-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstandard_neural_network_border.py
153 lines (109 loc) · 4.28 KB
/
standard_neural_network_border.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# A multilayer perceptron for border irregularity detection
import numpy as np
import os
import cv2
import pandas as pd
from sklearn import metrics
import matplotlib.pyplot as plt
import csv
import time
start = time.time()
errors = []
errors_test = []
lines = []
predictions = []
probabilities = []
labels = []
correct = 0
alphas = [0.001]
border_irregularity_file = pd.read_csv('training.csv')
y = border_irregularity_file[['label']]
X = border_irregularity_file[['FD','convexity']]
X = X.astype(np.float32).values
y = y.astype(np.float32).values
for i in y:
labels.append(i[0])
# compute sigmoid nonlinearity
def sigmoid(x):
output = 1/(1+np.exp(-x))
return output
# convert output of sigmoid function to its derivative (slope)
def sigmoid_output_to_derivative(output):
return output*(1-output)
for alpha in alphas:
np.random.seed(1)
synapse_0 = 2*np.random.random((2,4)) - 1
synapse_1 = 2*np.random.random((4,2)) - 1
synapse_2 = 2*np.random.random((2,1)) - 1
prev_synapse_0_weight_update = np.zeros_like(synapse_0)
prev_synapse_1_weight_update = np.zeros_like(synapse_1)
prev_synapse_2_weight_update = np.zeros_like(synapse_1)
synapse_0_direction_count = np.zeros_like(synapse_0)
synapse_1_direction_count = np.zeros_like(synapse_1)
synapse_2_direction_count = np.zeros_like(synapse_2)
for j in range(1):
# Feed forward
layer_0 = X
layer_1 = sigmoid(np.dot(layer_0,synapse_0))
layer_2 = sigmoid(np.dot(layer_1,synapse_1))
layer_3 = sigmoid(np.dot(layer_2,synapse_2))
layer_3_error = y - layer_3
error = np.mean(np.abs(layer_3_error))
errors.append(error)
layer_3_delta = layer_3_error*sigmoid_output_to_derivative(layer_3)
layer_2_error = layer_3_delta.dot(synapse_2.T)
layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
layer_1_error = layer_2_delta.dot(synapse_1.T)
layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)
synapse_2_weight_update = (layer_2.T.dot(layer_3_delta))
synapse_1_weight_update = (layer_1.T.dot(layer_2_delta))
synapse_0_weight_update = (layer_0.T.dot(layer_1_delta))
if(j > 0):
synapse_0_direction_count += np.abs(((synapse_0_weight_update > 0)+0) - ((prev_synapse_0_weight_update > 0) + 0))
synapse_1_direction_count += np.abs(((synapse_1_weight_update > 0)+0) - ((prev_synapse_1_weight_update > 0) + 0))
synapse_2_direction_count += np.abs(((synapse_2_weight_update > 0)+0) - ((prev_synapse_2_weight_update > 0) + 0))
synapse_2 += alpha * synapse_2_weight_update
synapse_1 += alpha * synapse_1_weight_update
synapse_0 += alpha * synapse_0_weight_update
prev_synapse_0_weight_update = synapse_0_weight_update
prev_synapse_1_weight_update = synapse_1_weight_update
prev_synapse_2_weight_update = synapse_2_weight_update
end = time.time()
time_elapsed = end - start
print('training time: ')
print(time_elapsed)
start = time.time()
border_irregularity_file_test = pd.read_csv('testing.csv')
y_test = border_irregularity_file_test[['label']]
X_test = border_irregularity_file_test[['FD','convexity']]
X_test = X_test.astype(np.float32).values
y_test = y_test.astype(np.float32).values
i = 0
for i in range(len(X_test)):
layer_0_test = X_test[i]
layer_1_test = sigmoid(np.dot(layer_0_test,synapse_0))
layer_2_test = sigmoid(np.dot(layer_1_test,synapse_1))
layer_3_test = sigmoid(np.dot(layer_2_test,synapse_2))
probabilities.append(layer_3_test[0])
print(probabilities)
threshold = np.mean(probabilities)
threshold_index = 0
for threshold_index in range(len(probabilities)):
if probabilities[threshold_index] > threshold:
prediction = 1
elif probabilities[threshold_index] <= threshold:
prediction = 0
print (prediction)
predictions.append(prediction)
if prediction == y_test[threshold_index][0]:
correct = correct + 1
threshold_index = threshold_index + 1
print (correct)
y_true = labels
y_probas = probabilities
metrics.plot_roc_curve(y_true, y_probas)
plt.show()
end = time.time()
time_elapsed = end - start
print ('testing time: ')
print (time_elapsed)