn30UQB+/vOf853vfIevfe1rnHHGGbg7+fn5/P73v2/y/pKSEl599VXGjBmDmXH//fcnZYJeYMtQm9lMYJq7/0vs+H8DZ7l7aVyZdbEyNbHjd2JlPmx0r5uAmwAGDRo0YevWrR2IR0tQi3RUostQtzSzuEuXLpSUlLBgwQJNJkuB9i5DHWSLoLnOssZZJ5EyuPtCYCFE9yPoSDBKACLB69+/P2VlZVRXVxOJRNizZw+9e/emqKhIaw0dw4JMBDVA/E8+F9jeQpkaM+sKnAT8LcCYRCQF8vLyOjSDWNIjyAllq4FhZjbEzI4DZgONZ5FEgC/GXs8E/hTk+ICIdJz+a2aGjvycAksE7l4HlALPAm8Tncm13szmmdmRZ8d+AfQxsy3A14HbgopHRDque/fu7N69W8ngGOfu7N69m+7du7frfaHas1hEOqa2tpaamhoOHjyY7lCkDd27dyc3N5du3boddT5dg8UikiW6devGkCFD0h2GBESLzomIhJwSgYhIyCkRiIiEXMYNFpvZLqD9U4uj+gJNtxLKbqpzOKjO4dCZOg92937NXci4RNAZZlbR0qh5tlKdw0F1Doeg6qyuIRGRkFMiEBEJubAlgoXpDiANVOdwUJ3DIZA6h2qMQEREmgpbi0BERBpRIhARCbmsTARmNs3MNprZFjNrsqKpmX3KzJ6KXX/dzPJTH2VyJVDnr5vZBjN7y8yeN7PB6Ygzmdqqc1y5mWbmZpbxjxomUmczuzr2s15vZr9NdYzJlsC/7UFm9oKZrY39+56ejjiTxcweNbOdsR0cm7tuZvZQ7O/jLTMb3+kPdfes+gPkAO8AQ4HjgDeBkY3KfAV4JPZ6NvBUuuNOQZ0vAI6Pvf5yGOocK9cTWAG8BhSmO+4U/JyHAWuB3rHjz6Q77hTUeSHw5djrkcB76Y67k3WeDIwH1rVwfTrwB6I7PJ4NvN7Zz8zGFsFEYIu7V7n7IWARUNyoTDHwy9jrMuAiM2tu28xM0Wad3f0Fd/9H7PA1ojvGZbJEfs4A9wD3A9mwfnIidb4RWODuewDcfWeKY0y2ROrswImx1yfRdCfEjOLuK2h9p8Zi4Fce9RrQy8wGdOYzszERDASq445rYueaLePRDXQ+AvqkJLpgJFLneDcQ/UaRydqss5mNA/Lc/fepDCxAifychwPDzewVM3vNzKalLLpgJFLnu4AvmFkNsBz4ampCS5v2/n9vUzbuR9DcN/vGz8gmUiaTJFwfM/sCUAicH2hEwWu1zmbWBfgxcF2qAkqBRH7OXYl2D00h2upbaWYF7r434NiCkkid5wCPu/u/m9k5wBOxOtcHH15aJP33Vza2CGqAvLjjXJo2FRvKmFlXos3J1ppix7pE6oyZXQzcCRS5+ycpii0obdW5J1AAvGhm7xHtS41k+IBxov+2y9291t3fBTYSTQyZKpE63wAsBnD3V4HuRBdny1YJ/X9vj2xMBKuBYWY2xMyOIzoYHGlUJgJ8MfZ6JvAnj43CZKg26xzrJvkvokkg0/uNoY06u/tH7t7X3fPdPZ/ouEiRu2fyPqeJ/Nt+muiDAZhZX6JdRVUpjTK5EqnzNuAiADM7nWgi2JXSKFMrAvyf2NNDZwMfufsHnblh1nUNuXudmZUCzxJ94uBRd19vZvOACnePAL8g2nzcQrQlMDt9EXdegnV+ADgBWBIbF9/m7kVpC7qTEqxzVkmwzs8CU81sA3AYmOvuu9MXdeckWOdvAD8zs38l2kVyXSZ/sTOzJ4l27fWNjXt8D+gG4O6PEB0HmQ5sAf4BXN/pz8zgvy8REUmCbOwaEhGRdlAiEBEJOSUCEZGQUyIQEQk5JQIRkZBTIhBJkJkdNrPKuD/5ZjbFzD6KrXz5tpl9L1Y2/vxfzOzBdMcv0pKsm0cgEqAD7j42/kRsCfOV7n65mX0aqDSzI2sbHTnfA1hrZsvc/ZXUhizSNrUIRJLE3T8G1gCnNjp/AKikkwuDiQRFiUAkcT3iuoWWNb5oZn2Irmm0vtH53kTX+1mRmjBF2kddQyKJa9I1FHOema0F6oF/iy2BMCV2/i1gROz8jhTGKpIwJQKRzlvp7pe3dN7MhgMvx8YIKlMdnEhb1DUkEjB33wT8APh2umMRaY4SgUhqPAJMNrMh6Q5EpDGtPioiEvG/uuoAAAAuSURBVHJqEYiIhJwSgYhIyCkRiIiEnBKBiEjIKRGIiIScEoGISMgpEYiIhNz/ByAK1bIeMqdsAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve\n", "fpr, tpr, thresholds = roc_curve(y_test, svc.decision_function(X_test))\n", "\n", "plt.plot(fpr, tpr, label=\"ROC Curve\")\n", "plt.xlabel(\"FPR\")\n", "plt.ylabel(\"TPR (recall)\")\n", "# find threshold closest to zero\n", "close_zero = np.argmin(np.abs(thresholds))\n", "plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,\n", " label=\"threshold zero\", fillstyle=\"none\", c='k', mew=2)\n", "plt.legend(loc=4)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x20b5caaaec8>" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM4NS43NzgxMjUgMjYyLjE4Mzc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK2ay3IdtxGG9/MUs7QXAXHpbgBLSYlU5U1smpUsbC9SFC1GRdoVKjGr8vT5G3POTGM0OCzFFosl8tMcNNDoy4+BwvxxunoV5g+fZj9/xPfz/MP8E/5+P4f53Xz157vf/nl7d/3u9Xz7afLgj1Mq7HIuITJ+fbC/RokulJQZ2He/3U/TLxOs4BPvMPCHaaJ0/lTKjkkfw9C5ON7RB0sjk6unMbcRLIWln7GiuKzoA4xhVa6YdekU8C8TF1erJJ/tDAwk508TmF5j7s/T65v56m2Yg59vfp446D+Hol9xjtFVnm/eT19557+ebz7Of7mZmtkphOqKVJ/I2rH0sqEQgquBq29fnaW4s1S8yxSyhM6SoS9YytHlUiS1r84S9ZYiBSeBqFRrydLLlmJKTiQshqizJL2l5KOjkmOQLk4MfcFSJceJFueFzlLZWZLkEtdKqbNk6GVLidmRl7KEhLEUtojop+aDK8FXHbK6uISyfuDtt9f91LZIp+wo5lQEUyN//tBGB07AMDkU2MFICG4OzfXH8boZK+KqhJpiZ2yjLxkryQVhz9JS5DBkN2MhiqMqlHNnzeCXzAW4XJC8PsYc83HgGnsizqfgY+rtbfhFe6hvMVHA3OD84/A1NcqzY2E4o7Nn8Ev2NF6yoGi0qnMcxMYesQveh0C9vQ2/aA/pnHyKqbQkvRTKHmX2TwFVNZDLLaBDQEyivLWYfmydQwe4+fZ6/vGrp7vbfzw8/Pj1eax/zQfdICHfkEY6Ds1Pd/Pf51/mOH+D7+dZh4Ovz3/yfP1u6luVKeQ2ZwytzkvwpOnMSD+kOJcBRWZz1TBeKCJMUImPqbBLNUuihVbPWY5hFldSiqSRLdggX2oIA4oajl1joYVyiF7iiBYXpRSuCy2BY0gjqpOJHDT6JLiAfo3RjmnVdEablYVSDBx4RIvz2WNDF5ojYZsGNHhBHtXg25Kj8xqqeYgDmlROmeKC4VT00jFGOhOGWihCM+YBjARnV1RxpclF8ljLGLMrlHxLI2CELOc4xCm6lLNQXXAhySgwQ8xOCEWvLRwJxYLuPcTIbSau1EziEWFJQ4oWRVKjhiwKXcytjg9xdr4gVNv0CmprxroGlNFYNKSam6rWDcJWDDGCvEROacHihWsaY8i/gJYTF4xGnomGWAOrJNa1ZORPiKXykLLz7EvMC8ZwnmSMYQRJ4dWnGWkRUf3LEGcES6j4bcE5FuEhLfiY91V9ChGGsll8GOOKzUeJLAuuhLCjIS6o4gUCUKMd1gsjBfMYJyQack43LJPDBhYMOMQIllJSTQvO4jHeiFbHzDm0LUA9FCENyQGu0ZUImdeWLpD/1SPwBxg+QllHOqUFI4iiSrARRnmIVEvbg4wzCiepY4wCwEUoLJhQQ+OQIv3rYg6lrhIMjiDaXET7qAvO6MiRxrjC5VBdbWvRolCDmiA4xsFrE45NMgGjnzF+HmJI6QhRoYGAoMgpap8aYohg8SgsijXIGPpgjFF5KiGjFaMcojXQkGaHydXWHHCklAzZXca4qApF3CjWkoUkOYYQNHBo83/RXUUtT0MKRYfQLXXBVCN7GmNWaRpbg0KPRJ/0mn1jDkOxFlGXqliFDs8aC0OOAJCEeFBOUYt4rRd48qoyQtFNQBdGbBAC/gLXkuJLa5nqO9LqMcZ6ZCP26tyYRPcYSuoCZ8in0upLRPJ5jugxY4wPqq6tjSM6VYCUC7yobKasoR8rFggdhOo/5OiHQWuB7klCAGbB5ocLHGczjTudZ4KPMzFC7wJPjtQN7X0FK6/C+QI3MtycMXt5/v303fzF2hgy3CUsCMUfvprsL5DJ8++RySvtpO9KVQ1AzHDsxLO2WwR3CD1Nuk+1FfJNPKMBYDe4lJ4W9WFtem1Vz1b7bhCOlFxaCTciV5ymS8c62bpRtFBP1ArIJnwDDl4plZB2+hR1LqNH1wWn5CtOcfAV5o2YK70Q7fCmDHf4LAE77Uuagl4Pp2gPBWK1VQojATus2kXLPDBaqxdqdUJPIOhuyItO/a7KEKEkGQuvPVXJVlLLJlCsD0vfYe3CEEv7p9FuM1o17XCGDMMhVvU2mjNF3zJPtDHiGcwOxZCwknzSgN6j2YedVN6kocVG1+mrmhBgdcEoH6HCJPIHeydROvHV0U1lIbkhqcSnHqN+onzhwL5gZKIGfCd0s+56CX6naA1GxAUojUWOblLNilQ9ahD55Y2EFETITqnBZ1oY6STJiDOUIlRgcFxYNVSPre5cNVlHETiScGDf6c5Nkw1wpyQ1dNCDaScZDUbAoz63o7DFvQysGs68w9rRueq8a2gtO3dKbUehGQSJ3EtGg9U3Iq3UWIxgRSVpZcXKNaski7bTqlW/wxrmOH/KThxuSstilC/Gx9OO6vEBm9CpxqKnaswj9fIQMgu57UveYQ0cZFLdYRXtWZt6pxqLhgJpEPXYCC2rA1ehZeEmiDoVaLCVcOrTUlB99jhD9vjSKzP1HXYp7GkNOYfYC7OqHiU9euMA5pDP3IoqgoKQpHpK6LBmdM0q8HcYXb2JLCPiqqZojXGnsRBCSFk9JvZYnQfBFzuxUzXG0CdrTxE0qB2VOqoNBzUs7SDSoqBE5x5D1qsPVLRYsfTHiIqrV+l8kbK8d/swdSdROh85H7U0JV4644bxk8Sa27OYc/FcWpdX0ZT04IuIggdxxrlt5zlPWqc1p5n1hImfzGEY+kRf8Fi4nnlvJ4ORMh4ZihTdBkW+oLSq+DL2NVuQZugwt5OZK9IiIr6Ry2ZVZVvV5oEN3mqnQRCjlViMZoX4U/FlRkXt1uCS3M8A3RHLRv7b2crRsuTYBXLkLjPq5lgzA7sHZrZmv7Z15SMfZOOD+/8/wPT+8RxkpnOpWFpe8zy26Z0wp+3tTz7G61xUGvvP7gF7JXx4H3l8xYhRjy4qH0cXlXj+C247u6e3YS6NfvWKFid+o3er+H5uSz3dtEJHQPBJu/6Jxng4j7ZSvWpFqUOh0FfhZ5pUq5+eVL0A8Zg7SKcHbydDVR7H9vr/occq/DG+3rKttlQGLw+baW3w1q5hwzjh6QksJKZosML12dVaR6MZeMXrOh46ui7ZGFt9c+TblgSvz3fQsW3KEtnbDfRn1xe7aIwk53GroBcs96vyGWzb71t4n/b9dLnd3+nkdZZVRWhe7hmv//pmfvOfp9/u5u//9uZ8F3N8jJwvHyPNdFWt4PAQdxPe8BdPGUWrLh/tJ3399jznoy4VebWtsrqeXMgQHdD9dYMQX/peHaVy1lMchJd2bhwp8TfphU5SfaZXzYgWWWQbmiqOXwEnVYj1KGG1BNGA3p+4g3KypJ/fqL4Xqipy7aCQAxCiOM6YCaD8JkiSovXZTBaJAv9WfaG5Lipvi1pXvzL9NCo1JCN3TyanV/Z6IWVGRDDjAAVR2lvX5Ex6/LAzPVoTHy6fjzxlBt18uk2g8/82WbtX66rkYP2yrf9+KZbm/4Y8X4w8NV3P2fLv+6e7T/e/Pryf/3v39KtNmUEPM3NgfcPXLlUfrRNoxQ82NCz+fMofX5w2IUaWz/fzRpiZpPlu+h8ymjlgCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjY3NAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nDM1N1UwULC0ABKmhuYK5kaWCimGXEA+iJXLBRPLAbPMTMyALENLZJaJsSGQZWJhhsQyNrGAyiJYBkAabE0OzPQcrjQAA3EYkwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEyID4+CnN0cmVhbQp4nDVQOQ4DMQjs/Yr5QCSDbTDv2Shd/t+GAaVYMVrmwn4dE8fwkgVfAt+Kt4wVG2aK71iqhdQObB2oLpyreIZcwdELsYmdFpzLNjeJ1BVkSERpZFtu6BKKNkWn5O9Nc0s35fakSdNtWhmYehlydgQRQ8lgCWq6Fk1YtD0V/1OeOor3fccOK3Tc4dOTH/U9w2c+h0u9xfao2YlEui/IkNOaSwlNNNnRr8gUzjw2pJDOIEFSXIJrZZDt6ZejAxIwMbcsQHZXopwlacfS/zOe8fkBAdtTqQplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJxFkEuOAyEQQ/ecwkeg/nCejrLq3H87LjrRbLAlKNczuQMTe/HITJRuvGS4O8wVn+EZMHP4SphsxEzoTlwjlK4U4VSfCI7L3rzpoIl7RM6jngVZ1c4NagFnkuaC7YIu54wVN87JrUblzfSj1xC+aXcf13mH9kjj3sNUvs451c67ighpC1nVtL6QbBTJDms/Kk3bzssQseBsGlboHN4Iu1d3J0sYfr/yMCUTPw/d+lF8XTej6xRnJ1cma8956EnpX/XKow/FcSnoF7HtzCT3X6dTkqlTe2fvaf2nuMf7D5BuVjkKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1UkuSW0EI279T6AKuav7NeZya1eT+2wjsrKCBFhKQFjjIxEsMUY1yxR95gvE6gb/r5Wn8Pt6F1IKnIv3AtWkb78eaNVGwNGIpzD72/Sghx1Pj3xDouUgTZmQyciAZiPu1Pn/Wm0w5/AakaXP6KEl6EC3Y3Rp2fFmQQdKTGpbs5Id1LbC6CE2YG2siGTm1MjXPx57hMp4YI0HVLCBJn7hPFYxIMx47Zy15kOF4qhcvfr2N1zKPqZdVBTK2CeZgO5kJpygiEL+gJLmJu2jqKI5mxprbhYaSIvfdPZyc9Lq/nEQFXgnhLNYSjhl6yjInOw1KoGrlBJhhvfaFcZo2SrhT0+1dsa/fZyZh3Oaws1IyDc5xcC+bzBEke90xYRMeh5j37hGMxLz5XWwRXLnMuSbTj/0o2kgfFNfnXE2ZrSjhH6rkiRXX+P/83s/PP5A3fbEKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY0ID4+CnN0cmVhbQp4nDMzNFQwUNA1AhJmhiYK5kaWCimGXEA+iJXLBRPLAbPMTMyALGNTUySWAZA2MjWD0xAZoAFwBkR/GgApTxROCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MCA+PgpzdHJlYW0KeJwzszBRMFCwAGIzczMFcyNLhRRDLiMLM6BALpcFWCCHy9DQEMoyNjFSMDQ0BbJMzY2hYjCNQFlLkEE5UP05XGkAT1QSLwplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkLl1BDEMQ3NVgRJ4gDrqGT9Hs/2nC2m83kD6eIR4iD0Jw3JdxYXRDT/etsw0vI4y3I31Zcb4qLFATtAHGCITV6NJ9e2KM1Tp4dVirqOiXC86IhLMkuOrQCN8OrLHQ1vbmX46r3/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatq/CLsilLZ9XE5lnLp7B7TCZytX+30DqOc6gAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJw1jLERwDAIA3um0Ag2WGDvk0tF9m9DfE4DLx0Pl6LBWg26giNwdan80SNduSlFl2POguFxql9IMUY9qCPj3sdPuV9wFhJ9CmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJw9jMENgDAMA/+dIiM0iU0yEOIF+39pCu3HPp1k0yhd4BVpQoSc2shJT1vunoSDgxSQsF9t6NW+Kkt7qiBqMv42fHfXC3ccF04KZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MgovZm91ciAvZml2ZSAvc2l4IDU2IC9laWdodCA2NyAvQyA3MCAvRiA3OSAvTyAvUCA4MiAvUiAvUyAvVCA4NiAvViA5NyAvYSA5OQovYyAvZCAvZSAxMDQgL2ggMTA4IC9sIDExMSAvbyAxMTQgL3IgL3MgL3QgL3UgL3YgMTIyIC96IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0MgMTYgMCBSIC9GIDE3IDAgUiAvTyAxOCAwIFIgL1AgMTkgMCBSIC9SIDIwIDAgUiAvUyAyMSAwIFIgL1QgMjIgMCBSCi9WIDIzIDAgUiAvYSAyNCAwIFIgL2MgMjUgMCBSIC9kIDI2IDAgUiAvZSAyNyAwIFIgL2VpZ2h0IDI4IDAgUgovZml2ZSAyOSAwIFIgL2ZvdXIgMzAgMCBSIC9oIDMxIDAgUiAvbCAzMiAwIFIgL28gMzMgMCBSIC9vbmUgMzQgMCBSCi9wYXJlbmxlZnQgMzUgMCBSIC9wYXJlbnJpZ2h0IDM2IDAgUiAvcGVyaW9kIDM3IDAgUiAvciAzOCAwIFIgL3MgMzkgMCBSCi9zaXggNDAgMCBSIC9zcGFjZSA0MSAwIFIgL3QgNDIgMCBSIC90d28gNDMgMCBSIC91IDQ0IDAgUiAvdiA0NSAwIFIKL3ogNDYgMCBSIC96ZXJvIDQ3IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMyA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwID4+Ci9BNCA8PCAvQ0EgMC44IC9UeXBlIC9FeHRHU3RhdGUgL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDggMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDUyMDEyMDM0NS0wNCcwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCA0OQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzU5NiAwMDAwMCBuIAowMDAwMDEzMzIwIDAwMDAwIG4gCjAwMDAwMTMzNTIgMDAwMDAgbiAKMDAwMDAxMzUzMyAwMDAwMCBuIAowMDAwMDEzNTU0IDAwMDAwIG4gCjAwMDAwMTM1NzUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzE0NyAwMDAwMCBuIAowMDAwMDExODgwIDAwMDAwIG4gCjAwMDAwMTE2ODAgMDAwMDAgbiAKMDAwMDAxMTE4NyAwMDAwMCBuIAowMDAwMDEyOTMzIDAwMDAwIG4gCjAwMDAwMDMxNjggMDAwMDAgbiAKMDAwMDAwMzQ3MyAwMDAwMCBuIAowMDAwMDAzNjE5IDAwMDAwIG4gCjAwMDAwMDM5MDQgMDAwMDAgbiAKMDAwMDAwNDE0MiAwMDAwMCBuIAowMDAwMDA0NDQyIDAwMDAwIG4gCjAwMDAwMDQ4NTMgMDAwMDAgbiAKMDAwMDAwNDk4OSAwMDAwMCBuIAowMDAwMDA1MTMxIDAwMDAwIG4gCjAwMDAwMDU1MDggMDAwMDAgbiAKMDAwMDAwNTgxMSAwMDAwMCBuIAowMDAwMDA2MTExIDAwMDAwIG4gCjAwMDAwMDY0MjkgMDAwMDAgbiAKMDAwMDAwNjg5NCAwMDAwMCBuIAowMDAwMDA3MjE0IDAwMDAwIG4gCjAwMDAwMDczNzYgMDAwMDAgbiAKMDAwMDAwNzYxMiAwMDAwMCBuIAowMDAwMDA3NzI5IDAwMDAwIG4gCjAwMDAwMDgwMTYgMDAwMDAgbiAKMDAwMDAwODE2OCAwMDAwMCBuIAowMDAwMDA4Mzg4IDAwMDAwIG4gCjAwMDAwMDg2MTAgMDAwMDAgbiAKMDAwMDAwODczMSAwMDAwMCBuIAowMDAwMDA4OTYxIDAwMDAwIG4gCjAwMDAwMDkzNjYgMDAwMDAgbiAKMDAwMDAwOTc1NiAwMDAwMCBuIAowMDAwMDA5ODQ1IDAwMDAwIG4gCjAwMDAwMTAwNDkgMDAwMDAgbiAKMDAwMDAxMDM3MCAwMDAwMCBuIAowMDAwMDEwNjE0IDAwMDAwIG4gCjAwMDAwMTA3NTggMDAwMDAgbiAKMDAwMDAxMDkwNCAwMDAwMCBuIAowMDAwMDEzNjU2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDggMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ5ID4+CnN0YXJ0eHJlZgoxMzgxMAolJUVPRgo=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU5b348c+XJLIIssiqCQQIohBIgAh6UQRXBA2kghC8P8TS6quVqtRyK+1FqUAX7dXWpbfFpdIFWcIrTSwutF5cUGSTSFkKBBASAdkRkCXL9/fHmYyTZJJMkpk5ycz3/XrNa+ac88yZ7xnC+c7zPOc8j6gqxhhjolcTtwMwxhjjLksExhgT5SwRGGNMlLNEYIwxUc4SgTHGRLlYtwOorfbt22tiYqLbYRhjTKOyYcOGI6rawd+2RpcIEhMTWb9+vdthGGNMoyIie6vaZk1DxhgT5SwRGGNMlLNEYIwxUc4SgTHGRDlLBMYYE+VClghE5FUROSQim6vYLiLynIjki8gmERkYqliMMcZULZQ1gteAkdVsvx3o5XncD/xvCGMxxhhThZDdR6CqH4hIYjVFxgB/Umcc7E9EpI2IdFHVA6GKyRhjQqqkBC5cgKKi8s9VvH7+ma3kbz1Gs5hSmjUpoVlMCc1jSr557Xl2lktZeaQjs7fNCXrYbt5QdjlQ4LNc6FlXKRGIyP04tQa6du0aluCMMY1USUmNJ+BK686fd55915dt891e08m9pKRWof4gFugfePkvzzer3XcRIDcTgfhZ53eWHFWdD8wHSEtLs5l0jGno6nIy9re9uhN0kE7GQSUCF13EV+eEU+eEsyUxnCuN4Zzn2VluUn65JIaHHu0DcXHQtKnzfNFFzqPstef57rZtQxK2m4mgEEjwWY4H9rsUizGRp6qTcTh+LTeAk3GVJ9Syk63v9rJtFU/G/vZR3b5jY0GE1rI04HBHjerMQ/deH8IvpGZuJoJcYJqILAKGACetf8BEHN+TcU0n4GD/Wm5IJ+NATqh1PRlXXOc5GVc0evSHvPnmwQCCLwXOex71ozq+3vsIh5AlAhF5HRgOtBeRQuAJIA5AVX8PvAmMAvKBr4H7QhWLiXK1ORkH+9dycbF7x13bk3FNv5aDcDKuSuWTdPBOxm4ZNaqz2yEELJRXDWXWsF2BB0P1+aaBqelkHMpfy26fjGvbvFCbk3F1+6vlydhNgf1Sr79RozqzfLm7zTANUaMbhtrUQ0mJc1IM9AqIYP5abugn49o0XUToyTjYAm+K+UZjaUqJNJYIGpvSUvjXv2DdOjh7tnYn88Z+Mg7gqgo7GbunLid+X42pKSXSWCJoLA4dgpUr4d134fDhuu2jqpNxXZsuatN2bCfjiOcvCVhTTONgicAtpaUwdy5s2xZY+XPnvnndsSPccAN06mQn4yhT31/d4WDNO42PJQK35OfDxo2Bl4+Lg2uugZtvhuRkaGIDx0ajhp4ErHmncbJE4Ja1a53nkSNh8uSay5e1dZtGKdi/5O1XtwkmO7O4Zc0a5/naa6F5c3djCYHG0ITRWNmvbhNslgjcsHs3FBbCxRdDnz5uRxMSlgQqs45T01BZIgi3P/0JsrOd14MGNdrmnkB/8VsThjENn/U4htv69d+8HlndvD0NWyBJwJowjGkcGufP0cZK1bkfAOAvf3GahsIglO319ovfmMbPEkE4nTrlDLvQokVIk0C4OmrtF78xkcESQTiV1QY6dgzpx9gdnsaY2rBEEEIVf5nfddk+sgZDzuoixtZi4oq6smYbY0wgrLM4hL5JAsq3u+1iUdpHAPz71CUh/2xrtjHGBMpqBGGgm66Cx1/3Lv/4pTv48X/8h4sRGWPMNywRhMjo0R9+s7BypfPcti1MmABDhrgTlDHG+GGJIETKmoUyR10CKxc6K594Arp1czEqY4ypzPoIQqgJpSzsuMhZuOgiiI93NyBjjPHDEkEIlDUL9Wp5Ck6ccFbeey/ExLgYlTHG+GeJIATKmoXuG67OiquvhlGjXIzIGGOqZokgiEaP/hDx3B/QKraIH8e+6WxITHQvKGOMqYElgiDyvXls6m0+/fCDB7sQjTHGBMYSQZD4Xi6qOp5nn0l1Fnr2hKQkl6IyxpiaWSIIAt+hJCrd0WuTxRtjGjhLBEHgmwSWL78eSkogN9fZ2Lq1i5EZY0zNLBHUg2/nMPBNEpg2DT76yLl3IJCJ6Y0xxkWWCOrBt3PY2yS0fTsc9Kx/+GHo2tWFyIwxJnA2xEQdVewc9srLKysANrCcMaYRsBpBHfntHN6yBZZ6mooGDHAhKmOMqT2rEdTT8uXXw7FjzuNXv3JWNm0Kffu6G5gxxgQopIlAREYCvwVigJdV9ZcVtncFFgBtPGUeU9U3QxlTMJQbYrqgAB55BEpLneVWreD556FZM3eCM8aYWgpZIhCRGOBF4BagEFgnIrmqutWn2H8DS1T1f0WkD/AmkBiqmIKlXLPQv/71TRJISoIpU+ySUWNMoxLKPoLBQL6q7lbVC8AiYEyFMgqUzdvYGtgfwniCbvny62HzZmfhO9+Bp5+2JiFjTKMTyqahy4ECn+VCoOLUXLOBFSLyA+Bi4GZ/OxKR+4H7Abq6fDlmWbNQn1Yn4IEH4NAh5+5hm3XMGNNIhbJG4G9sBa2wnAm8pqrxwCjgzyJSKSZVna+qaaqa1qFDhxCEGriyZqG5ww86SQBg6FBo397FqIwxpu5CWSMoBBJ8luOp3PQzFRgJoKqrRaQZ0B44FMK4giIj8bBT35kxA6691u1wjDGmzkJZI1gH9BKR7iJyETARyK1QZh9wE4CIXAU0Aw6HMKaguKnDQedqoWbNnElnbGA5Y0wjFrJEoKrFwDTgHWAbztVBW0TkSRFJ9xR7FPiuiHwGvA5MUdWKzUcNztRuu5wX3btDXJy7wRhjTD2F9D4Czz0Bb1ZY97jP663A0FDGEAqprY87LyZMcDcQY4wJAhtiog7axV1wXtiAcsaYCGCJoD6sb8AYEwEsERhjTJSzRGCMMVHOEoExxkQ5SwTGGBPlLBHUwujRH9KsSTGtYoucFTEx7gZkjDFBYBPT1EL+Bzs4NvotmseUOENOt2rldkjGGFNvViOohWk9djhJAOD2290NxhhjgsRqBAG6c/T7vNFjh7Nw771w443uBmSMMUFiNYIA/fNtn4FTb7vNvUCMMSbILBHU1kUXQfPmbkdhjDFBY4kgAOUmqzfGmAhjiSAAZbOSGWNMJLLO4irs27eP3NxcTpw4AexBdYDbIRljTEhYIqjg4MGDTJs2jezsbEpLS73rz6swbm0XXhg0iM4uxmeMMcFmicDHwYMHGTp0KLt37yYuLo6MjAx69+7Nz3/+LrCeZfv3s/Grr/j4yy/p1KmT2+EaY0xQWB+Bj2nTprF7924GDhzI7t27ycrKIi9vJPAo17V7nIGtW7P79GkefPBBt0M1xpigsUTgsW/fPrKzs4mLiyMnJ4f4+Hjgm47iUf9xGX8bMoTYJk3Izs6moKDAzXCNMSZoLBF45ObmUlpaSnp6ujcJ+F42OvOxq0ho0YIxfftSWlpKbm6uW6EaY0xQWSLwcK4Ogt69e3vXeWsDozrDli0AXNG+PQDHjx8Pc4TGGBMalgg82rRpA8D27dsrbVu+/Ho4dgyAHV9+CUDbtm3DF5wxxoSQJQKP9PR0mjRpQm5uLoWFhZULnD9Pwddfk7N9O02aNCE9PT38QRpjTAhYIvDo2rUrGRkZFBUVMWbMmEqdwQUHDjB2zRqKS0rIyMggISHBpUiNMSa4RFXdjqFW0tLSdP369SHZt+99BLGxsRQXDwK6cNddMeRkZ1NcWkqPrl35eO1au4/AGNOoiMgGVU3zt81qBD46d+7MRx99xF133UVxcSmwBvgby5Yto7S0lLsuu4yPV6ywJGCMiSh2Z3EFnTt3JisrC5H/BdZzxRXCQ+M6kb5+PQktWjhTVBpjTAQJKBGISBpwPXAZcBbYDPxTVY+FMDaXtQdGsn37eNi0CbZuhSuusAnrjTERp9qmIRGZIiKfAjOB5sB24BBwHfAPEVkgIl1DH6bLDhxwni+7zN04jDEmBGqqEVwMDFXVs/42ikgq0AvYF+zAGpQ9e5znxERXwzDGmFCotkagqi9WlQQ82/NU9d2qtovISBHZLiL5IvJYFWXuFpGtIrJFRBYGHnoYlSWC7t3djcMYY0Kg2hqBiDxX3XZVfaia98YALwK3AIXAOhHJVdWtPmV64TQ7DVXV4yLSsTbBh8WRI7BzJ8TGQs+ebkdjjDFBV1PT0IZ67HswkK+quwFEZBEwBtjqU+a7wIuqehxAVQ/V4/NCY+1aUIWrr4aLL3Y7GmOMCbpqE4GqLqjHvi8HfG/PLQSGVChzBYCIfATEALNV9e2KOxKR+4H7wbkDOKzKBpez/gFjTISqqWnoDaDKW49VtboBd8TfW/x8fi9gOBAPfCgiyap6osLnzAfmg3NncXUxB92ZM86z1QaMMRGqpqahX9dj34WA74A88cB+P2U+UdUiYI+IbMdJDOvq8bnBdeYMxaWlvPDWW7BzJ9OmTSM21u7DM8ZEjpqaht6vx77XAb1EpDvwBTARmFShzN+ATOA1EWmP01S0ux6fGXxnzrCwsJDpnolo2rVrx+TJk10OyhhjgiegsYZEpJeIZHku89xd9qjuPapaDEwD3gG2AUtUdYuIPCkiZU1K7wBHRWQrsBKYoapH6344weE7M1nxiRPM8ZmjYM6cORQXF7sRljHGhESgbRx/BJ4AngVGAPfhvw+gHFV9E3izwrrHfV4r8EPPo8Eom5ls9KhOLFy1ivwzZ0jq0QOaNCE/P5+FCxdarcAYEzECHX20uefGMVHVvao6G7gxdGE1DH/7a3/mbN4MwKwnnmDWrFmA1QqMMZEl0ERwTkSaADtFZJqIZAAN7+avIFu4ZIlTG2jVikmTJjFp0iSSkpK8tQJjjIkEgSaCR4AWwEPAIOA/gXtDFVTDUMKcp54CYFZyMrGxscTGxlqtwBgTcQJKBKq6TlVPq2qhqt6nqnep6iehDs5dq8jftYukiy9mks8YQ1YrMMZEmkCvGvqHiLTxWW4rIu+ELiy3lQDLAJjVuzexbdt6t1itwBgTaQJtGmrve7evZ2ygCO4jWAUcJKlrVybFx0ObNuW2Wq3AGBNJAk0Epb4T0IhIN6oZeqIxu/32lZTVBvL37SMuNxeZNw8R8T7i4uLIz88HrFZgjGn8Ak0EPwVWicifReTPwAc4w0dHnLffXgYcDLi81QqMMY1dQDeUqerbIjIQuAbnRrLpqnokpJG55gbgBlTHw1NPwerV8MMfwvXXux2YMcaERKCdxQKMBAaq6htACxEZHNLIGhKbsN4YE8ECbRr6HXAtzgBxAKdwZh8zxhjTyAU61tAQVR0oIhvBuWpIRC4KYVzGGGPCJNAaQZFnDmIFEJEOQGnIonLB6NEfIrLU7TCMMSbsAk0EzwHZQEcRmYdzof3PQxaVC8pGHAUYNaqzi5EYY0x4BXrV0F9FZANwE85VQ2NVdVtIIwsj3/kHVMe7GIkxxoRfjYnAM+roJlVNBv4d+pDCr6w2YDUBY0w0qrFpSFVLgc987yyOVMuX270CxpjoE+hVQ12ALSKyFjhTtlJV06t+izHGmMYg0ETws5BG0VAVFTnPdkOZMSaCVZsIRETU8X5NZYIfWnj4dhRX8vXXzvPFF4cnGGOMcUFNfQQrReQHFfsHROQiEblRRBbQyGcqq7aj+IynFcwSgTEmgtXUNDQS+Dbwuoh0B04AzYAYYAXwrKrmhTbE8PDbUWyJwBgTBapNBKp6Dmecod+JSBzQHjjrO0lNxHrlFTjiGWDVEoExJoIF2lmMqhYBB0IYS8NRUgLveGbi7NYNWrRwNx5jjAmhQIeYiEhVdhR/8YVzxVCrVvDMMyAS3sCMMSaMojoRVNlRvGeP89ynDzSJ6q/IGBMF6nSWE5EYEbkn2MG4pVJH8aefOs89e4Y/GGOMCbNqE4GIXCIiM0XkBRG5VRw/AHYDd4cnxDBbuhQ++MB5PXSou7EYY0wY1NRZ/GfgOLAa+A4wA7gIGBMpl41WsmqV83zllXDZZe7GYowxYVBTIuihqv0ARORl4AjQVVVPhTwyNxQVOR3FTZrA7NluR2OMMWFRUx9BUdkLVS0B9kRsEgAoKHAuHe3SBZo2dTsaY4wJi5oSQYqIfCUip0TkFNDfZ/mrmnYuIiNFZLuI5IvIY9WUGyciKiJptT2AoCq7Wqh7d1fDMMaYcKrpzuI6D7vpmeP4ReAWoBBYJyK5qrq1QrlWwEPAmrp+VtDs3es8Jya6GoYxxoRTTVcNNRORRzxXDd0vIgHfiQwMBvJVdbeqXgAWAWP8lJsDPAWcq8W+Q+PkSee5fXt34zDGmDCqqWloAZAG/AsYBfxPLfZ9OVDgs1zoWeclIgOABFX9e3U78iSh9SKy/vDhw7UIoZbOnnWemzUL3WcYY0wDU9Mv/D4+Vw29Aqytxb79jcvgnbfAMxfys8CUmnakqvOB+QBpaWlBmfvA7/AS5887z5YIjDFRpDZXDRXXct+FQILPcjyw32e5FZAMvCcinwPXALnh6jD2O7zEOU/rlCUCY0wUqalGkOpzdZAAzT3LAqiqXlLNe9cBvTzzGHwBTAQmlW1U1ZM4w1o7Oxd5D/iRqq6v9VHUQ7nhJaxpyBgThWpKBJ+p6oC67FhVi0VkGvAOzkQ2r6rqFhF5Elivqrl12W9IldUImjd3Nw5jjAmjmhJBvdrjVfVN4M0K6x6vouzw+nxWvR04AMeOOXcVt2zpaijGGBNONSWCjiLyw6o2quozQY4n/FRh7txvRhy98UabiMYYE1VqSgQxQEv8XwEUGS5c+CYJtG0LkyZVX94YYyJMTYnggKo+GZZI3FLsuRhKBF56CWLqfDO1McY0SjVdPhq5NYEyX3zhPCckWBIwxkSlmhLBTWGJwk0HnfsJiI93Nw5jjHFJtYlAVY+FKxDXlF0yah3ExpgoZTOzl91EZvcOGGOiVFQmgnLjDNmwEsaYKBeViaDcOEOWCIwxUS4qE0GZ5cuvt0RgjIl6UZ0IAPj6a+fZEoExJkpFdyIoLYUPPnBed+zobizGGOOS6E4En3zyzWubp9gYE6WiOxGsXOk8DxtmI44aY6JWbSajjyDKwNbHYb1nDpx773U3HGOMcVFUJoKRHQ/w1n+85yy0bQvt2rkajzHBUFRURGFhIefKroQzUalZs2bEx8cTFxcX8HuiMhEMb//lNwuTJ7sXiDFBVFhYSKtWrUhMTEQk8seLNJWpKkePHqWwsJDu3bsH/L7o6yMoKmL85fuc1z/5CQwf7mo4xgTLuXPnuPTSSy0JRDER4dJLL611rTD6EsGKFfS4+Aybv2oNAwe6HY0xQWVJwNTlbyD6EsFnnwHwq519bP4BY4whGhPBPqdZaMMJ6yA2JthiYmJITU0lOTmZO++8kxMnTni3bdmyhRtvvJErrriCXr16MWfOHFTVu/2tt94iLS2Nq666iiuvvJIf/ehHfj8j0HKh8uqrr9KvXz/69+9PcnIyOTk5vPbaa2RmZpYrd+TIETp06MD58+cpKiriscceo1evXiQnJzN48GDeeuutsMZdnehLBJ6pKU8VR2U/uTEh1bx5c/Ly8ti8eTPt2rXjxRdfBODs2bOkp6fz2GOPsWPHDj777DM+/vhjfve73wGwefNmpk2bxl/+8he2bdvG5s2b6dGjR6X9B1quKiUlJfU6vsLCQubNm8eqVavYtGkTn3zyCf379+db3/oW//jHP/i6bMgaICsri/T0dJo2bcqsWbM4cOAAmzdvZvPmzbzxxhucOnWqXrEEk50NjYlAIktDsl/V8QGXvfbaa9m0aRMACxcuZOjQodx6660AtGjRghdeeIHhw4fz4IMP8tRTT/HTn/6UK6+8EoDY2Fi+//3vV9pndeWmTJnCHXfcwbhx4wBo2bIlp0+f5r333uNnP/sZXbp0IS8vjzvvvJNu3bp53zd79mxatWrFo48+ytNPP82SJUs4f/48GRkZ/OxnPyv3+YcOHaJVq1a09NyA2rJlS+/rYcOG8cYbbzBhwgQAFi1axH//93/z9ddf89JLL7Fnzx6aNm0KQKdOnbj77rsD/i5DLfpqBMaYkCspKeHdd98lPT0dcJqFBg0aVK5Mz549OX36NF999RWbN2+utN2fQMtVtHbtWubNm8fWrVuZOHEiixcv9m5bsmQJ48ePZ8WKFezcuZO1a9eSl5fHhg0b+KBsLDKPlJQUOnXqRPfu3bnvvvt44403vNsyMzNZtGgRAPv372fHjh2MGDGC/Px8unbtyiWXXFLruMPFagTGRKDa/HIPprNnz5Kamsrnn3/OoEGDuOWWWzzxaJVXs4TjSqfBgwd7r6sfMGAAhw4dYv/+/Rw+fJi2bdvStWtXnnvuOVasWMGAAQMAOH36NDt37mTYsGHe/cTExPD222+zbt063n33XaZPn86GDRuYPXs2d9xxB9///vf56quvWLJkCePGjSOmkVyQYjUCY0zQlPUR7N27lwsXLnj7CPr27cv6siFdPHbv3k3Lli1p1aoVffv2ZcOGDTXuv7pysbGxlJaWAk7iuXDhgnfbxRdfXK7suHHjyMrKYvHixUycONH7npkzZ5KXl0deXh75+flMnTq10ueICIMHD2bmzJksWrSIZcuWeY995MiRZGdns2jRIm/ncVJSEvv27WtQfQIVRV0iOHzkvNshGBPxWrduzXPPPcevf/1rioqKuOeee1i1ahX//Oc/Aafm8NBDD/Ff//VfAMyYMYOf//zn7NixA4DS0lKeeeaZSvutrlxiYqI3SeTk5FBUVFRlfBMnTmTRokVkZWV5+xRuu+02Xn31VU6fPg3AF198waFDh8q9b//+/Xz66afe5by8PLp16+ZdzszM5JlnnuHLL7/kmmuuAZz+kKlTp/LQQw95k9OBAwf4y1/+EtB3GQ5RlwjOnXV+Mdw4wuYfMCaUBgwYQEpKCosWLaJ58+bk5OQwd+5cevfuTb9+/bj66quZNm0aAP379+c3v/kNmZmZXHXVVSQnJ3PgwIFK+6yu3He/+13ef/99Bg8ezJo1ayrVAnz17duXU6dOcfnll9OlSxcAbr31ViZNmsS1115Lv379GDduXKVf8UVFRfzoRz/iyiuvJDU1lcWLF/Pb3/7Wu/3WW29l//79TJgwoVyT19y5c+nQoQN9+vQhOTmZsWPH0qFDh7p/uUEmvtfxNgZpaWlasYpZGwW33UNCi6/hpZegffsgRmaMu7Zt28ZVV13ldhimAfD3tyAiG1Q1zV/5qKsRGGOMKS+kiUBERorIdhHJF5HH/Gz/oYhsFZFNIvKuiHTztx9jjDGhE7JEICIxwIvA7UAfIFNE+lQothFIU9X+QBbwVKjiMcYY418oawSDgXxV3a2qF4BFwBjfAqq6UlXL7sn+BIgPYTzGGGP8CGUiuBwo8Fku9KyrylTA7yhMInK/iKwXkfWHDx+ue0SqNI2p31gjxhgTaUKZCPzdLuj3EiUR+U8gDXja33ZVna+qaaqaVq9Lrvbvp2PT8xw539SZotIYY0xIE0EhkOCzHA/sr1hIRG4Gfgqkq2po7/bauBGAfxzubHMRGBMC0TAMdWJioncY6htuuIG9e/d6t5Udf9nj888/D2tsdRXKRLAO6CUi3UXkImAikOtbQEQGAH/ASQKH/OwjuDyT0rxzqEvIP8qYaBTpw1CXWblyJZs2bWL48OHMnTvXu77s+MseiYmJQfm8UAvZoHOqWiwi04B3gBjgVVXdIiJPAutVNRenKaglsNRzF94+VU0PVUwcPw7Alq9ah+wjjGkQMjJCs9/s7ICLRuIw1P6O8bnnngv4O2moQnofgaq+qapXqGpPVZ3nWfe4JwmgqjeraidVTfU8QpcEfOMKx4cYE8UidRjqit5++23Gjh3rXS4bfTU1NZWMUCXjELBhqI2JRLX45R5MkT4MdZkRI0bw5Zdf0rFjR79NQ41NdA0x4RlV8OsSy3/GhEI0DEMNTh/B3r176du3L48//niNcTd00ZMIzp6FL7/kfEkTdp5u5XY0xkS0SB2G2lfz5s35zW9+w5/+9CeOHTtWq++noYmuRAAcvdCUYo2ewzbGLZE4DHVFXbp0ITMz01vzaayiZxjqY8dg6lT2n23O5e9kuDaVnzGhYsNQmzI2DHUARo3q7HYIxhjTYERPr+nJkwCcKo5l+dvXuxyMMcY0HNFTI/DcBr7pqzYuB2KMMQ1L9NQIzjvDGB270NTlQIxpGPbt20dubi4nTpygTZs2jBkzhoSEhJrfaCJO9CQCYwwABw8eZNq0aWRnZ3uvuwd4+OGHycjI4IUXXqBzZ+tHiybRkwga2dVRxoTCwYMHGTp0KLt37yYuLo6MjAx69+7N9u3bycnJYdmyZWzcuJGPP/6YTp06uR2uCZPo6SPw3PBxrOgilwMxxj3Tpk1j9+7dDBw4kN27d5OVlcW8efPIyspiz5493vUPPvhgrfd94sQJ72iiAO+99x533HFHMMMH4LXXXvPefxCoxMREjhw5Umn97Nmz+fWvfx2s0Gpl3rx59O3bl/79+5OamsqaNWuYPXs2M2fOLFcuLy/Peyno6dOneeCBB+jZsyd9+/Zl2LBhrFmzpt6xRE8iKHAmS9t00jqLTXTat28f2dnZxMXFkZOTQ3x8+Zlh4+Pj+dvf/kZsbCzZ2dkUFBRUsSf/KiaCQAVraOiGoLi4OKByq1ev5u9//zuffvopmzZt4p///CcJCQlkZmaWGxAPYNGiRUyaNAmA73znO7Rr146dO3eyZcsWXnvtNb8JrraiJxF4bjf/qjjO5UCMcUdubi6lpaWkp6dXSgJlEhISGDNmDKWlpeTm5votU5XHHnuMXbt2kZqayowZMwDnF+y4ceO48sorueeee7wT0SQmJvLkk09y3XXXsXTpUnbt2sXIkSMZNGgQ119/Pf/+978BWLp0KcnJyaSkpJQb/G3//v2MHDmSXr16eYepAHj99dfp168fycnJ/PjHP/Yb57x58+jduzc333wz27dv91vGd3KZ5s2b8/7773PmzBm+/e1vc/XVVzNgwABycnR7dWQAAA+pSURBVHIAp4Yyfvx47rzzTm699VZUlRkzZpCcnEy/fv0qndgBDhw4QPv27Wna1Ll4pX379lx22WX07t2bNm3alPuVv2TJEiZOnMiuXbtYs2YNc+fOpUkT59Tdo0cPRo8eHdg/UHVUtVE9Bg0apHUyZ47q2LE6qtOzdXu/MQ3c1q1bq90+Z84cBfQnP/lJteVmzpypgM6ZM6dWn79nzx7t27evd3nlypV6ySWXaEFBgZaUlOg111yjH374oaqqduvWTX/1q195y9544426Y8cOVVX95JNPdMSIEaqqmpycrIWFhaqqevz4cVVV/eMf/6jdu3fXEydO6NmzZ7Vr1666b98+/eKLLzQhIUEPHTqkRUVFOmLECM3OzvZ+3uHDh3X9+vWanJysZ86c0ZMnT2rPnj316aefrvKYcnNz9brrrtMLFy7ozJkz9c9//rM3ll69eunp06f1j3/8o15++eV69OhRVVXNysrSm2++WYuLi/XgwYOakJCg+/fvL7ffU6dOaUpKivbq1Uu/973v6Xvvvefd9tRTT+kjjzyiqqqrV6/WtLQ0VVXNycnRsWPHBvRv4e9vAWceGL/n1eipERgT5dq0cZpFq/oVXKZsQLe2QZjXe/DgwcTHx9OkSZNKUzdOmDABcGoNH3/8MePHjyc1NZUHHnjAO37Q0KFDmTJlCi+99FK5JqSbbrqJ1q1b06xZM/r06cPevXtZt24dw4cPp0OHDsTGxnLPPfdUmk/gww8/JCMjgxYtWnDJJZd450vwZ+fOncyYMYPFixcTFxfHihUr+OUvf0lqairDhw/n3Llz7Nu3D4BbbrmFdu3aAbBq1SoyMzOJiYmhU6dO3HDDDaxbt67cvlu2bMmGDRuYP38+HTp0YMKECbz22muAMyBeVlYWpaWlLFq0iMzMzLp9+bUQPVcNGRPl0tPTefjhh8nNzaWwsNBv81BBQQE5OTk0adKk2pNkoMqaPsCZz9e3Db1sULjS0lLatGnjdxz/3//+96xZs4bly5eTmprqLeNvvxrglYGBzH9w5swZ7r77bl566SUuu+wywGk9WbZsGb179y5XtuIAd4HGERMTw/Dhwxk+fDj9+vVjwYIFTJkyhYSEBBITE3n//fdZtmwZq1evBpyB8j777DNKS0u9TUPBYjUCY6JE165dycjIoKioiDFjxlTqDC4oKGDs2LEUFxeTkZFR65vLWrVqVeNonf5ccskldO/enaVLlwLOifQzz/ziu3btYsiQITz55JO0b9++2g7sIUOG8P7773PkyBFKSkp4/fXXueGGG8qVGTZsGNnZ2Zw9e5ZTp07xxhtv+N3Xfffdx3333cf1138zHM1tt93G888/7z3Rb9y40e97hw0bxuLFiykpKeHw4cN88MEHDB48uFyZ7du3s3PnTu9yXl4e3bp18y5nZmYyffp0evbs6U3YPXv2JC0tjSeeeMIbw86dO719FfVhNQJjosgLL7zAxo0b+fTTT+nRowdjxozhiiuuYMeOHeTk5FBcXEyPHj3qNKzypZdeytChQ0lOTub222+vVSfmX//6V773ve8xd+5cioqKmDhxIikpKcyYMYOdO3eiqtx0002kpKRUOQNYly5d+MUvfsGIESNQVUaNGsWYMWPKlRk4cCATJkwgNTWVbt26lTvRl9m7dy9ZWVns2LGDV199FYCXX36ZWbNm8cgjj9C/f39UlcTERP7+979Xen9GRgarV68mJSUFEeGpp56qdIPe6dOn+cEPfsCJEyeIjY0lKSmJ+fPne7ePHz+ehx9+mOeff77c+15++WUeffRRkpKSaNGiBZdeeilPP/10YF9yNaJnGOq5c2HDBkavvoHlBx8JfmDGuCzQYairurO4SZMmZGRk8OKLL9rNZI1cbYehthqBMVGmc+fOZGVlUVBQQG5uLsePH6dt27akp6fbWENRyhKBMVEqISGhTncQm8hjncXGGBPlrEZgTJQqLi7mhRdeAJwxiGJj7XQQrexf3pgotXDhQqZPnw5Au3btmDx5sssRGbdY05AxUai4uJg5c+Z4l+fMmRPwgGkm8lgiMCYKLVy4kPz8fJKSkkhKSiI/P5+FCxfWa5+RNAz1+fPnmTBhAklJSQwZMqTc0BgV99uvXz9SU1NJS/N7ZSazZ8/m8ssvJzU1lT59+vD66697t02ZMoXu3bt7B7h77rnnanVcwWKJwJgo41sbmDVrFrNmzQLqXyuIpGGoX3nlFdq2bUt+fj7Tp0+vciRTgJUrV5KXl0d19zdNnz6dvLw8cnJyeOCBByjyjIYM8PTTT5OXl0deXh4PPfRQUI8jUJYIjIkyvrWBSZMmMWnSpKDUCiJpGOqcnBzuvfdeAMaNG8e7774b8BhC1enVqxctWrTg+PHj9d5XUFU1LGlDfdgw1Mb4V9Mw1KqqRUVFmpSUpIAuWLDAu37BggUKaFJSkhYVFdXp8yNpGOq+fftqQUGBd7lHjx56+PDhSuUSExN1wIABOnDgQP3DH/7g93t54oknvJ+xYcMGve6667zb7r33Xk1MTNSUlBRNSUnRTZs21fQ1B8SGoTbGVKlibaBMsGoFFTXWYajVz69/f6OWfvTRR3z66ae89dZbvPjii5U+r8yzzz5L7969GTJkCLNnzy63zbdpqF+/fn7fH2ohTQQiMlJEtotIvog85md7UxFZ7Nm+RkQSQxXLunXHQrVrYxqFin0DvvcNxMbGBq2vwFdth6Eue2zbtg1whqGeO3cuBQUFpKamcvTo0Sr36+/k7U8gw1DHx8d7RzotLi7m5MmT3vkGfJUNUd2xY0cyMjJYu3at3/1Nnz6d7du3s3jxYiZPnsy5c+cCijVcQpYIRCQGeBG4HegDZIpInwrFpgLHVTUJeBb4VajiOXToPABXp9V/sg1jGqOqagNl6lsriKRhqNPT01mwYAEAWVlZ3HjjjZUSyJkzZ7zHe+bMGVasWEFycnK1x/qtb32LtLQ0774bilDWCAYD+aq6W1UvAIuAMRXKjAHKvpEs4CYJJF3Xw+zZfUO5e2MaJN/aQH5+PnFxcYhIuUdcXBz5+flA3WoFvsNQl3UWB+qvf/0rr7zyCikpKfTt29c7xv6MGTO8nb/Dhg0jJSWlyn34DkOdkpLCwIEDqx2G+q677vI7DDXA1KlTOXr0KElJSTzzzDP88pe/BJxO6lGjRgHw5Zdfct1115GSksLgwYMZPXo0I0eOrPFYH3/8cZ555plyI7+6rqrOg/o+gHHAyz7L/w94oUKZzUC8z/IuoL2ffd0PrAfWd+3atU6dJwvTHtZDt09Q3bixTu83pqGrrrO4rDO4Ng/fzmTTuNS2sziUQ0z4+2VfsREvkDKo6nxgPjjzEdQlmMx1v6nL24yJCJMnT7YhJEyVQtk0VAj4Dm4eD+yvqoyIxAKtAevVNcaYMAplIlgH9BKR7iJyETARyK1QJhe41/N6HPB/niqMMaYO7L+PqcvfQMgSgaoWA9OAd4BtwBJV3SIiT4pI2cW7rwCXikg+8EOg0iWmxpjANGvWjKNHj1oyiGKqytGjR2nWrFmt3hc9cxYbE+GKioooLCxscNeom/Bq1qwZ8fHxxMXFlVtvcxYbEwXi4uLo3r2722GYRsiGmDDGmChnicAYY6KcJQJjjIlyja6zWEQOA3vr+Pb2QOVpiiKbHXN0sGOODvU55m6q2sHfhkaXCOpDRNZX1WseqeyYo4Mdc3QI1TFb05AxxkQ5SwTGGBPloi0RzHc7ABfYMUcHO+boEJJjjqo+AmOMMZVFW43AGGNMBZYIjDEmykVkIhCRkSKyXUTyRaTSiKYi0lREFnu2rxGRxPBHGVwBHPMPRWSriGwSkXdFpJsbcQZTTcfsU26ciKiINPpLDQM5ZhG52/NvvUVEaj/5cAMTwN92VxFZKSIbPX/fo9yIM1hE5FUROSQim6vYLiLynOf72CQiA+v9oVVNXdZYH0AMzpSXPYCLgM+APhXKfB/4vef1RGCx23GH4ZhHAC08r78XDcfsKdcK+AD4BEhzO+4w/Dv3AjYCbT3LHd2OOwzHPB/4nud1H+Bzt+Ou5zEPAwYCm6vYPgp4C2eGx2uANfX9zEisEQwG8lV1t6peABYBYyqUGQMs8LzOAm4SEX/TZjYWNR6zqq5U1a89i5/gzBjXmAXy7wwwB3gKiISxmQM55u8CL6rqcQBVPRTmGIMtkGNW4BLP69ZUngmxUVHVD6h+psYxwJ/U8QnQRkS61OczIzERXA4U+CwXetb5LaPOBDongUvDEl1oBHLMvqbi/KJozGo8ZhEZACSo6t/DGVgIBfLvfAVwhYh8JCKfiMjIsEUXGoEc82zgP0WkEHgT+EF4QnNNbf+/1ygS5yPw98u+4jWygZRpTAI+HhH5TyANuCGkEYVetccsIk2AZ4Ep4QooDAL5d47FaR4ajlPr+1BEklX1RIhjC5VAjjkTeE1V/0dErgX+7Dnm0tCH54qgn78isUZQCCT4LMdTuaroLSMisTjVyeqqYg1dIMeMiNwM/BRIV9XzYYotVGo65lZAMvCeiHyO05aa28g7jAP9285R1SJV3QNsx0kMjVUgxzwVWAKgqquBZjiDs0WqgP6/10YkJoJ1QC8R6S4iF+F0BudWKJML3Ot5PQ74P/X0wjRSNR6zp5nkDzhJoLG3G0MNx6yqJ1W1vaomqmoiTr9Iuqo25nlOA/nb/hvOhQGISHucpqLdYY0yuAI55n3ATQAichVOIjgc1ijDKxeY7Ll66BrgpKoeqM8OI65pSFWLRWQa8A7OFQevquoWEXkSWK+qucArONXHfJyawET3Iq6/AI/5aaAlsNTTL75PVdNdC7qeAjzmiBLgMb8D3CoiW4ESYIaqHnUv6voJ8JgfBV4Skek4TSRTGvMPOxF5Hadpr72n3+MJIA5AVX+P0w8yCsgHvgbuq/dnNuLvyxhjTBBEYtOQMcaYWrBEYIwxUc4SgTHGRDlLBMYYE+UsERhjTJSzRGBMgESkRETyfB6JIjJcRE56Rr7cJiJPeMr6rv+3iPza7fiNqUrE3UdgTAidVdVU3xWeIcw/VNU7RORiIE9EysY2KlvfHNgoItmq+lF4QzamZlYjMCZIVPUMsAHoWWH9WSCPeg4MZkyoWCIwJnDNfZqFsituFJFLccY02lJhfVuc8X4+CE+YxtSONQ0ZE7hKTUMe14vIRqAU+KVnCIThnvWbgN6e9QfDGKsxAbNEYEz9faiqd1S1XkSuAFZ5+gjywh2cMTWxpiFjQkxVdwC/AH7sdizG+GOJwJjw+D0wTES6ux2IMRXZ6KPGGBPlrEZgjDFRzhKBMcZEOUsExhgT5SwRGGNMlLNEYIwxUc4SgTHGRDlLBMYYE+X+P4jofOmPupt4AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fpr_rf, tpr_rf, thresholds_rf = roc_curve(y_test, rf.predict_proba(X_test)[:, 1])\n", "\n", "plt.plot(fpr, tpr, label=\"ROC Curve SVC\")\n", "plt.plot(fpr_rf, tpr_rf, label=\"ROC Curve RF\")\n", "\n", "plt.xlabel(\"FPR\")\n", "plt.ylabel(\"TPR (recall)\")\n", "plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,\n", " label=\"threshold zero SVC\", fillstyle=\"none\", c='k', mew=2)\n", "close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))\n", "plt.plot(fpr_rf[close_default_rf], tpr[close_default_rf], '^', markersize=10,\n", " label=\"threshold 0.5 RF\", fillstyle=\"none\", c='k', mew=2)\n", "\n", "plt.legend(loc=4)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AUC for Random Forest: 0.937\n", "AUC for SVC: 0.916\n" ] } ], "source": [ "from sklearn.metrics import roc_auc_score\n", "rf_auc = roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1])\n", "svc_auc = roc_auc_score(y_test, svc.decision_function(X_test))\n", "print(\"AUC for Random Forest: {:.3f}\".format(rf_auc))\n", "print(\"AUC for SVC: {:.3f}\".format(svc_auc))" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gamma = 1.00 accuracy = 0.90 AUC = 0.50\n", "gamma = 0.05 accuracy = 0.90 AUC = 1.00\n", "gamma = 0.01 accuracy = 0.90 AUC = 1.00\n" ] }, { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x20b5ce8cec8>" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDM5My43MzEyNSAyNjIuMTgzNzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicxVdNbxs3EL3zV/DYHErPBz8PPcRoYyCnxhXQQ9BDoDhODTlAG6D++33clZakvPZCQIEaWFj7RM6bGT7OjNg+mKu3bO+/W7IPeJ7sR/sH/n+2bG/s1c93//y5v7u9ubb774aAPxot6pKyBLwdujeJ4jhrCkBpePtqzDcDDmy4gdl7Yzw2pVx3aXLB12UwnLILZ+ihRyV4V442m4UeBdMXxCNzPPcgQ0wud1FVF/CN8clRkZJi70EHekdHB8w1fH8y1zt79Y4tk919QdSOteTAHo8VcSXY3WfzAzl6Y3cP9pedmWgNszotRDTw9OjrREzBeY05M+MZmOSMKRUXcyIdmTp0gykxDlILUy48MvmRSXxAwj3FgalHX2cSzY6UiqdQ/MgURyboyklmKqNOOnTjmMg7lVQS4VAHonxGtCK9UZAbRAm+Vy0uFNyUMAZP7Krv1VZxMluvG979ejv6tHpHPJ32dFdkNckwkjjje4UdH+unVYU2mkwOciHvB56GbhGl6DQLR8gHN2hVpI2MkarMXjUPbB28RcdcHDFCU9Gg61Lt+CIuki9YPPI1eJMvsotBUkgapKwLtqtKBJFnXyQOfB28xScQr+RMKDKJ4rpu+ypILgmJ8MjX4E0+H10RVR9CzvKqiAmF9UdGHWXv0iRl1ugSzyp7nBpF3b9rmv7LrugZZAhDOOEM7N939nf7zYp9j+fJVhvI7+kv2dsbM7aj1RI+tIs+9t/MB3uxE4jRKWtCjykkpn+BP2ftcauneHGUiq9Ka6BwdqhPQXWGC4cgL6EeCvS5NoKDQdfzJeDsxjj/q/hrxwRi1cncOcfgx8T837nwGa0rU/QvwhekqJ49PZsbzqS3WptXRxJY3ewuZ+svmI6G1c3Ma9av3uo8Hr2vsxiepynU42QmEbrKk3WcUSPnk7UFrYlEu2P2ITdUky4roR0mz2kA/XHh3nRoRkShnKw2OLtcJFG2HVUup7WdVw3c9yE0+ABYHQc4JB1cx9TT2oWsB1Nvd4GXKA4DugTccS2ZWcvsvk6s16eJVaYjeTjevtO8+qwMnmlRYly8ZedjqIMI5rG8Ak8CoEngx5M/jsNjTyiLpwn3bd5a6/n9p8fHTz+hK9DSF9Yr5UZ16FzGp7mDDB4v6MUOI/Ey7Wz+YuQJnb/PKpu9qLJ1vgf8xJGpdw7ON/jo/ez5+S+QlyJA1Yrz9iEEXkL4YP4FZgjNJgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjkxNQplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NCA+PgpzdHJlYW0KeJwzNTdVMFCwtAASpobmCuZGlgophlxAPoiVywUTywGzzEzMgCxDS2SWibEhkGViYYbEMjaxgMoiWAZAGmxNDsz0HK40AANxGJMKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicRZBLjgMhEEP3nMJHoP5wno6y6tx/Oy460WywJSjXM7kDE3vxyEyUbrxkuDvMFZ/hGTBz+EqYbMRM6E5cI5SuFOFUnwiOy9686aCJe0TOo54FWdXODWoBZ5Lmgu2CLueMFTfOya1G5c30o9cQvml3H9d5h/ZI497DVL7OOdXOu4oIaQtZ1bS+kGwUyQ5rPypN287LELHgbBpW6BzeCLtXdydLGH6/8jAlEz8P3fpRfF03o+sUZydXJmvPeehJ6V/1yqMPxXEp6Bex7cwk91+nU5KpU3tn72n9p7jH+w+QblY5CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NCA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfxoAKU8UTgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MSA+PgpzdHJlYW0KeJyzMLZQMFAwNDBTMDQ3UjA3NlIwMTVRSDHkAgmBmLlcMMEcMMsYqCwHLItgQWRBLCNTU6gOEAuiwxCuDsGCyKYBAOvnGDIKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU1ID4+CnN0cmVhbQp4nEWRS5IDIAhE956CI4D85DyZmlVy/+00mEw2dpeo/YRKI6YSLOcUeTD9yPLNZLbptRyrnY0CiiIUzOQq9FiB1Z0p4sy1RLX1sTJy3Okdg+IN566cVLK4UcY6qjoVOKbnyvqq7vy4LMq+I4cyBWzWOQ42cOW2YYwTo81Wd4f7RJCnk6mj4naQbPiDk8a+ytUVuE42++olGAeCfqEJTPJNoHWGQOPmKXpyCfbxcbvzQLC3vAmkbAjkyBCMDkG7Tq5/cev83v86w53n2gxXjnfxO0xru+MvMcmKuYBF7hTU8z0XresMHe/JmWNy031D51ywy91Bps/8H+v3D1CKZogKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byA1MiAvZm91ciAvZml2ZSAvc2l4IDU2IC9laWdodCA2MSAvZXF1YWwgNzAKL0YgODAgL1AgODIgL1IgODQgL1QgOTcgL2EgMTAzIC9nIDEwOSAvbSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9GIDE2IDAgUiAvUCAxNyAwIFIgL1IgMTggMCBSIC9UIDE5IDAgUiAvYSAyMCAwIFIgL2VpZ2h0IDIxIDAgUgovZXF1YWwgMjIgMCBSIC9maXZlIDIzIDAgUiAvZm91ciAyNCAwIFIgL2cgMjUgMCBSIC9tIDI2IDAgUiAvb25lIDI3IDAgUgovcGVyaW9kIDI4IDAgUiAvc2l4IDI5IDAgUiAvdHdvIDMwIDAgUiAvemVybyAzMSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTMgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMyIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA1MjAxMjAzNDYtMDQnMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgMzMKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDc4MDcgMDAwMDAgbiAKMDAwMDAwNzU3MCAwMDAwMCBuIAowMDAwMDA3NjAyIDAwMDAwIG4gCjAwMDAwMDc3NDQgMDAwMDAgbiAKMDAwMDAwNzc2NSAwMDAwMCBuIAowMDAwMDA3Nzg2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDEzODcgMDAwMDAgbiAKMDAwMDAwNjMwNyAwMDAwMCBuIAowMDAwMDA2MTA3IDAwMDAwIG4gCjAwMDAwMDU3MDAgMDAwMDAgbiAKMDAwMDAwNzM2MCAwMDAwMCBuIAowMDAwMDAxNDA3IDAwMDAwIG4gCjAwMDAwMDE1NTMgMDAwMDAgbiAKMDAwMDAwMTc5MSAwMDAwMCBuIAowMDAwMDAyMDkxIDAwMDAwIG4gCjAwMDAwMDIyMjcgMDAwMDAgbiAKMDAwMDAwMjYwNCAwMDAwMCBuIAowMDAwMDAzMDY5IDAwMDAwIG4gCjAwMDAwMDMyMTIgMDAwMDAgbiAKMDAwMDAwMzUzMiAwMDAwMCBuIAowMDAwMDAzNjk0IDAwMDAwIG4gCjAwMDAwMDQxMDUgMDAwMDAgbiAKMDAwMDAwNDQzMyAwMDAwMCBuIAowMDAwMDA0NTg1IDAwMDAwIG4gCjAwMDAwMDQ3MDYgMDAwMDAgbiAKMDAwMDAwNTA5NiAwMDAwMCBuIAowMDAwMDA1NDE3IDAwMDAwIG4gCjAwMDAwMDc4NjcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzMgPj4Kc3RhcnR4cmVmCjgwMjEKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEGCAYAAAB7DNKzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3yV5f3/8dfFRpbKEgmbKAmElTCsSqGYgLZA0Rax31Zo2QFRRBAUEXGBgpsViIr+nKgothYIVaxaGQlLCHtJAsqGMAIZ1++PO4QYkxBCTs65z3k/feThGfe58zl3wvnkHu/rMtZaRERE8lPK2wWIiIhvU6MQEZECqVGIiEiB1ChERKRAahQiIlKgMt4u4HLVqFHDNmzY0NtliIi4SkJCwmFrbc2ivNZjjcIY8zrwB+CgtbZFHs8b4GXgDuAM0N9au+ZS623YsCHx8fHFXa6IiF8zxuwt6ms9eejpTaB7Ac/fDgRnfQ0GZnmwFhERKSKP7VFYa/9rjGlYwCK9gLesk/hbYYy52hhTx1p7oFgK2LoVkpOLZVUiIm5lrSUh4dgVrcOb5yjqAvty3E/KeuyyGsVTPEUCCb94bNi2rkSN+w8ASyNhVnT+r1/Y++Lt0dNgV5O8l4tcCtFZ+zw7G8ND0/Nf57TR0GSXc3vmMIiLynu5xjth+kMX7/demP86h82EqDjntt6T3lN+9J4u3td7yvFkV+Dh/F97Kd5sFCaPx/IcT8QYMxjn8BT169f/xXO5mwQAX3/t/L9dO7jxJLA1/yq6dLl4u8pq4FTey11fB7o0c27XTAEKOE8SEQENqmS9bgv59r4qlaFLuxwPfJX/Om+8EdKvz7q9H70nvac86T3leCBw35O91Hu6TMaTYz1lHXr6Zz4ns+cAy62172Xd3wp0vtShp4iICJvzZHZvnHa/kIWQlgaPPAI7dsBNN8GYMWDy6kciIv5p+/YUBg1K4OuvDwHQo0cdZs5sS716lRKstRFFWac3cxSLgHuNoyNw4orPT7z3ntMkataE6Gg1CREJGGlpmUyZsoWwsKV8/fUhatUqzwcfdOSzz24mKOiqK1q3Jy+PfQ/oDNQwxiQBjwNlAay1s4EvcC6N3YFzeezfi/J9FpJ10G79eli4EEqVglGjoHLlK30LIiKusGbNMQYMiGfduuMA9O/fkGnTWlK9evliWb8nr3q65xLPW2B4sXyzEyfg5Zed23ffDSEhxbJaERFfduZMOpMmJfLCC9vIyLA0bHgVMTERREbWLtbv47pk9q9YC6++CseOQWgo3HWXtysSEfG4L788yODB8ezceZpSpeDBB29g8uTmVKpU/B/rrm8Uo08MgnuOMH1rZeeQU+nS3i5JRMRjjh07z5gxG4iN3Q1AWFg15s2LoH37az32Pd3dKHbvZlejI3A1MHw41Kjh7YpERDzm44+TGDFiLT/9lEq5cqWYODGUMWNupFw5z16X5OpG8VT6pIt3Onb0Wh0iIp60f/9ZRoxYy8KFzmgTt9xSg7lzw2nWrGqJfH9XN4qE4JMAhJ9qBrrISUT8TGamJTZ2N2PGbODEiTSqVCnD1KktGTKkMaVKldzl/65uFBdM2P93uMHbVYiIFJ/t21MYPDiB5cud4Nwf/nAhOHdlmYii8ItGISLiL9LSMnnhhW1MmrSJ1NRMatYsz6uvtqFPnyCMl0LErm4UkSuqwsmT0NDblYiIXLk1a44xcGA8a9c6wbl+/RowfXqrYgvOFZWrG0X0x7Vgx0mY6u1KRESK7syZdJ54IpHp0y8G5+bMCScq6jpvlwa4vFGIiLjdV18dZNCgi8G5UaOCefLJFh4JzhWV71RSBDvrpkIm5DM8vIiIzzp+3AnOzZvnBOdatKhKbGw7jwbnisrVjeKhB5IAWLjNy4WIiFyGTz5JYvjwi8G5xx4LYezYZh4PzhWVqxuFiIib7N9/lvvuW8snnzjBuZtvrs7cuRGEhJRMcK6o1ChERDzMWsu8eReDc5Url2Hq1DCGDm1SosG5olKjEBHxoB07TjFoUHx2cO73v6/DrFneCc4VlRqFiIgHpKdnMn36L4Nzr7zSmrvvrue14FxRqVGIiBSztWudGecuBOfuvbcBL7zg/eBcUalRiIgUk7NnM5g0aVN2cK5BAyc4162bbwTnisrVjWLaS0GwLwmGeLsSEQl0y5cfZNCgBHbsOIUx8MADTnCucmVXf8wCLm8UTZIrwC5vVyEigSyv4Ny8eRF06FDdy5UVH1c3ChERb1q4MJnhw9dw4IATnJswIYSHH/bd4FxRubpRzLzrIJyEaG8XIiIB5cABZ8Y5twXnisrVjSKuozPDXbSG8BCREmCt5fXX9/DQQ+s5ftwJzk2ZEsawYe4IzhWVqxuFiEhJ2bHjFIMHx/PVV+4NzhWVGoWISAHS0zN58cXtTJy4kdTUTGrUKMcrr7Shb1/3BeeKyrWN4qnUCVDB21WIiD9bu9aZcW7NGic497e/OcG5GjXcGZwrKtc2ioQKmwAIjweC/PMEkoh4x9mzGTzxxCamTbsYnJs9O5zu3d0dnCsq1zaKxgerQEoKE77rDPcH5g9PRIpf7uDc/fcH89RT/hGcKyrXvvPpCzrAsmUQHertUkTEDxw/fp6xYzcwd64TnGve3AnOdezoP8G5onJtoxARKS45g3NlyxomTAhl3Dj/C84VlRqFiASsn35KZcSINXz8sROcu+mm6sybF0FoqM575uTadtl7+DJ6L/R2FSLiRtZaYmN3ExKymI8/TqZy5TK8+mobvv22i5pEHrRHISIBZefOUwwenMCXXx4E4I47rmPWrHDq1/f/4FxRqVGISEC4EJx7/PFNnD2bEZDBuaLy6KEnY0x3Y8xWY8wOY8y4PJ6vb4z5yhiz1hizwRhzhyfrEZHAtG7dcTp2/JKxYzdw9mwGf/1rfTZv7s4999RXkygEj+1RGGNKAzOASCAJWG2MWWStTcyx2ATgQ2vtLGNMKPAF0NBTNYlIYDl7NoPJkxN5/vmtZGRY6td3ZpwL1OBcUXny0FN7YIe1dheAMeZ9oBeQs1FY4MKZo2rAfg/WIyIB5OuvDzFoUDzbtzvBuZEjm/L002EBHZwrKk9usbrAvhz3k4AOuZaZBCw1xtwHVAJuy2tFxpjBwGCA+vXrF3uhIuI/TpxIY+zYDcTEONNfKjh35Tx5jiKvA3821/17gDettUHAHcDbxphf1WStjbHWRlhrI2rWrAnAsK+aMWxmcZcsIm726afJhIYuJiZmF2XLGiZNCmXNmkg1iSvkyT2KJKBejvtB/PrQ0gCgO4C19ntjTAWgBnDwUiuPSgyCZVsguJiqFRHX+umnVO67by0ffZQEKDhX3Dy5R7EaCDbGNDLGlAP6AotyLfMj0BXAGBOCM3D4IQ/WJCJ+xJlxzgnOffRREpUqleaVV1rzzTcKzhUnj+1RWGvTjTEjgCVAaeB1a+0mY8xkIN5auwgYDcw1xozCOSzV31qb+/BUnpaGJoGBKE+9ARHxabmDc7fffh2zZys45wkePf1vrf0C55LXnI9NzHE7Ebi5KOue1WULdIGouCurUUTcJT09k5de2s7EiU5wrnr1crz8cmv+8hdlIjxF14mJiGusW3ecgQPjSUg4BsD//V99XnyxNTVrBtaMcyVNjUJEfF5qqhOce+45JzhXr15F5swJ5/bb63i7tICgRiEiPu2//3WCc9u2OcG5++5rytNPt6BKlbLeLi1gqFGIiE86cSKNhx/ewJw5TnAuNNQJzt10kzIRJU2NQkR8zmefJRMdvYb9+50Z5x59NIRx45pRvnxpb5cWkNQoRMRn/PyzE5xbsMAJznXseC3z5kXQvHk1L1cW2Fw7w93CGbexsLe3qxCR4mCt5Y03nODcggUXg3Pffvs7NQkfoD0KEfGqXbtOMWRIAsuWOcG57t2vY/bstjRoUMnLlckFahQi4hXp6Zm8/PJ2HntMwTlf59pGMfrPK6E7TN/l7UpE5HKtX+8E5+LjFZxzA9c2il21UqAWoEYh4hqpqRk8+aQTnEtPd4Jzs2eHc8cdCs75Mtc2ChFxFwXn3EuNQkQ86sSJNMaN28Ds2c7uf0hIFebNi+A3v6nh5cqksNQoRMRjFi3aT3T0GpKTz1K2rOGRR0IYP17BObdRoxCRYvfzz6mMHLmWDz90gnMdOjjBuRYtlIlwIzUKESk21lrmz9/Lgw+u49ixNCpVKs0zz4QxfHhTSpfWJa9u5dpGEbmpLiQng373RHxC7uBct261mT07nIYNFZxzO9c2iujlIbAsGaK9XYlIYMvIsFnBuY2cOeME5156qTX/938KzvkL1zYKEfG+DRuc4Nzq1U5w7i9/qc9LLyk4529c2yh21jwJjaGJtwsRCUCpqRk89dRmpk7dkh2cmzUrnN//XsE5f+TaRvFQn1XQBxbGebsSkcDyzTeHGDQoga1bUzAGRoxoyjPPKDjnz1zbKESkZJ08mca4cT8wa9ZOQMG5QKJGISKX9Pnn+xk27GJwbvz4EB55RMG5QKFGISL5UnBOQI1CRPJgreWtt/YyapQTnLvqKic4N2KEgnOBSI1CRH5h9+7TDBmSQFzczwBERdVmzhwF5wKZGoWIAE5w7pVXtjNhghOcu/ZaJzj3178qOBfoXNsopn3YHlaugu7erkTE/XIH5+65px4vvdSaWrUqeLky8QWubRRNDlXV7HYiVyg1NYOnn97MlClOcC4oqCKzZrXlD3+43tuliQ9xbaMQkSvz7beHGTQoni1bUgAYPrwJzzwTRtWqCs7JL7m2UczsvBmCNSagyOU6eTKN8eN/YOZMJzjXrJkTnLv5ZgXnJG+ubRRxzZOhOURrCA+RQvvnP53gXFLSWcqUMYwf34xHHw1RcE4K5NpGISKFd/BgKvffv473398HQPv2TnAuLEzBObk0NQoRP2at5e239zJq1HqOHj3PVVeV5umnW3DffcEKzkmhlfLkyo0x3Y0xW40xO4wx4/JZpo8xJtEYs8kY864n6xEJJLt3n6Z792/o1281R4+eJyqqNps2deOBB25Qk5DL4rE9CmNMaWAGEAkkAauNMYustYk5lgkGxgM3W2uPGWNqeaoekUCRV3DuxRdb8be/NVBwTorEk4ee2gM7rLW7AIwx7wO9gMQcywwCZlhrjwFYaw96sB4Rv/fDDycYODCeVauOAtC3bz1eflnBObkynmwUdYF9Oe4nAR1yLXMDgDHmO6A0MMlauzj3iowxg4HBAPXr1weg8cEqkJJS/FWLuNC5c86McwrOiSd4slHktY9r8/j+wUBnIAj4xhjTwlp7/BcvsjYGiAGIiIiwANMXdIBlyxSkkID33XeHGTjwYnAuOroJzz6r4JwUH082iiSgXo77QcD+PJZZYa1NA3YbY7biNI7VHqxLxC/kDs7deKMTnLvlFgXnpHh58qqn1UCwMaaRMaYc0BdYlGuZT4EuAMaYGjiHojSCk8gl/OtfB2jefAkzZ+6kTBnDhAkhrFsXqSYhHuGxPQprbboxZgSwBOf8w+vW2k3GmMlAvLV2UdZzUcaYRCADGGOtPVKY9fcevgyGw0IlsyWA5A7OtWt3DfPmRdCy5dVerkz8mUcDd9baL4Avcj02McdtCzyY9SUi+bDW8v/+34888MC67ODcU0+1YORIBefE85TMFvFxe/acZujQBJYscWaci4x0Zpxr1EgzzknJUKMQ8VEZGZbXXtvBo4/+wOnTCs6J96hRiPigjRud4NzKlU5w7u67neBc7doKzknJU6MQ8SHnzmXwzDNbePbZzaSlWerWdYJzPXooOCfeo0Yh4iP+9z8nOLd5sxOcGzasCVOmKDgn3nfZjSJrsL++1tp3PFBPoQ37qhls3uLE80RcLCXlYnDOWgXnxPfkG7gzxlQ1xow3xrxmjIkyjvtwAnF9Sq7EvEUlBhGlDIW43L/+dYDQ0CXMmLGT0qUNjz6q4Jz4noL2KN4GjgHfAwOBMUA5oJe1dl0J1Cbitw4dOsf996/lvfcUnBPfV1CjaGytDQMwxswDDgP1rbU+MWTr0tAkMBDl7UJELsOF4NyoUes4cuQ8FSs6wbn771dwTnxXQY0i7cINa22GMWa3rzQJgFldtkAXdPhJXGPv3tMMGXIxOHfbbbWYMyecxo0re7kykYIV1ChaGWNOcnG48Io57ltrbVWPVyfiB3IH5665piwvvNCafv0UnBN3yLdRWGtLl2QhIv5o06YTDBhwMTjXp08Qr7zSRsE5cZV8G4UxpgIwFGgKbMAZ/TW9pAoTcbPcwbnrr6/ArFnh9Oyp4Jy4T0GHnubjnKf4BrgDaA7cXxJFibhZ7uDc0KGNmTKlJdWqKTgn7lRQowjNcdVTLLCqZEoScaeUlDQeeWQjM2bswFq44YbKzJsXwa231vR2aSJXpLBXPaXrpJtI/r744gBDhyawb99ZypQxPPxwMyZMCKFCBZ3qE/crqFG0zrrKCZwrnXzqqqeFM26DZcsg2ptVSKA7dOgcDzywjnff/RGAiAgnONeqlYJz4j8KahTrrbVtSqwSERex1vLOO86MczmDcyNHNqVMGU9ORS9S8gpqFLbEqhBxkb17TzN06BoWL/4JUHBO/F9BjaKWMSbfuayttS94oJ5CG/3nldAdpu/yZhUSSDIyLDNm7OCRRxSck8BSUKMoDVTmYjLbp+yqlQK1cMayFfGwTZucGedWrHCCc3/+sxOcu+46BefE/xXUKA5YayeXWCUiPujcuQyefXYLzzxzMTg3c2ZbevWq6+3SREpMQY3CJ/ckRErK998fYeDAeBITnYv/hgxpzNSpCs5J4CmoUXQtsSpEfEhKShqPPrqR1167GJybOzeCTp0UnJPAVNCggEdLshARX/Dvfx9g6NA1/PjjGUqXNowdeyMTJ4YqOCcB7bLnzBbxR4cOnWPUqHW8844TnAsPv4bYWAXnRMDFjSJyU11ITtaZFLki1lrefdcJzh0+7ATnJk9uzgMPBCs4J5LFtY0ienkILEvWEB5SZHv3nmbYsDX8+99OcK5rVyc416SJgnMiObm2UYgUVUaGZebMHYwf7wTnrr66LC+80Ir+/RsqOCeSB9c2ip01T0JjaOLtQsRVEhNPMnBgPN9/fwRQcE6kMFzbKB7qswr6wMI4b1cibnDuXAZTpmzh6acVnBO5XK5tFCKFpeCcyJVRoxC/depUOo888kN2cC442AnO/fa3Cs6JXA6PXv9njOlujNlqjNlhjBlXwHJ/MsZYY0yEJ+uRwLF48U80b76EV1/dQalShvHjm7F+fZSahEgReGyPwhhTGpgBRAJJwGpjzCJrbWKu5aoAI4GVnqpFAsfhw86McxeCc23bXk1sbDtat1ZwTqSoPLlH0R7YYa3dZa09D7wP9MpjuSeB54BUD9Yifu5CcC4kZDHvvPMjFSuW5vnnW7JyZVc1CZEr5MlzFHWBfTnuJwEdci5gjGkD1LPW/tMY85AHaxE/9uOPZxg2LIEvvnCCc7/7XS1iYhScEykunmwUeSWXsqdXNcaUAl4E+l9yRcYMBgYD1K9fH4BpH7aHlauge3GUKm6UmWmZOXMn48f/wKlT6Vx9dVmmT2/F3/+u4JxIcfJko0gC6uW4HwTsz3G/CtACWJ71j/o6YJExpqe1Nj7niqy1MUAMQEREhAVocqiqZrcLYLmDc3fdVZdXX21DnToVvVyZiP/xZKNYDQQbYxoByUBf4C8XnrTWngBqXLhvjFkOPJS7SYjkdP58ZnZw7vz5TOrUqcCMGW3p3VvBORFP8VijsNamG2NGAEtw5t9+3Vq7yRgzGYi31i66kvXP7LwZgjUmYCBZscIJzm3a5ATnBg1qxHPPteTqq8t5uTIR/+bRwJ219gvgi1yPTcxn2c6Xs+645snQHKI1hIffO3UqnQkTNvLKK9uzg3MxMeF07lzL26WJBAQls8WnLVnyE0OGJLB3rzPj3JgxzoxzFStqxjmRkqJGIT7p8OFzPPjget5+ey/gBOfmzYugTZtrvFyZSOBRoxCfYq3lvff2cf/9azl8+DwVKpRi8uQWjBqlGedEvEWNQnxG7uBcly41iYmJoGlTBedEvEmNQrwud3CuWjUnOPePfyg4J+ILXNsoGh+sAikp3i5DrtDmzU5w7n//U3BOxFe5tlFMX9ABli1TkMKlFJwTcQ/XNgpxr5UrneDcxo0Kzom4gRqFlJjcwbmmTZ3gXJcuCs6J+DLXXm/Ye/gyei/0dhVSWEuW/ESLFkt4+eXtlCplePjhG9mwIUpNQsQFtEchHnXkyDlGjboYnGvTxgnOtW2r4JyIW6hRiEdYa/ngg32MHLmOQ4fOUaFCKZ54ojkPPniDgnMiLqNGIcVu374zREev4Z//PABA5841iYkJJzi4ipcrE5GiUKOQYpOZaZk9eyfjxv1ASooTnJs2rSUDBjRScE7ExdQopFhs3nySQYPi+e47Jzh35511ee01BedE/IEahVyR8+czmTp1C0895QTnrruuAjNmtOHOO4O8XZqIFBPXNophXzWDzVsg2NuVBK7cwbmBAxvx/PMKzon4G9c2iqjEIFimRuENp087wbmXX3aCc02aVGLu3AhlIkT8lGsbhXjH0qXOjHN79jgzzo0efQOTJjXXjHMifsy1jWJpaBIYiPJ2IQHiyBFnxrm33nKCc61bX01srIJzIoHAtY1iVpct0AWi4rxdiX/LKzg3aZITnCtbVsE5kUDg2kYhnpeUdIZhwxScEwl0ahTyK3kF555/3gnOlSql4JxIoFGjkF/YsuUkgwYl8O23hwHo3dsJzl1/vYJzIoFKjUIAJzj33HNbePLJi8G5115rw113KTgnEujUKITVq48yYEA8P/xwAoABA5zg3DXXKDgnImoUAe306XQee8wJzmVmOsG5mJgIfvc7BedE5CLXNoqFM26DZcsg2tuVuFPu4NzYsTfw+OOhXHWVa38lpJilpaWRlJREamqqt0uRy1ChQgWCgoIoW7Zssa1TnwoB5siRc4wevZ758xWck4IlJSVRpUoVGjZsqGHiXcJay5EjR0hKSqJRo0bFtl4lpgLEheBcaOgS5s/fS4UKpZgyJYxVq7qqSUieUlNTqV69upqEixhjqF69erHvBbp2j2L0n1dCd5i+y9uV+L6kJGfGuc8/d4Jzv/1tTebOVXBOLk1Nwn088TNzbaPYVSsFagFqFPnKzLTMmbOLhx/eQEpKOlWrlmHatFYKzonIZdGhJz+1ZctJfvvb5URHryElJZ0//vF6Nm/uzqBBjdUkRDzstddeo2nTphhjOHz4cL7LzZ8/n+DgYIKDg5k/f3724wkJCYSFhdG0aVNGjhyJtRaAo0ePEhkZSXBwMJGRkRw7dszj7wXUKPxOWlomTz+9mVat4vj228PUrl2ejz66iU8++Y3S1SIl5Oabb2bZsmU0aNAg32WOHj3KE088wcqVK1m1ahVPPPFE9gf/sGHDiImJYfv27Wzfvp3FixcDMGXKFLp27cr27dvp2rUrU6ZMKZH349FDT8aY7sDLQGlgnrV2Sq7nHwQGAunAIeAf1tq9nqzJn+UOzv3jHw2ZNq2VgnNyxYxZ4JH1WvvnSy7z5JNP8s4771CvXj1q1KhBeHg41apVIyYmhvPnz9O0aVPefvttrrrqKvr370/FihXZsmULe/fu5Y033mD+/Pl8//33dOjQgTfffBOAypUrM3z4cJYtW8Y111zDM888w9ixY/nxxx956aWX6NmzJ3v27OFvf/sbp0+fBpy9hN/85jeFel9t2rS55DJLliwhMjKSa6+9FoDIyEgWL15M586dOXnyJDfddBMA9957L59++im33347n332GcuXLwegX79+dO7cmalTpxaqpivhsT0KY0xpYAZwOxAK3GOMCc212FogwlrbEvgIeM5T9fiz06fTGT16PR07/ocffjhB48aVWLasE7Gx7dQkxNXi4+P5+OOPWbt2LZ988gnx8fEA3HnnnaxevZr169cTEhJCbGxs9muOHTvGl19+yYsvvkiPHj0YNWoUmzZt4ocffmDdunUAnD59ms6dO5OQkECVKlWYMGECcXFxLFy4kIkTJwJQq1Yt4uLiWLNmDR988AEjR44EICUlhdatW+f5lZiYWOj3lpycTL169bLvBwUFkZycTHJyMkFBQb96HODnn3+mTp06ANSpU4eDBw8WZbNeNk/uUbQHdlhrdwEYY94HegHZW9Ja+1WO5VcAf/VgPX5p2bKfGTw4gd27T1OqFDz00A088URzBeekWBXmL39P+Pbbb+nVqxcVKzqHTXv06AHAxo0bmTBhAsePH+fUqVN069Yt+zU9evTAGENYWBi1a9cmLCwMgObNm7Nnzx5at25NuXLl6N69OwBhYWGUL1+esmXLEhYWxp49ewAncDhixAjWrVtH6dKl2bZtGwBVqlTJbjhX4sJ5h5yMMfk+7k2e/DSpC+zLcT8J6FDA8gOAf+f1hDFmMDAYoH79+gBEbqoLyckQoOdljx49z+jR63nzzT0AtGpVjdjYdoSHKxMh/iOvD02A/v378+mnn9KqVSvefPPN7MMxAOXLlwegVKlS2bcv3E9PTwegbNmy2R++OZfLucyLL75I7dq1Wb9+PZmZmVSoUAFw9ihuvfXWPOt69913CQ3NfeAkb0FBQb+oOykpic6dOxMUFERSUtIvHr/++usBqF27NgcOHKBOnTocOHCAWrVKZrgdT57MzusjPM+fujHmr0AE8Hxez1trY6y1EdbaiJo1awIQvTyE6FnFVap7WGv58MN9hIQs5s0391C+fCmeeaYFq1ffpiYhfueWW27h888/JzU1lVOnTvGvf/0LcD6s69SpQ1paGu+8845HvveJEyeoU6cOpUqV4u233yYjIwO4uEeR11dhmwRAt27dWLp0KceOHePYsWMsXbqUbt26UadOHapUqcKKFSuw1vLWW2/Rq1cvAHr27Jl9ddT8+fOzH/c0TzaKJKBejvtBwP7cCxljbgMeBXpaa895sB7XS04+yx//+D/uvnsFBw+eo1OnGmzYEMX48SGallT8Urt27ejZsyetWrXizjvvJCIigmrVqvHkk0/SoUMHIiMjadasmUe+d3R0NPPnz6djx45s27aNSpUqFfq1r7zySk8mGqAAAA7lSURBVPaeQcuWLRk4cCDgnHO5cPvaa6/lscceo127drRr146JEydmn9ieNWsWAwcOpGnTpjRp0oTbb78dgHHjxhEXF0dwcDBxcXGMGzeumN91Pqy1HvnCOay1C2gElAPWA81zLdMG2AkEF3a94eHh1lprd3zwjN3x4B+tXbrU+ruMjEw7a9YOW7XqJxY+tFWrfmLnzNlpMzIyvV2a+LHExERvl2CttTYlJcVaa+3p06dteHi4TUhI8HJFvi+vnx0Qb4v4ee6xcxTW2nRjzAhgCc7lsa9bazcZYyZnFbwI51BTZWBB1vHCH621PQuz/of6rII+sDDOQ2/AR2zdmsKgQfF8840T2unV63pmzGhL3brKREhgGDx4MImJiaSmptKvXz/atm3r7ZICjkcvjbHWfgF8keuxiTlu3+bJ7+9maWmZPP/8ViZPTuTcuUxq1y7Pa6+15a676nr9CgiRkvTuu+96u4SAp2sofVB8vBOc27DhYnDu+edbce21ykSISMlTo/Ahp0+n8/jjm3jxxW1kZkLjxpWIiQmna9fa3i5NRAKYGoWPUHBORHyVPoW87OjR8zz00HreeGMPAC1bViM2NoKIiGu9W5iISBZdfO8l1loWLNhHaOhi3njjYnAuPv42NQkRl9u9ezcdOnQgODiYu+++m/Pnz+e53LPPPkvTpk258cYbWbJkSfbjDRs2JCwsjNatWxMREZH9uIYZv0zTPmzPtNHerqJokpPP0rv3/+jTZwU//3yOW2+twfr1Cs6J+IuHH36YUaNGsX37dq655ppfDFp4QWJiIu+//z6bNm1i8eLFREdHZ6e/Ab766ivWrVuXPRAi+Okw457U5FBV181ul5lpmTt3F2PHbuDkSWfGueeea6nJhMT39e7tmfUuXHjJRdw2zLi1li+//DL7st5+/foxadIkhg0b9ovlPvvsM/r27Uv58uVp1KgRTZs2ZdWqVdnDi+fF74YZl1/ati2FLl2WM3ToGk6eTKdnz+tJTOzOkCFN1CRE8uHGYcaPHDnC1VdfTZkyzt/hOYcJzym/YcbBGS02KiqK8PBwYmJispfxx2HGPWpm580QDNHeLuQS0tIymTZtK0884QTnatUqz2uvteFPfwpScE7coxB/+XuCG4cZP3To0K8ey+vfui1gOPHvvvuO66+/noMHD2aPZ9WpU6dLbi9PcW2jiGueDM0h2oeH8IiPP8rAgfGsX+8E5/r3b8j06QrOiRRWXh+m4NvDjIeEhHD8+HHS09MpU6bML4YJzykoKIh9+y7OxJBzuQv/r1WrFr1792bVqlV06tTJL4cZD1hnzqQzZsx6OnT4D+vXn6BRo0rExXXijTfaqUmIXAY3DjNujKFLly589NFHQP7Dgffs2ZP333+fc+fOsXv3brZv30779u05ffo0KSkpgHOIbOnSpbRo0SL7Nd4YZty1exS+6j//cYJzu3Y5wbnRo53gXKVK2tQilyvnMOMNGjT41TDjDRo0ICwsLPuDtThFR0dz1113sWDBArp06XJZw4xPnTqVvn37MmHCBNq0acOAAQMAWLRoEfHx8UyePJnmzZvTp08fQkNDKVOmDDNmzKB06dL8/PPP9M66eCA9PZ2//OUv2YfJxo0bR58+fYiNjaV+/fosWOCZucxzM/nt2vmqiIgIGx8fT2+cDbkwLhoiI71cFRw75sw4lzM4N29eBO3aKRMh7rR582ZCQkK8XQanTp2icuXKnDlzhk6dOhETE6MRZC8hr5+dMSbBWhuRz0sKpD9zr5C1lo8/TmbEiDX8/PM5ypcvxcSJoYwZc6MyESLFQMOMe58axRVITj7L8OFr+OwzZ+K+W2+twdy5Edx4YxUvVybiPzTMuPe5tlE0PlgFPHBcsjAyMy3z5u1mzJj1nDyZTpUqTnBu8GAF50TE/7i2UUxf0AGWLSvxIMW2bSkMHpzA118710r36FGHmTPbEhR0VckWIiJSQlzbKEpaWlom06dvY9KkTdnBuVdfbcOf/6zgnIj4NzWKQkhIOMbAgfGsW3cccIJz06a1pHr18pd4pYiI+7n2spzew5fR28OjCpw5k87YsRto334Z69Ydp2HDq1i61AnOqUmISH6udJjxf/zjH9SqVSs7aHeBhhn3MV9+eZCWLZfy/PNbAXjwwRvYuLEbkZGallRECnalw4z379+fxYsX/+o1GmbcRxw7dp4xYzYQG7sbgLAwJzjXvr2CcxLYLoRc8zKMYUQRBcBSljKLWfkuu5DLOxQQiMOMd+rUKXtwwtyv0TDjXvbxx0mEhi4hNnY35cqV4qmnnBnn1CREvCNQhxnPj4YZ96L9+88yYsRaFi50fki33FKDuXPDadasqpcrE/Edhd0TiMr6rzgE6jDjviagG0VewbmpU1syZIiCcyK+IFCHGc+PhhkvYdu3p/C7333NkCEJnDyZTo8edUhM7MawYZpxTsRXBOIw4wXx1jDjrm0Uw75qxrCZl/+6tLRMpkzZQljYUr7++hA1a5bn/fc78tlnNytdLeJjcg4zfuedd/5qmPELs795QnR0NPPnz6djx45s27btsocZf+GFF2jatClHjhz5xTDjF86B5BxmvHv37tnDjAPcc8893HTTTWzdupWgoKDsczDjxo0jLi6O4OBg4uLiGDduXDG/67y5dphxZszIGsKj8MOMr1lzjAEDLgbn+vVrwPTprZSJEMmDhhl3Lw0zXgRnzqQzaVIiL7ywjYwMS8OGVzFnTjhRUdd5uzQRuQQNM+59rm0US0OTwHDJayu+/PIggwfHs3OnM+PcqFHBPPlkC804J+ISGmbc+1z7aTmryxboAlFxeT+fOzjXokVVYmPbKRMhchmstT57yabkzROnE1zbKAry8cdJjBixlp9+SqVcuVI89lgIY8c2o1w51567FylxFSpU4MiRI1SvXl3NwiWstRw5ciT7Ut7i4leNIndw7uabqzN3bgQhIQrOiVyuoKAgkpKS8gyQie+qUKECQUFBxbpOv2gU1l4Izm3gxIk0Klcuw9SpYQwdqkyESFGVLVuWRo0aebsM8QEebRTGmO7Ay0BpYJ61dkqu58sDbwHhwBHgbmvtnsv5HgcPnuPu333N8uXOXz2//30dZs1qS716ykSIiBQHjx20N8aUBmYAtwOhwD3GmNBciw0AjllrmwIvApc9DOLjkzayfLkTnHvvvQ58/vnNahIiIsXIk2d32wM7rLW7rLXngfeB3HnzXsD8rNsfAV3NZZ41S0uz3HtvAzZv7kbfvvV10k1EpJh58tBTXWBfjvtJQIf8lrHWphtjTgDVgcM5FzLGDAYGZ909ZYzZmnW7Bnx6mLfgrbeKu3zXqUGu7RagtB0c2g4XaVs4bizqCz3ZKPL60z73Bb6FWQZrbQwQ86tvYEx8USPp/kbbwqHt4NB2uEjbwmGMiS/qaz156CkJqJfjfhCwP79ljDFlgGrAUQ/WJCIil8mTjWI1EGyMaWSMKQf0BRblWmYR0C/r9p+AL63bRikUEfFzHjv0lHXOYQSwBOfy2NettZuMMZOBeGvtIiAWeNsYswNnT6LvZX6bXx2OCmDaFg5tB4e2w0XaFo4ibwfXDTMuIiIlS4MfiYhIgdQoRESkQK5oFMaY7saYrcaYHcaYX839Z4wpb4z5IOv5lcaYhiVfpecVYjs8aIxJNMZsMMb8xxjTwBt1loRLbYscy/3JGGONMX55eWRhtoMxpk/W78UmY4xfTu5QiH8b9Y0xXxlj1mb9+7jDG3V6mjHmdWPMQWPMxnyeN8aYV7K20wZjTOFmgbLW+vQXzonwnUBjoBywHgjNtUw0MDvrdl/gA2/X7aXt0AW4Kuv2MH/cDoXdFlnLVQH+C6wAIrxdt5d+J4KBtcA1WfdrebtuL22HGGBY1u1QYI+36/bQtugEtAU25vP8HcC/cTJsHYGVhVmvG/YoSmQoEBe45Haw1n5lrT2TdXcFTnbFHxXmdwLgSeA5ILUkiytBhdkOg4AZ1tpjANbagyVcY0kozHawwIX5Bqrx60yXX7DW/peCs2i9gLesYwVwtTGmzqXW64ZGkddQIHXzW8Zamw5cGArEnxRmO+Q0AOcvB390yW1hjGkD1LPW/rMkCythhfmduAG4wRjznTFmRdaIzv6mMNthEvBXY0wS8AVwX8mU5nMu93MEcMd8FMU2FIjLFfo9GmP+CkQAv/VoRd5T4LYwxpTCGY24f0kV5CWF+Z0og3P4qTPOHuY3xpgW1trjHq6tJBVmO9wDvGmtnW6MuQknv9XCWpvp+fJ8SpE+K92wR6GhQByF2Q4YY24DHgV6WmvPlVBtJe1S26IK0AJYbozZg3MsdpEfntAu7L+Nz6y1adba3cBWnMbhTwqzHQYAHwJYa78HKuAMFhhoCvU5kpsbGoWGAnFccjtkHW6Zg9Mk/PFY9AUFbgtr7QlrbQ1rbUNrbUOc8zU9rbVFHhTNRxXm38anOBc5YIypgXMoaleJVul5hdkOPwJdAYwxITiNIhDneF0E3Jt19VNH4IS19sClXuTzh55syQwF4vMKuR2eByoDC7LO5f9ore3ptaI9pJDbwu8VcjssAaKMMYlABjDGWnvEe1UXv0Juh9HAXGPMKJxDLf398I9JjDHv4RxmrJF1PuZxoCyAtXY2zvmZO4AdwBng74Varx9uKxERKUZuOPQkIiJepEYhIiIFUqMQEZECqVGIiEiB1ChERKRAahQihWSMyTDGrMvx1dAY09kYcyJrVNLNxpjHs5bN+fgWY8w0b9cvUlQ+n6MQ8SFnrbWtcz6QNaT9N9baPxhjKgHrjDEXxpe68HhFYK0xZqG19ruSLVnkymmPQqSYWGtPAwlAk1yPnwXWUYjB10R8kRqFSOFVzHHYaWHuJ40x1XHGldqU6/FrcMZX+m/JlClSvHToSaTwfnXoKcutxpi1QCYwJWv4iM5Zj28Absx6/KcSrFWk2KhRiFy5b6y1f8jvcWPMDcC3Weco1pV0cSJXSoeeRDzMWrsNeBZ42Nu1iBSFGoVIyZgNdDLGNPJ2ISKXS6PHiohIgbRHISIiBVKjEBGRAqlRiIhIgdQoRESkQGoUIiJSIDUKEREpkBqFiIgU6P8DspTOPMa8QD0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "y = digits.target == 9\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " digits.data, y, random_state=0)\n", "\n", "plt.figure()\n", "\n", "for gamma in [1, 0.05, 0.01]:\n", " svc = SVC(gamma=gamma).fit(X_train, y_train)\n", " accuracy = svc.score(X_test, y_test)\n", " auc = roc_auc_score(y_test, svc.decision_function(X_test))\n", " fpr, tpr, _ = roc_curve(y_test , svc.decision_function(X_test))\n", " print(\"gamma = {:.2f} accuracy = {:.2f} AUC = {:.2f}\".format(\n", " gamma, accuracy, auc))\n", " plt.plot(fpr, tpr, label=\"gamma={:.3f}\".format(gamma))\n", "plt.xlabel(\"FPR\")\n", "plt.ylabel(\"TPR\")\n", "plt.xlim(-0.01, 1)\n", "plt.ylim(0, 1.02)\n", "plt.legend(loc=\"best\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Metrics for Multiclass Classification" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.951\n", "Confusion matrix:\n", "[[37 0 0 0 0 0 0 0 0 0]\n", " [ 0 40 0 0 0 0 0 0 2 1]\n", " [ 0 1 40 3 0 0 0 0 0 0]\n", " [ 0 0 0 43 0 0 0 0 1 1]\n", " [ 0 0 0 0 37 0 0 1 0 0]\n", " [ 0 0 0 0 0 46 0 0 0 2]\n", " [ 0 1 0 0 0 0 51 0 0 0]\n", " [ 0 0 0 1 1 0 0 46 0 0]\n", " [ 0 3 1 0 0 0 0 0 43 1]\n", " [ 0 0 0 0 0 1 0 0 1 45]]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\users\\t3kci\\checkout\\scikit-learn\\sklearn\\linear_model\\_logistic.py:762: ConvergenceWarning: lbfgs failed to converge (status=1):\n", "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", "\n", "Increase the number of iterations (max_iter) or scale the data as shown in:\n", " https://scikit-learn.org/stable/modules/preprocessing.html\n", "Please also refer to the documentation for alternative solver options:\n", " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", " extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)\n" ] } ], "source": [ "from sklearn.metrics import accuracy_score\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " digits.data, digits.target, random_state=0)\n", "lr = LogisticRegression().fit(X_train, y_train)\n", "pred = lr.predict(X_test)\n", "print(\"Accuracy: {:.3f}\".format(accuracy_score(y_test, pred)))\n", "print(\"Confusion matrix:\\n{}\".format(confusion_matrix(y_test, pred)))" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "hide_input": false }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDI1OC44NzEyNSAyNzcuMzA4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCniclZtLs9y2FYT3/BVcJotAAEHwsbTyUFVWcaKqLFxZONKVI5Ugl2U7zs8POJwBGoeNe3AXLt1p83RjiINvQM7QjZ+GV9+48YefRzt+Sv/9Nn43/iv9+35045vx1Z+e/vvx3dPf37we3/082KTHYQqb2VY3hfTqM7ya1tV4u60hqbZ69Z9h+DKkjFTwJtn+MAx+NpM/ivxqwuzTUYevM8taiZ9BnMJs9u1UczmKKeXD8NN4tZ7caub58c/Xp/Gf45fx1TfT7U2baZ2D3Tfr9zRAl87B/f0Px2Dr/z2w4Aii9+mv/TaaEEz6oyl2vRl3G1GKJXWRJ6Szvrq9KUICHcstlh0fufO+m3nxTRGc6RjOOHJ85M5ucmaya1sFbzqKM5AVxJb5PJk9yNkFFdz5QO6ZpCK23JfZLLucWlAxk47knkkqYst9W8zs5fyCipl0JPdMUhEb7pPdjNvkJIOKmXQkZyariC33aTf7JGcZVHDnI7lnkorYci8Q4ypm0pGcmQQ0SB/nzLwHsbipCKOg8LrFJfa5sGzLQcCD3dXLgblFnluWPhU1aNYoJHWRJxQAUFGDpmQTxFFnWPxc1bB5YRMkNszL2ueqis4LmzCTu5e1z1WVnRc2YSZ3L2ufqyo7L2zCTOoOa5+rKjvvi2hf7LrN3vn1tojw5UD9Yiu7kIGrKlkfIzp2M8di3s8RwcuB+sVWdiEYV1Xu1muboAz45rbdrMHVoKAijobisedEELfIczM+qKhiuQe2xC3y3IwWKqpYfpyZ2bl1mVe7nGcGXg7MLfLcAh2uqriu+4MVxlZIZg9XdXRf2IiZ3D2zh6s6uy9sxEzuntnDVZ3dFzZiJnUvdOGqzu7Lvg0yG+6ZH1zV2X3Zt2Emd88k46pOZ7FvKzbItWUz1q6Ca1SEUVAsnnHk+MidC0GoqAFXXC1iHHUujKCihtQ7mzIYb3cUqpcDc4s8F7DBVQ2qLTZhciOk0IOrKkIlm6pM7l7owVWVnZJNVSZ3L/TgqspOyaYqk7oDPbiqsrNrl0T8Yiu7sIWrKlkluapM7l7IxVWVrI2dWbFDgs2LmRZxW4mLMBoKQEkwiKPOBRRU1NAqCQZx1LmAgIoaWsU1JcZRZ1j8XNXg+thb4j1OeU+T2cVWdCEDV1XACmqSythKKYTgqkrYC8Ewk7sXQnBVJWwPTZhfbGQDIbiq8reeAVYZWymFFFxVOXwhGWZy98IsrqqklXuwbIMEm2YTnLgJxUUYBQWgJBjEUecCCipqaJUEgzjqXDBBRQ2tkmAQR50BAlzV4CrvimFiw7ysfa6qgL2vWftYpeedG3w5UL/Yyi5k4KpKWEFNUhlbKYUBXFUJe9mDYSZ1h7XPVZWw8voQMxvuZe1zVWVo1/064hdb2YVRXFXJ2tqDZTskmJ1M4p0ABRVhNBSAL7o7hoOhuQUjVNTA27j7j7E0ocCEihqAJecgjjoDSLiqIfjCOUhsmBdScFXF8OUqEjO5eyEEV1UOn811+y1ATTLM5imFFFxViSsoSipjIwWIwVWVuBeiQWbDvTCBqypxL7stzOTuhU5cVYkrd1vZBli1OWO9uK/ENBwDBZ3ca0EYM84rnWkqQOVOC8KYcV7lTFMB2cNg4hZpbFn9VFSxeWET5HHvvPSpqIOzeZWIyTQkL3wq6vy8XCNiIjXPy52KOj27dpvEL/LoggIq6kRtXh9CMg/JQKCiztMLrzCRmmcwUVGnqaBVdgFYhd1Mm7iFxDQYAQNdzxdrV69IMzMxmKbAtQcsV69IMzMsmKZwt+6ya1Wk7oUWVFTwKzkGYdw4E4KKGmHl9grjqHPGAxU1vkpyYRx1zqufihpU5WUhxjHnsuSpqBG158sf4hYbuZkGVNRw+rIfUuBgaG4GFhU1wjauErNXJL+2BTYwDcbBOCi2XZDEXPPqZ5pCV7HngiTmmtc80xR+igs+SGKuZb1TUWGk5BCEceO83Kmo8bHrFvTVLTZyMwyoqOGzdScLY2lChgIVNYxKWmEccy7LnooaRl/2HSIMhufmZU9FDbIPdJ47jbBtJzrh5cDcYiP3+Z/pa5C9Debb8af8A/z7r+6t2eDZg9tv79O45mCcrc5GBG029p4/vE499dvw+u346i8u7fDGtx+G2aV0H5Z05HQ04vj2/fA7+/vx7afxz2+HW96wLGab19q/aM/7L94syyr8Xe2/bSbs4jmHoj3vvwWTdofCf6r9nbPG+1AHgPh8grNr+gQNIsKLCD8Zu+4ioohKxLSZbd9FxCwigjfbJKYZRCUiWLPMcqKDiFiDCYuYaRCViHUyfpNzvYiIfTXeickGUYnYZ+O8nO61jpjcbmwQ0w3i8xGJPCa9CRGxiYjZmnUX0w2iEpGKFiene39EiO4Lx0I4HhFKeFi34yQdR//t69P7j+9+eXo/fv7+30+f6+GVn3PO6Xy5+7VaGp0QG8Ozx7NKR+Lxjrybjz8JFkpKehN+WUVKFtUUl9b6ah8prpViUwdPXqRkUUtxeyLWtDxSpkaKW48ntfY6pYhqSlosdpseKb6VEhJTfBApWVRT0qr3fnukzK0UH4zfxewXUU3xLrVenv3QSnEJ8bOY/SKqKXY3W8izvzRS9vQ5ZcXkZ03LSB8mzuapXxsR63GlJGY+a1pE+jz0S573rRExb+nTSkx71rSItGwXlyed48KmbcIfXNoVuDmx6Dg3t83uNJ/vPt6eTjzK33799alGxzT+9Xy6sdpj1M82sicS6ZN5wz/YFig2HudJR3c/64jHVg8VtZxtel/uvn9y4snNY3tdnT+/mXX2J/uc8cHfzuFtKZe2uT+jaWUx7nVEtaWzhZuXroJqL9JXgVuLvgrcKfRV4Ad/XwV+jndVVB/LfRX4KdtVgXvhtF1Y7H4tODuJdM5iTULl+XlW185W7RxshFZyuxH6KrAR+iqwEfoqsBH6KrARuiqqRhAVk94IosJpjXBsTbclKIOClS8LnNo523Tg7Nyj1LUdnYONIMu92gh97w4bobMCGqGzAhqhrwIbobMCGqGvAhthXUz6LH1BI3QVwMpvFjQ7J13hH3cDz41nXTx7vXWwEboGWzVCXwU2Ql8FNkJXRdUIooKv76oRuiqwEdL2wq/rCxqhqwAboaugWvmtinbrTOG4vXteTdTFHTudqhH6RouN0FeBjSAqGtOKjdCVUTVCVwU2gp/M4rVNBTZCVwE2QldB1Qh9FbjyWxXt1pnX4279eYlYF8+L3jrYCH2jxUboqqgaoa8CG0FU8F0FNoJL10ybtnHBRhAFvJ2xEboSqkboq8BG6KvAld+qaLfOsh/fvNxaRxQHp7cONkLXaKtG6KvARuiqgEbYduPmF+wVu46HNug6HrtAFPA+wyboK4Ae6BsSrPlWQbtndnt8QXa7j1PXdtAGG6BrqDj/XQUw/Uvion3BDlEcz7frMP3i+MbkwPR3DQinv68Apr+vAKa/rwAWequg2S+Tm45vNm835erajj0xTn/X6Ybpn4NZwgv2hV3Hw/R3HY/T31cA099XANMvChodCdPflwDT31WAq7w1pHa/+Pn4avp2h7WuncNz/TIdxbsz505oWuz9puNR+ccfv3z49eePP34Z4/e/fP34v4fPt8P/AY81psgKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyNzE2CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY0ID4+CnN0cmVhbQp4nDMzNFQwUNA1AhJmhiYK5kaWCimGXEA+iJXLBRPLAbPMTMyALGNTUySWAZA2MjWD0xAZoAFwBkR/GgApTxROCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNyA+PgpzdHJlYW0KeJxFUUlyBCEMu/cr9IGpwivwnk7NqfP/aywzSU4WYGsxaYGBLXiJIdbAzIEvuXxN6DR8NzLb8DrZHnBPuC7cl8uCZ8KWwFdUl3e9L13ZSH13h6p+ZmR7s0jNkJWVOvVCNCbYIRE9IzLJVixzg6QprVLlvihbgC7qlbZOO42SoCMU4W+UI+HpFUp2TWwaq9Q6oKEIy7YuiDqZJKJ2YXFq8ZYhIp91YzXH+ItOInbH4/6sMOtRJJLSZwfdcSajTZZdAzm5eaqwVio5iD5e0caE6nSqgWO817b0E2ngufZf4Qc+ff+PGPq53j/G7lwiCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicTY9BEsMwCAPvfoWegLEB8550ekr+fy2QNu4F7YyAkYYwCDxiDOswJbx6++FVpEtwNo75JRlFPAhqC9wXVAVHY4qd+Njdoeyl4ukUTYvrEXPTtKR0N1Eqbb2dyPjAfZ/eH1W2JJ2CHlvqhC7RJPJFAnPYVDDP6sZLS4+n7dneH2Y+M9cKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzIwID4+CnN0cmVhbQp4nDVRu3HFMAzrNQUX8J34lTSPc6/K278NQDsVYRoEQKq8ZEq5XOqSVbLC5EeH6hRN+T5gpvwO9ZDj6B7ZIbpT1pZ7GAjLxDyljlhNlnu4BYEvDE2JuYXz9wjoKwajMBOBusXfP0CzJDBpcPBTkGutWmKJDjwsFlizK8ytGilUyFV8Oza5BwVycbPQpxyaFLfcgvBliGRHarGvy2Up8rv1CRiEFeaITxSJheeBDmYi8ScDYnv22WJXVy+qERnWSYcHUgTSbG4SMDRFsuqDG9hXxzU/T0fZwclBv4rB+DY4mS9JeV8FoRCPF/4Oz9nIsZJDJBTyfbXAiCNsgBGhT+0jEGUgNEX37plSPiZViu8ARiEcfapXMrwXkdlqhs3/GV3ZKgoGVVkfn0ZwJoNJOPNkowrTUrXTv/vc4/MHY2N6gAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4NyA+PgpzdHJlYW0KeJw1TbkRwDAI65mCEcyj2OyTS+Xs3wbsuEE6fSCUG2vkAYLhnW8h+KYvGYR1CE8quyU6bKGGswqSieFXNnhVror2tZKJ7GymMdigZfrRzrdJzwel3huYCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4gL2VpZ2h0IC9uaW5lCjY3IC9DIDgwIC9QIDg0IC9UIDk3IC9hIC9iIC9jIC9kIC9lIC9mIDEwNSAvaSAxMDggL2wgL20gL24gL28gMTE0IC9yIC9zIC90Ci91IDEyMCAveCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9DIDE2IDAgUiAvUCAxNyAwIFIgL1QgMTggMCBSIC9hIDE5IDAgUiAvYiAyMCAwIFIgL2MgMjEgMCBSIC9kIDIyIDAgUgovZSAyMyAwIFIgL2VpZ2h0IDI0IDAgUiAvZiAyNSAwIFIgL2ZpdmUgMjYgMCBSIC9mb3VyIDI3IDAgUiAvaSAyOCAwIFIKL2wgMjkgMCBSIC9tIDMwIDAgUiAvbiAzMSAwIFIgL25pbmUgMzIgMCBSIC9vIDMzIDAgUiAvb25lIDM0IDAgUiAvciAzNSAwIFIKL3MgMzYgMCBSIC9zZXZlbiAzNyAwIFIgL3NpeCAzOCAwIFIgL3NwYWNlIDM5IDAgUiAvdCA0MCAwIFIgL3RocmVlIDQxIDAgUgovdHdvIDQyIDAgUiAvdSA0MyAwIFIgL3ggNDQgMCBSIC96ZXJvIDQ1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0NiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNTIwMTIwMzQ2LTA0JzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDQ3CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEzNDMwIDAwMDAwIG4gCjAwMDAwMTMyMzYgMDAwMDAgbiAKMDAwMDAxMzI2OCAwMDAwMCBuIAowMDAwMDEzMzY3IDAwMDAwIG4gCjAwMDAwMTMzODggMDAwMDAgbiAKMDAwMDAxMzQwOSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMTg4IDAwMDAwIG4gCjAwMDAwMTE4MjcgMDAwMDAgbiAKMDAwMDAxMTYyNyAwMDAwMCBuIAowMDAwMDExMTc2IDAwMDAwIG4gCjAwMDAwMTI4ODAgMDAwMDAgbiAKMDAwMDAwMzIwOSAwMDAwMCBuIAowMDAwMDAzNTE0IDAwMDAwIG4gCjAwMDAwMDM3NTIgMDAwMDAgbiAKMDAwMDAwMzg4OCAwMDAwMCBuIAowMDAwMDA0MjY1IDAwMDAwIG4gCjAwMDAwMDQ1NzUgMDAwMDAgbiAKMDAwMDAwNDg3OCAwMDAwMCBuIAowMDAwMDA1MTc4IDAwMDAwIG4gCjAwMDAwMDU0OTYgMDAwMDAgbiAKMDAwMDAwNTk2MSAwMDAwMCBuIAowMDAwMDA2MTY3IDAwMDAwIG4gCjAwMDAwMDY0ODcgMDAwMDAgbiAKMDAwMDAwNjY0OSAwMDAwMCBuIAowMDAwMDA2Nzg5IDAwMDAwIG4gCjAwMDAwMDY5MDYgMDAwMDAgbiAKMDAwMDAwNzIzNCAwMDAwMCBuIAowMDAwMDA3NDY4IDAwMDAwIG4gCjAwMDAwMDc4NjEgMDAwMDAgbiAKMDAwMDAwODE0OCAwMDAwMCBuIAowMDAwMDA4MzAwIDAwMDAwIG4gCjAwMDAwMDg1MzAgMDAwMDAgbiAKMDAwMDAwODkzNSAwMDAwMCBuIAowMDAwMDA5MDc1IDAwMDAwIG4gCjAwMDAwMDk0NjUgMDAwMDAgbiAKMDAwMDAwOTU1NCAwMDAwMCBuIAowMDAwMDA5NzU4IDAwMDAwIG4gCjAwMDAwMTAxNjkgMDAwMDAgbiAKMDAwMDAxMDQ5MCAwMDAwMCBuIAowMDAwMDEwNzM0IDAwMDAwIG4gCjAwMDAwMTA4OTMgMDAwMDAgbiAKMDAwMDAxMzQ5MCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ2IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0NyA+PgpzdGFydHhyZWYKMTM2NDQKJSVFT0YK\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAEWCAYAAABiyvLjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2deXgVVZr/P2+AIJvgghpAMDSIIg+yBDs/9m2i6XEi+nS7IPK0OnSLTisoM7YrYqO2DIot2zTdajuDoLjg2LKIMgjBJQqCyq6AKAoNwZUoJIT390dVYsDk5nJvneQeeD/PUw+3qk59682h7ntPnTrnW6KqGIZhpNV2AIZhpAaWDAzDACwZGIYRYsnAMAzAkoFhGCGWDAzDACwZHHWISAMR+buIfCMizyahc6WILIoyttpCRPqIyMbajiPVERtnUDuIyFDgZuAs4DtgNXCfqi5PUvcq4HdAT1U9kHSgKY6IKNBeVT+u7Vh8x1oGtYCI3Aw8AtwPnAq0BqYBF0Ug3wbYdCwkgngQkbq1HYM3qKotNbgATYG9wK9ilKlPkCy+CJdHgPrhvv7AduAWYBewA7g63DcOKAZKwnNcC9wDzKygfQagQN1w/dfAFoLWyVbgygrbl1c4rifwLvBN+G/PCvteB/4AvBHqLAJOruJvK4v/PyrEPwT4BbAJ+BK4vUL584C3gK/DslOA9HDfsvBvKQr/3ssq6N8K7AT+p2xbeMzPwnN0C9dbAIVA/9q+Nmp7qfUAjrUFuAA4UPZlrKLMvcDbwClAc+BN4A/hvv7h8fcC9cIv0ffACeH+w7/8VSYDoBHwLdAh3JcBnBN+Lk8GwInAV8BV4XFXhOsnhftfBzYDZwINwvU/VvG3lcV/dxj/CGA3MAtoApwD7APahuW7A9nhec8A1gOjKugp0K4S/QcJkmqDiskgLDMi1GkIvAJMrO3rIhUWu02oeU4CCjV2M/5K4F5V3aWquwl+8a+qsL8k3F+iqvMJfhU7JBjPQaCTiDRQ1R2quraSMv8MfKSq/6OqB1R1NrAB+JcKZZ5Q1U2q+gMwB+gS45wlBP0jJcDTwMnAn1T1u/D8a4HOAKq6UlXfDs/7CfBnoF8cf9NYVd0fxnMIqvoX4COggCAB3lGN3jGBJYOaZw9wcjX3si2AbRXWt4XbyjUOSybfA42PNBBVLSJoWl8H7BCReSJyVhzxlMXUssL6ziOIZ4+qloafy76s/6iw/4ey40XkTBF5WUR2isi3BP0sJ8fQBtitqvuqKfMXoBMwWVX3V1P2mMCSQc3zFkEzeEiMMl8QdASW0TrclghFBM3hMk6ruFNVX1HVfyL4hdxA8CWpLp6ymD5PMKYjYTpBXO1V9XjgdkCqOSbmIzIRaUzQD/MYcI+InBhFoL5jyaCGUdVvCO6Xp4rIEBFpKCL1RCRXRCaExWYDd4pIcxE5OSw/M8FTrgb6ikhrEWkK3Fa2Q0ROFZE8EWkE7Ce43SitRGM+cKaIDBWRuiJyGdAReDnBmI6EJgT9GnvDVsvIw/b/A2h7hJp/Alaq6r8C84D/SjrKowBLBrWAqj5MMMbgToLOs8+AfwNeDIuMB1YAHwAfAu+F2xI516vAM6HWSg79AqcRPJX4gqCHvR9wfSUae4ALw7J7CJ4EXKiqhYnEdISMAYYSPKX4C8HfUpF7gCdF5GsRubQ6MRG5iKAT97pw081ANxG5MrKIPcUGHRmGAVjLwDCMEEsGhmEAlgwMwwixZGAYBhAM8UwZ0tPTtUGDBpFqtm/fPlI9w/CZlStXFqpq88r2pVQyaNCgAdnZ2ZFqvvLKK5HqGYbPiMjhI0nLsdsEwzAASwaGYYRYMjAMA7BkYBhGiCUDwzAAD5JBvXr1ePTRR5k+fTozZszgqqsCj4+HHnqIadOmMW3aNGbNmsXYsWOTOs/ChQvp0KED7dq1449//GMUoTvRNF13mse8rksbJYLZYRuBj4HfV1f++OOP15ycnJ8seXl5mpOTo7m5ubp+/Xq98cYbD9mfn5+vEyZMqPTYeDhw4IC2bdtWN2/erPv379fOnTvr2rVr4zq2JjVN179YU00XWKE1bXsmInWAqUAuwdz3K0SkYyJa+/YFpjV169alTp06ZYkGCMYmnHvuubz55psJx/rOO+/Qrl072rZtS3p6Opdffjn/+7//m7CeK03T9S9Wn3Rd3iacB3ysqltUtZjA6y4hK/C0tDSmTZvGM888w6pVq9i48cf3YfTq1YvVq1fz/fffJxzo559/zumnn16+3qpVKz7/PDkTHxeaputO03TdJoOWBKYdZWznUM88AETkNyKyQkRWFBcXVyp08OBBrr/+eq688ko6dOhAmzY/OnD179+f119/PalAK7Y0KsSVcpqm607TdN0mg8qi+kn0qjpDVbNUNSs9PT2mYFFREe+//z49evQAoEmTJnTo0IGCgoKkAm3VqhWfffZj3tq+fTstWrSIcUTtaJquO03TdZsMtgOnV1hvRQKmnk2bNqVRo0YApKen061bt/IK6Nu3LwUFBZSUlCQVaI8ePfjoo4/YunUrxcXFPP300+Tl5aWcpun6F6tPui4nKr0LtBeRTAIX3csJvOyOiBNPPJExY8aQlpZGWloay5YtK28J9OvXjzlz5iQdaN26dZkyZQrnn38+paWlXHPNNZxzzjkpp2m6/sXqk65TD0QR+QWBJXUd4HFVvS9W+aZNm6rNWjQMd4jISlXNqmyf0ynMGrztZ77LcxiGEQ0pPwLRMIyawZKBYRiAJQPDMEIsGRiGAVgyMAwjJKUMUdu3bx/5o8CoH1WW8fbbbzvRNfwimTkxsahXr54T3VhYy8AwDMCSgWEYIZYMDMMALBkYhhFiycAwDMCSgWEYId4lgyjdYNPS0njyySeZOHEiABkZGTz22GM8++yzjB8/nrp1k3vy6oUjrqe6PsW6fft2cnNz6datG1lZWUydOjUS3REjRtCyZUu6dOkSiZ5LQ9THRWSXiKyJSrO0tJQbbriBBQsWsG7dOmbPns26desS1rvsssv45JNPytdvuOEGZs+eza9+9Su+/fbbpIwioo7VdP2MFaBOnTrcf//9vPfeeyxZsoQZM2awfv36pHWHDx/Oyy+/nLROGS5bBn8jsEqPjCjdYJs3b07Pnj156aWXyrdlZWWxZMkSAObPn0/fvn1TIlbT9TdWCFqcXbt2BX606vviiyM2/foJffr04YQTTkhapwxnyUBVlwFfRqkZpRvs6NGjmTJlSrmpZNOmTfnuu+8oLS0FYNeuXTRvXulr7Gs8VtN1r+lStyLbtm07xMczlaj1PoOK7si7d++OWTYqN9hevXrx1VdfHWK5XplOMi5Qvjji+qjrU6wV2bt3L0OHDmXChAkcf/zxkelGRa3PTVDVGcAMgKysrJjfvqjcYDt37kyfPn3o2bMn6enpNGrUiNGjR9OkSRPq1KlDaWkpp5xyCoWFhUesHXWsplszmi51AUpKShg6dCiXXXYZF12U0OtDnFPrLYMjISo32OnTp5OXl8fFF1/MXXfdxYoVKxg7diwrV65kwIABAPziF78gPz+/1mM1Xb9jhaDFMXLkSDp06MCNN96YtJ4rvEoGFd1gzz77bC699NJIXGbLmDp1KldccQXPPvssTZs2PaRzMVViNV2/YgV46623mD17NkuXLiU7O5vs7GwWLlyYtO6wYcPo27cvmzZtIjMzkyeeeCIpPWfuyCIyG+gPnAz8Axirqo/FOiYrK0tXrFgRaRw2hdlwiW9TmNPT02veHVlVr3ClbRhG9Hh1m2AYhjssGRiGAVgyMAwjxJKBYRhACgw6ck0yYwVi4eIphav3QjZt2tSJrgENGzas7RAiw1oGhmEAlgwMwwixZGAYBmDJwDCMEEsGhmEAlgwMwwixZGAYBuBhMnDhXhu5y6xD1+V9+/YxcOBAevXqRXZ2Nvfff38kMYNfjsM+xeqLrkt35NNFZImIrBeRtSJyU7Kartxro3aZdem6XL9+fV566SXeeOMN8vPzWbx4Me+++27SMfvkOOxTrD7pumwZHABuUdWzgWzgBhHpmIygK/faKF1mXbsuiwiNGzcGAiutkpKSSHz6fHIc9ilWn3RduiPvUNX3ws/fAeuBlslo1oR7bbK4dl2G4Behd+/etG/fngEDBpCVValXxRHhk+OwT7H6pFsjfQYicgbQFSioZF+NuyO7oiZclyF4Kcfy5ctZu3YtK1eujKTJ6ZPjsE+x+qTrfKKSiDQGngdGqeq3h++vDXdkV9SE63JFmjVrRu/evVm8eDEdOyZ1B+aV47BPsfqk67RlICL1CBLBU6r6QrJ6rtxro6ImXJcLCwv5+uuvAfjhhx9YunQp7du3Tzp2nxyHfYrVJ11nLQMJ2iuPAetV9eEoNCu615aWlnLNNddE4l47bNgwli1bRmFhIZmZmdx9991cffXVEUQcMHXqVP7whz/w29/+lk2bNiXlurxz505GjhxJaWkpqsqQIUO44ILk32Lnqm5d6PoUq0+6Lt2RewP5wIfAwXDz7ao6v6pjXLgjl5SURKpXRp8+fSLXND8DwzUiUivuyMuB1OndMwwjJt6NQDQMww2WDAzDACwZGIYRYsnAMAzgGHBHdvXOOhfvWjz77LMj1wRYv369E13D3dOq2sBaBoZhAJYMDMMIsWRgGAZgycAwjBBLBoZhAJYMDMMI8S4Z+GAs6UozLS2N559/nunTpwMwfvx45s6dy4svvsgjjzyS9EtAj+W6dakbteGuM11VdbIAxwHvAO8Da4Fx1R3TvXt3jcWBAwe0bdu2unnzZt2/f7927txZ165dG/OYeHChm4jmWWedFXN54IEH9O9//7suWbJEzzrrLO3evXv5vieeeEInTpxY6XG1VQeudFMp1uLi4mqXxYsXa0FBgXbs2DGu8vEuiegCK7SK75/LlsF+YKCqngt0AS4QkaTeY+6LsaQLzVNPPZV+/frx3HPPlW8rKioq/3zcccelVLwudX2KFaI13HWp69IQVVV1b7haL1ySMk/wxVjSheZtt93GxIkTOXjw4CHb77vvPvLz88nMzGTmzJkpE69LXZ9i9QnXtmd1RGQ1sAt4VVVT0hDVhW6Umv379+fLL7+s1Pj0jjvuoF+/fmzZsoXc3NyE9OHYrdua0PUFp8lAVUtVtQvQCjhPRDpVUmaGqmapalZ1FuK+GEtGrdm1a1cGDBjAa6+9xkMPPcTPf/5zHnzwwfL9Bw8eZMGCBeTk5KREvK51fYrVJ2rkaYKqfg28DiRl1ueLsWTUmpMmTWLAgAEMHjyYW265hYKCAm699VZat25dXqZ///5s2bIlJeJ1retTrD7h0hC1OVCiql+LSANgMPBgNYfFxBdjSZexliEiPPDAAzRu3BgRYcOGDYwbNy7l4vWpbn0z3I1a16UhamfgSaAOQQtkjqreG+sYF4aoPmFTmP3DtynM6enptWKI+gHBW5QMw/AA70YgGobhBksGhmEAlgwMwwixZGAYBhCjA1FEjo91oFbyRmXDMPwl1tOEtQRzCSqOxyxbV6B1ZQcZiePqEeD555/vRNfVuyFd4OoRoCv37dqgymSgqqdXtc8wjKOPuPoMRORyEbk9/NxKRLq7DcswjJqm2mQgIlOAAcBV4abvgf9yGZRhGDVPPCMQe6pqNxFZBaCqX4pIuuO4DMOoYeK5TSgRkTRCYxIROQk4GPsQwzB8I55kMBV4HmguIuOA5SQ5+9AwjNSj2mSgqv8N3AlMBL4EfqWqT7sOrCp8csVN9Vjr1avHo48+yvTp05kxYwZXXRV0Cz300ENMmzaNadOmMWvWLMaOHZsS8brWBHdOxql+LQDxuSMDnYHrgZFA53iOqXBsHWAV8HJ1ZY91d2RXujk5OVUueXl5mpOTo7m5ubp+/Xq98cYbD9mfn5+vEyZMqPTY2qoHVy7GiTgO11YdJKpLMu7IInIHMBtoQWBfNktEbjuCfHMTEMloGp9ccX2Jdd++fUBg7FGnTp1DfAAbNGjAueeey5tvvpky8brSLMOFk7Ev10I8fQbDgB6qeqeq3gGcBwyPR1xEWgH/DPw14Qgr4JMrri+xpqWlMW3aNJ555hlWrVrFxo0by/f16tWL1atX8/3336dMvK40XeLNtRBHmW0c+giyLhCv2d4jwH8Q4+mDuSPXru7Bgwe5/vrrufLKK+nQoQNt2rQp39e/f39ef/31hLXBr7p1hS/XQpXJQEQmicjDBIOM1orIX0XkL8CHwNfVCYvIhcAuVV0Zq5yaO3JK6BYVFfH+++/To0cPAJo0aUKHDh0oKPiJu/0R4VPdusKXayFWy2ANwWSlecA9wFvA28C9wP/Fod0LyBORT4CngYEikvhbPvDLFdeHWJs2bUqjRo0ASE9Pp1u3buUXV9++fSkoKEh6go9PdesKH64FiD1R6bGEVYPjbwNuAxCR/sAYVR2WjKZPrrg+xHriiScyZswY0tLSSEtLY9myZeUtgX79+jFnzpyUitelZhkunIx9uBYgDndkEfkZcB/QkeBlqgCo6plxn+THZHBhrHLHujuyK2wKs01hLkNEqnRHjqcD8W/AEwQ+BrnAHIJmf9yo6uvVJQLDMGqXeJJBQ1V9BUBVN6vqnQSzGA3DOIqIZ9bifgmeV2wWkeuAz4FT3IZlGEZNE08yGA00Bm4k6DtoClzjMijDMGqeapOB/vga9e/40eDEMIyjjFjuyHMJPQwqQ1UvcRKRYRi1QqyWwZQai8JwiqtHgK5G/X3xxReRa/r2CDCZ+SCJEmvQ0eKaDMQwjNrF3qhkGAZgycAwjJC4k4GI1HcZiGEYtUs8TkfniciHwEfh+rkiMtl5ZIZh1CjxtAweBS4E9gCo6vvYcGTDOOqIJxmkqeq2w7aVuggmHrxwmXWo6YtuWloaixYt4sknnyzfduutt5Kfn8/SpUu59tprUyZWX3W3b99Obm4u3bp1Iysri6lTpyYnWJVTatlC8M6E84D3CJyORwHPVndceOwnBM5Iq4nhylq2mDuyX7oZGRlVLmPHjtUXXnhBFy1apBkZGTpq1CidM2eOtmjRQjMyMrRTp05VHutTHbjSLSoqqnb5+OOPdfny5VpUVKQ7d+7Udu3a6YoVK2IeE+t7GE/LYCRwM8Er2P8BZIfb4mWAqnbRKuZQHwm+uMz6FmvUuhkZGQwaNIhZs2aVbxs+fDiTJk0q9+3bs2dPSsTqs25GRgZdu3YFfrSpS2bAVjwvUdmlqper6snhcrmqFiZ8xiTwxWXWlaYvuuPGjWP8+PEcPPijD26bNm3Iy8tjwYIFzJw5k8zMzJSI1Wfdimzbtu0QD8tEiOdpwl9EZMbhS5z6CiwSkZUi8psq9M0d+SjSHTx4MIWFhXz44YeHbK9fvz779+8nNzeXp556iocffrjWY/Vdt4y9e/cydOhQJkyYwPHHH5+wTjxTmF+r8Pk44GLgsyrKHk4vVf1CRE4BXhWRDaq6rGIBVZ0BzIDA9iyWmC8us640fdDt0aMHOTk5DBo0iPr169OkSRMmT57Mjh07mDdvHgALFixg0qRJtR6r77oQ2LkNHTqUyy67jIsuuig5sao6E6paCFoTixM47h4CH8SEOxBLSko0MzNTt2zZUt4Rs2bNmpjHxIMLXZ9iTVQ3VgdiRkaGXnLJJeUdiJMnT9bRo0eXb1+1alXCHYipVAeudOPpQNy7d69eccUVev3118dVvroOxHhaBoeTCbSprpCINCJ4LPld+DmHwGY9YXxxmfUtVpe6ZUyZMoUpU6YwYsQIioqKGDNmTMrF6pvuW2+9xezZsznnnHPIzs4G4J577uGCCy5ISC8ed+Sv+NHXII3gTcy/V9WYPtoi0haYG67WBWap6n2xjjF3ZL/waQqzb7iawtyoUaMq3ZFjtgxC78NzCXwPAQ5qddkjRFW3hMcahuEBMZ8mhF/8uapaGi5xJQLDMPwjnkFH74hIN+eRGIZRq8TyQKyrqgeA3sAIEdkMFBG8TEVV1RKEYRxFxOozeAfoBgypoVgMw6hFYiUDgeAtSjUUixPsHXvucNXrH+XovDJ86+5q2LBhjZ8zVjJoLiI3V7VTVRMfT2oYRsoRKxnUIXiTUvRp2jCMlCNWMtihqkmNGDQMwx9iPVq0FoFhHEPESgaDaiwKwzBqnSqTgap+WZOBGIZRu9hLVAzDADxMBi5cZkeMGEHLli3p0qVLJHpl+OS064Pu1q1b+eCDD1i1ahXvvvsuAL/85S9Zs2YNpaWldO/ePWVi9VK3KqODKBagGfAcsAFYD/y/WOVduCMXFxdXuyxevFgLCgq0Y8eOcZUvLi6Oec5EY42HY0GXYMr8T5atW7fqSSeddMi2s846S88880xdsmSJdu/evcpjfasDV7ok6Y6cDH8CFqrqWQTTmdcnI+bKZbZPnz6ccMIJSetUxDenXd90y9iwYQObNm2KRMu3Ooha11kyEJHjgb7AYwCqWqyqXyejWRMus1Hhm9OuD7qqyqJFi1ixYgUjRoxIOrbD8aEOXOomYnsWL22B3cATInIusBK4SVWLKhYKXZN/A9C6deuYgurYZTZKXMV6LOv26tWLHTt20Lx5c1599VU2bNhAfn5+siGW40MduNR1eZtQl2DW43RV7Uow/fn3hxdS1RmqmqWqWc2bN48p6NJlNmp8c9r1QXfHjh0A7N69m7lz53LeeeclHV9FfKgDp7pVdSYkuwCnAZ9UWO8DzIt1jAt35Hg7BDdt2hRpB2IqOe36pkslHYANGzbUxo0bl39+44039Pzzzy/fH0UHYirVgStdYnQgun6akA900B+t0v8zVvnqkoGq6rx587R9+/batm1bHT9+fLXl4/liX3rppXraaadp3bp1tWXLlvrnP/856WSQSKzxcrTrVvZlzszM1NWrV+vq1at1zZo1evvttyugQ4YM0c8++0z37dunO3fu1IULFyacDBKJ1TfdWMmgWnfkZBCRLsBfgXRgC3C1qn5VVXkX7sjmZ+Af5mfgDhFJzB05WVR1NZD0C1cNw3CPdyMQDcNwgyUDwzAASwaGYYRYMjAMA3DcgZgK+NTr7+rJhytc1a2Lnn97L2T1WMvAMAzAkoFhGCGWDAzDACwZGIYRYsnAMAzAkoFhGCHeJQMvjCUdaoIbA1dXprDgR92mpaWxaNEinnzyyfJtt956K/n5+SxdupRrr702KX0vrtuqpjMmuwAdgNUVlm+BUbGOcWGIGg8udF2ZtyZq4FobprCpVLcZGRkxl7Fjx+oLL7ygixYt0oyMDB01apTOmTNHW7RooRkZGdqpU6dKj6utOkhUl9owRFXVjaraRVW7AN2B74G5yWj6YizpMlZwY+DqQhP8qNuMjAwGDRrErFmzyrcNHz6cSZMmlQ+A2rNnT8rE60q3pm4TBgGbVXVbMiK+GEu60vQRH+p23LhxjB8/noMHD5Zva9OmDXl5eSxYsICZM2eSmZmZMvG60q2pZHA5MLuyHSLyGxFZISIrdu/eHVOkLEsfdnzSwbnQdRWrb6R63Q4ePJjCwkI+/PDDQ7bXr1+f/fv3k5uby1NPPcXDDz+ckD74c906n5sgIulAHnBbZftVdQYwAwKno1ha3hhLOtL0kVSv2x49epCTk8OgQYOoX78+TZo0YfLkyezYsYN58+YBsGDBAiZNmpQS8TrVraozIaoFuAhYFE9ZF4ao8eBC16V5ayIGrrVhCptKdVtdB2JGRoZecskl5R2IkydP1tGjR5dvX7VqVcIdiKl03RKjA7EmZi1eQRW3CEdK3bp1mTJlCueffz6lpaVcc801nHPOOSmp6ypWgGHDhrFs2TIKCwvJzMzk7rvv5uqrr045TfCvbsuYMmUKU6ZMYcSIERQVFTFmzJiEtXy5bl0bojYEPgPaquo31ZV3YYjqEzaF2R02hTmgNg1RvwdOcnkOwzCiwbsRiIZhuMGSgWEYgCUDwzBCLBkYhgFYMjAMI+Sod0f+5ptqn2gmRMOGDSPX9OlRnW+4egR49tlnO9H94IMPnOjGwloGhmEAlgwMwwixZGAYBmDJwDCMEEsGhmEAlgwMwwjxLhm4cJndt28fAwcOpFevXmRnZ3P//fdHouvKcdgLp13Hur7EmpaWxvPPP8/06dMBGD9+PHPnzuXFF1/kkUceSeoRddTXl9NkICKjRWStiKwRkdkiclwyeqWlpdxwww0sWLCAdevWMXv2bNatW5d0nPXr1+ell17ijTfeID8/n8WLF/Puu+8mrTt8+HBefvnlpHUq4qoOfNL1KdarrrqKLVu2lK8/8MADXHzxxQwZMoQdO3YwdOjQhLWjvr6cJQMRaQncCGSpaiegDoEXYsK4cpkVERo3bgwEngIlJSWReNS5cBz2xWnXpa4vsZ566qn069eP5557rnxbUVFR+efjjkvqtzHy68v1bUJdoIGI1AUaAkkNA3PpOFxaWkrv3r1p3749AwYMICurUv+HWscXp12Xur7EettttzFx4sRDXJcB7rvvPvLz88nMzGTmzJkJ60eNy/cmfA5MBD4FdgDfqOqiw8ulgjsyQJ06dVi+fDlr165l5cqVkTQ7XeCqDnzS9SHW/v378+WXX1Z6Hd1xxx3069ePLVu2kJubm5C+C1zeJpxAYIaaCbQAGonIsMPLqeoMVc1S1azmzZvH1KwJx+FmzZrRu3dvFi9eHKluVHjjtOtQ14dYu3btyoABA3jttdd46KGH+PnPf86DDz5Yvv/gwYMsWLCAnJycpOOOCpe3CYOBraq6W1VLgBeAnskI9ujRg48++oitW7dSXFzM008/TV5eXtKBFhYW8vXXXwPwww8/sHTpUtq3b5+0rgtc1YFPuj7EOmnSJAYMGMDgwYO55ZZbKCgo4NZbb6V169blZfr3739I52Jt43LW4qdAdmiK+gPBW5WScjt15TK7c+dORo4cSWlpKarKkCFDuOCCC5LWdeE47IvTrktdn2KtiIjwwAMP0LhxY0SEDRs2MG7cuIT1or6+XLsjjwMuAw4Aq4B/VdX9VZV34Y5sU5gNl/g2hTk9Pb3W3JHHAmNdnsMwjGjwbgSiYRhusGRgGAZgycAwjBBLBoZhAJYMDMMIOerdkZs2bVrbIRy1uHpRrE+PWF09AmzXrp0T3VhYy+iXtRoAAAloSURBVMAwDMCSgWEYIZYMDMMALBkYhhFiycAwDMCSgWEYId4lA19ccV1p+qZrDtEOXIzT0pg/fz6PP/44ABMnTmT58uXMnz+f+fPn07Fjx8SEVdXZAtwErAHWAqOqK9+9e3eNxYEDB7Rt27a6efNm3b9/v3bu3FnXrl0b85h4cKHrU6yJ6hYXF1e7LF68WAsKCrRjx45xlS8uLrY6KC7W1q1bV7nce++9+uKLL+prr72mrVu31jlz5uh1110X85iyBVihVXz/XNqedQJGAOcB5wIXikhS9kG+uOL6FqtLXXOIjrYOTjvtNAYOHMjTTz8diV5FXN4mnA28rarfq+oBYClwcTKCvrjiutL0UdcFx3IdjB07lvvvv/8njstjxoxh4cKF3HXXXaSnpyek7TIZrAH6ishJofXZL4DTDy+UCu7ILnR9itWlrguO1ToYOHAge/bsYc2aNYdsnzBhAgMHDiQvL49mzZpx3XXXJaTv0ip9PfAg8CqwEHifwP7s8HK17o58rDr41oSuC47VOsjKymLw4MEsX76cyZMn07NnTx555BF27doFQHFxMc8++2zCHZVOnyao6mOq2k1V+wJfAh8lo+eDK66PsbrUdcGxWgcTJkwgOzub3r1787vf/Y4333yTUaNGccopp5SXycnJYePGjQnpO521KCKnqOouEWkNXAL8v2T0fHLF9SlWl7rmEO2mDirypz/9iRNPPBERYd26ddx+++0J6bh2R84HTgJKgJtVNeabSVy4IxvusCnM7urA1RTmTz/9tNbckfu41DcMIzq8G4FoGIYbLBkYhgFYMjAMI8SSgWEYgCUDwzBCnD5aPFJEZDewLY6iJwOFDkIwXb9i9U03FWJto6qVDvVNqWQQLyKyoqpnpaabepqm604zSl27TTAMA7BkYBhGiK/JYIbpOtP1KVbfdFM6Vi/7DAzDiB5fWwaGYUSMJQPDMAAPk4GIXCAiG0XkYxH5fUSaj4vILhFZU33puDVPF5ElIrJeRNaKyE0R6R4nIu+IyPuh7rgodCvo1xGRVSLycoSan4jIhyKyWkQimaMuIs1E5DkR2RDWcVJeGaFmhzDGsuVbERkVUbyjw/+vNSIyW0SOi0j3plBzbdKxVmWbnIoLUAfYDLQF0gms1DpGoNsX6AasiTDWDKBb+LkJsCmiWAVoHH6uBxQA2RHGfTMwC3g5Qs1PgJMjvhaeBP41/JwONHNwre0kGKSTrFZLYCvQIFyfA/w6At1OBF6jDQnsCF4D2ieq51vL4DzgY1XdoqrFwNPARcmKquoyAlu2yFDVHar6Xvj5O2A9wUWRrK6q6t5wtV64RNILLCKtgH8G/hqFnitE5HiCBP4YgKoWq+rXEZ9mELBZVeMZERsPdYEGIlKX4Mv7RQSakTqQ+5YMWgKfVVjfTgRfMNeIyBlAV4Jf8Sj06ojIamAX8KqqRqILPAL8B3CwuoJHiAKLRGSliPwmAr22wG7gifCW5q8i0igC3YpcDsyOQkhVPwcmAp8CO4BvVHVRBNJxOZDHi2/JoDLf6pR+NioijYHnCd4o9W0UmqpaqqpdgFbAeeELa5JCRC4EdqnqyqQD/Cm9VLUbkAvcICJ9k9SrS3BbN11VuwJFQCT9RwAikg7kAc9GpHcCQQs2E2gBNBKRYcnqapwO5PHiWzLYzqGZrxXRNLecICL1CBLBU6r6QtT6YdP4deCCCOR6AXki8gnB7ddAEZkZgS6q+kX47y5gLsHtXjJsB7ZXaBE9R5AcoiIXeE9V/xGR3mBgq6ruVtUS4AWgZxTCGqEDuW/J4F2gvYhkhtn7cuClWo6pUiR4+8ZjwHpVfThC3eYi0iz83IDgQtuQrK6q3qaqrVT1DIJ6/T9VTfrXS0QaiUiTss9ADkHzNplYdwKfiUiHcNMgYF1SgR7KFUR0ixDyKZAtIg3D62IQQR9S0ojIKeG/ZQ7kCcft1BA1alT1gIj8G/AKQW/v46q6NlldEZkN9AdOFpHtwFhVfSxJ2V7AVcCH4f09wO2qOj9J3QzgSRGpQ5DM56hqZI8BHXAqMDd8M1FdYJaqLoxA93fAU+GPwhYgEu/x8N77n4DfRqEHoKoFIvIc8B5BM34V0Q1Nfl5EyhzIb1DVrxIVsuHIhmEA/t0mGIbhCEsGhmEAlgwMwwixZGAYBmDJwDCMEEsGHiEipeFsujUi8mz4GCxRrf5lMxNFJC/WDNBwhuD1CZzjHhEZE+/2w8r8TUR+eQTnOiPKWafHIpYM/OIHVe2iqp2AYuC6ijsl4Ij/T1X1JVX9Y4wizYAjTgaGX1gy8Jd8oF34i7heRKYRDGo5XURyROQtEXkvbEE0hnIviA0ispxgtBrh9l+LyJTw86kiMjf0S3hfRHoCfwR+FrZK/jMs9+8i8q6IfFDRU0FE7pDAb+I1oAPVICIjQp33ReT5w1o7g0UkX0Q2hXMnyiZp/WeFc0c2OOhYx5KBh4TTYHOBD8NNHYD/rjBp505gcDg5aAVwc2im8RfgX4A+wGlVyD8KLFXVcwnG+68lmAS0OWyV/LuI5ADtCeYYdAG6i0hfEelOMJS5K0Gy6RHHn/OCqvYIz7ceuLbCvjOAfgTTqv8r/BuuJZj11yPUHyEimXGcx6gGr4YjGzSoMLQ5n2DuQwtgm6q+HW7PBjoCb4RDgNOBt4CzCCbLfAQQTkKqbDrxQGA4BLMjgW/CWXcVyQmXVeF6Y4Lk0ASYq6rfh+eIZ95IJxEZT3Ar0phgqHkZc1T1IPCRiGwJ/4YcoHOF/oSm4bk3xXEuIwaWDPzih3DqcjnhF76o4iYCj4MrDivXheimewvwgKr++bBzjErgHH8Dhqjq+yLya4I5ImUcrqXhuX+nqhWTRplnhJEEdptw9PE20EtE2kEw8UZEziSY2ZgpIj8Ly11RxfGLgZHhsXUkcBX6juBXv4xXgGsq9EW0DGfPLQMuFpEG4UzFf4kj3ibAjnC695WH7fuViKSFMbcFNobnHhmWR0TOlOiNTY5JrGVwlKGqu8Nf2NkiUj/cfKeqbpLAZWieiBQCywk89A7nJmCGiFwLlAIjVfUtEXkjfHS3IOw3OBt4K2yZ7AWGqep7IvIMsJrgBbr5cYR8F4ED1DaCPpCKSWcjgZXXqcB1qrpPRP5K0JfwngQn3w0Mia92jFjYrEXDMAC7TTAMI8SSgWEYgCUDwzBCLBkYhgFYMjAMI8SSgWEYgCUDwzBC/j9CQJ5kgR+LzAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "scores_image = mglearn.tools.heatmap(\n", " confusion_matrix(y_test, pred), xlabel='Predicted label',\n", " ylabel='True label', xticklabels=digits.target_names,\n", " yticklabels=digits.target_names, cmap=plt.cm.gray_r, fmt=\"%d\")\n", "plt.title(\"Confusion matrix\")\n", "plt.gca().invert_yaxis()" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 37\n", " 1 0.89 0.93 0.91 43\n", " 2 0.98 0.91 0.94 44\n", " 3 0.91 0.96 0.93 45\n", " 4 0.97 0.97 0.97 38\n", " 5 0.98 0.96 0.97 48\n", " 6 1.00 0.98 0.99 52\n", " 7 0.98 0.96 0.97 48\n", " 8 0.91 0.90 0.91 48\n", " 9 0.90 0.96 0.93 47\n", "\n", " accuracy 0.95 450\n", " macro avg 0.95 0.95 0.95 450\n", "weighted avg 0.95 0.95 0.95 450\n", "\n" ] } ], "source": [ "print(classification_report(y_test, pred))" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Micro average f1 score: 0.951\n", "Macro average f1 score: 0.952\n" ] } ], "source": [ "print(\"Micro average f1 score: {:.3f}\".format(\n", " f1_score(y_test, pred, average=\"micro\")))\n", "print(\"Macro average f1 score: {:.3f}\".format(\n", " f1_score(y_test, pred, average=\"macro\")))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Regression metrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using evaluation metrics in model selection" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Default scoring: [0.975 0.992 1. 0.994 0.981]\n", "Explicit accuracy scoring: [0.975 0.992 1. 0.994 0.981]\n", "AUC scoring: [0.997 0.999 1. 1. 0.984]\n" ] } ], "source": [ "# default scoring for classification is accuracy\n", "print(\"Default scoring: {}\".format(\n", " cross_val_score(SVC(), digits.data, digits.target == 9, cv=5)))\n", "# providing scoring=\"accuracy\" doesn't change the results\n", "explicit_accuracy = cross_val_score(SVC(), digits.data, digits.target == 9,\n", " scoring=\"accuracy\", cv=5)\n", "print(\"Explicit accuracy scoring: {}\".format(explicit_accuracy))\n", "roc_auc = cross_val_score(SVC(), digits.data, digits.target == 9,\n", " scoring=\"roc_auc\", cv=5)\n", "print(\"AUC scoring: {}\".format(roc_auc))" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>fit_time</th>\n", " <th>score_time</th>\n", " <th>test_accuracy</th>\n", " <th>train_accuracy</th>\n", " <th>test_roc_auc</th>\n", " <th>train_roc_auc</th>\n", " <th>test_recall_macro</th>\n", " <th>train_recall_macro</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.02</td>\n", " <td>8.98e-03</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>1.00</td>\n", " <td>1.0</td>\n", " <td>0.89</td>\n", " <td>0.97</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.02</td>\n", " <td>7.98e-03</td>\n", " <td>0.99</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.0</td>\n", " <td>0.96</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.02</td>\n", " <td>7.98e-03</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.0</td>\n", " <td>1.00</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.02</td>\n", " <td>8.98e-03</td>\n", " <td>0.99</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.0</td>\n", " <td>0.97</td>\n", " <td>0.98</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.02</td>\n", " <td>7.98e-03</td>\n", " <td>0.98</td>\n", " <td>1.00</td>\n", " <td>0.98</td>\n", " <td>1.0</td>\n", " <td>0.90</td>\n", " <td>0.99</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " fit_time score_time test_accuracy train_accuracy test_roc_auc \\\n", "0 0.02 8.98e-03 0.97 0.99 1.00 \n", "1 0.02 7.98e-03 0.99 1.00 1.00 \n", "2 0.02 7.98e-03 1.00 1.00 1.00 \n", "3 0.02 8.98e-03 0.99 1.00 1.00 \n", "4 0.02 7.98e-03 0.98 1.00 0.98 \n", "\n", " train_roc_auc test_recall_macro train_recall_macro \n", "0 1.0 0.89 0.97 \n", "1 1.0 0.96 0.98 \n", "2 1.0 1.00 0.98 \n", "3 1.0 0.97 0.98 \n", "4 1.0 0.90 0.99 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "res = cross_validate(SVC(), digits.data, digits.target == 9,\n", " scoring=[\"accuracy\", \"roc_auc\", \"recall_macro\"],\n", " return_train_score=True, cv=5)\n", "display(pd.DataFrame(res))" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Grid-Search with accuracy\n", "Best parameters: {'gamma': 0.0001}\n", "Best cross-validation score (accuracy)): 0.976\n", "Test set AUC: 0.992\n", "Test set accuracy: 0.973\n" ] } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(\n", " digits.data, digits.target == 9, random_state=0)\n", "\n", "# we provide a somewhat bad grid to illustrate the point:\n", "param_grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]}\n", "# using the default scoring of accuracy:\n", "grid = GridSearchCV(SVC(), param_grid=param_grid)\n", "grid.fit(X_train, y_train)\n", "print(\"Grid-Search with accuracy\")\n", "print(\"Best parameters:\", grid.best_params_)\n", "print(\"Best cross-validation score (accuracy)): {:.3f}\".format(grid.best_score_))\n", "print(\"Test set AUC: {:.3f}\".format(\n", " roc_auc_score(y_test, grid.decision_function(X_test))))\n", "print(\"Test set accuracy: {:.3f}\".format(grid.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Grid-Search with AUC\n", "Best parameters: {'gamma': 0.01}\n", "Best cross-validation score (AUC): 0.998\n", "Test set AUC: 1.000\n", "Test set accuracy: 1.000\n" ] } ], "source": [ "# using AUC scoring instead:\n", "grid = GridSearchCV(SVC(), param_grid=param_grid, scoring=\"roc_auc\")\n", "grid.fit(X_train, y_train)\n", "print(\"\\nGrid-Search with AUC\")\n", "print(\"Best parameters:\", grid.best_params_)\n", "print(\"Best cross-validation score (AUC): {:.3f}\".format(grid.best_score_))\n", "print(\"Test set AUC: {:.3f}\".format(\n", " roc_auc_score(y_test, grid.decision_function(X_test))))\n", "print(\"Test set accuracy: {:.3f}\".format(grid.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Available scorers:\n", "['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision', 'balanced_accuracy', 'completeness_score', 'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_samples', 'jaccard_weighted', 'max_error', 'mutual_info_score', 'neg_brier_score', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_gamma_deviance', 'neg_mean_poisson_deviance', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_median_absolute_error', 'neg_root_mean_squared_error', 'normalized_mutual_info_score', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc', 'roc_auc_ovo', 'roc_auc_ovo_weighted', 'roc_auc_ovr', 'roc_auc_ovr_weighted', 'v_measure_score']\n" ] } ], "source": [ "from sklearn.metrics import SCORERS\n", "print(\"Available scorers:\")\n", "print(sorted(SCORERS.keys()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Summary and Outlook" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:root] *", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }