|
| 1 | + |
| 2 | +# Advanced Applications of the Code Interpreter in OpenAI (GPT) |
| 3 | + |
| 4 | +[For Webview](https://volkansah.github.io/Advanced-Code-Interpreter-Examples/advanced-1/) |
| 5 | + |
| 6 | +The code interpreter in OpenAI's GPT is a powerful tool that enables complex and interactive coding capabilities within a safe and sandboxed environment. This README provides examples of advanced applications, demonstrating how to leverage this tool for sophisticated tasks. |
| 7 | + |
| 8 | +## Table of Contents |
| 9 | + |
| 10 | +- [Introduction](#introduction) |
| 11 | +- [Data Analysis and Visualization](#data-analysis-and-visualization) |
| 12 | +- [Machine Learning Applications](#machine-learning-applications) |
| 13 | +- [Advanced Data Processing](#advanced-data-processing) |
| 14 | +- [Web Scraping](#web-scraping) |
| 15 | +- [Natural Language Processing](#natural-language-processing) |
| 16 | +- [Image Processing](#image-processing) |
| 17 | +- [Interactive Widgets](#interactive-widgets) |
| 18 | +- [Troubleshooting](#troubleshooting) |
| 19 | +- [Contributing](#contributing) |
| 20 | +- [Credits](#credits) |
| 21 | + |
| 22 | +## Introduction |
| 23 | + |
| 24 | +This document aims to showcase the advanced capabilities of the code interpreter in OpenAI's GPT. From data analysis and machine learning to web scraping and image processing, the examples provided here are intended to help users unlock the full potential of this tool. |
| 25 | + |
| 26 | +## Data Analysis and Visualization |
| 27 | + |
| 28 | +### Complex Data Analysis with Pandas and Matplotlib |
| 29 | + |
| 30 | +Performing advanced data analysis and visualizing the results using `pandas` and `matplotlib`. |
| 31 | + |
| 32 | +```python |
| 33 | +import pandas as pd |
| 34 | +import matplotlib.pyplot as plt |
| 35 | + |
| 36 | +# Load a complex dataset |
| 37 | +df = pd.read_csv('/mnt/data/complex_data.csv') |
| 38 | + |
| 39 | +# Perform data cleaning and preprocessing |
| 40 | +df = df.dropna() |
| 41 | +df['date'] = pd.to_datetime(df['date']) |
| 42 | + |
| 43 | +# Analyze and visualize data |
| 44 | +pivot_table = df.pivot_table(index='date', values='sales', aggfunc='sum') |
| 45 | +pivot_table.plot(figsize=(10, 6), title='Sales Over Time') |
| 46 | +plt.xlabel('Date') |
| 47 | +plt.ylabel('Sales') |
| 48 | +plt.grid(True) |
| 49 | +plt.savefig('/mnt/data/sales_over_time.png') |
| 50 | +plt.show() |
| 51 | +``` |
| 52 | + |
| 53 | +## Machine Learning Applications |
| 54 | + |
| 55 | +Building a Predictive Model with Scikit-Learn |
| 56 | + |
| 57 | +Creating a machine learning model to predict outcomes based on complex datasets. |
| 58 | + |
| 59 | +```python |
| 60 | +import pandas as pd |
| 61 | +from sklearn.model_selection import train_test_split |
| 62 | +from sklearn.ensemble import RandomForestRegressor |
| 63 | +from sklearn.metrics import mean_squared_error |
| 64 | + |
| 65 | +# Load the dataset |
| 66 | +df = pd.read_csv('/mnt/data/ml_dataset.csv') |
| 67 | + |
| 68 | +# Prepare the data |
| 69 | +X = df.drop('target', axis=1) |
| 70 | +y = df['target'] |
| 71 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
| 72 | + |
| 73 | +# Train a Random Forest model |
| 74 | +model = RandomForestRegressor(n_estimators=100, random_state=42) |
| 75 | +model.fit(X_train, y_train) |
| 76 | + |
| 77 | +# Make predictions and evaluate the model |
| 78 | +y_pred = model.predict(X_test) |
| 79 | +mse = mean_squared_error(y_test, y_pred) |
| 80 | +print(f'Mean Squared Error: {mse}') |
| 81 | +``` |
| 82 | + |
| 83 | +## Advanced Data Processing |
| 84 | + |
| 85 | +Merging Multiple DataFrames |
| 86 | + |
| 87 | +Merging multiple dataframes to create a comprehensive dataset for analysis. |
| 88 | + |
| 89 | +```python |
| 90 | +import pandas as pd |
| 91 | + |
| 92 | +# Load multiple datasets |
| 93 | +df1 = pd.read_csv('/mnt/data/data1.csv') |
| 94 | +df2 = pd.read_csv('/mnt/data/data2.csv') |
| 95 | +df3 = pd.read_csv('/mnt/data/data3.csv') |
| 96 | + |
| 97 | +# Merge datasets |
| 98 | +merged_df = pd.merge(df1, df2, on='common_column') |
| 99 | +merged_df = pd.merge(merged_df, df3, on='another_common_column') |
| 100 | + |
| 101 | +# Display the merged dataframe |
| 102 | +print(merged_df.head()) |
| 103 | +``` |
| 104 | + |
| 105 | +## Web Scraping |
| 106 | + |
| 107 | +Scraping Data from Web Pages with BeautifulSoup |
| 108 | + |
| 109 | +Using BeautifulSoup to scrape data from web pages for analysis. |
| 110 | + |
| 111 | +```python |
| 112 | +import requests |
| 113 | +from bs4 import BeautifulSoup |
| 114 | + |
| 115 | +# Send a request to the webpage |
| 116 | +url = 'https://example.com/data-page' |
| 117 | +response = requests.get(url) |
| 118 | + |
| 119 | +# Parse the HTML content |
| 120 | +soup = BeautifulSoup(response.content, 'html.parser') |
| 121 | + |
| 122 | +# Extract specific data |
| 123 | +data = [] |
| 124 | +table = soup.find('table', {'id': 'data-table'}) |
| 125 | +for row in table.find_all('tr'): |
| 126 | + columns = row.find_all('td') |
| 127 | + row_data = [col.text for col in columns] |
| 128 | + data.append(row_data) |
| 129 | + |
| 130 | +# Display the scraped data |
| 131 | +for item in data: |
| 132 | + print(item) |
| 133 | +``` |
| 134 | + |
| 135 | +## Natural Language Processing |
| 136 | + |
| 137 | +Sentiment Analysis with TextBlob |
| 138 | + |
| 139 | +Performing sentiment analysis on text data using TextBlob. |
| 140 | + |
| 141 | +```python |
| 142 | +from textblob import TextBlob |
| 143 | + |
| 144 | +# Example text |
| 145 | +text = "OpenAI's GPT is amazing. I'm so happy with the results!" |
| 146 | + |
| 147 | +# Perform sentiment analysis |
| 148 | +blob = TextBlob(text) |
| 149 | +sentiment = blob.sentiment |
| 150 | + |
| 151 | +# Display the sentiment |
| 152 | +print(f'Sentiment: {sentiment}') |
| 153 | +``` |
| 154 | + |
| 155 | +## Image Processing |
| 156 | + |
| 157 | +Advanced Image Manipulations with PIL |
| 158 | + |
| 159 | +Performing advanced image manipulations using the Python Imaging Library (PIL). |
| 160 | + |
| 161 | +```python |
| 162 | +from PIL import Image, ImageEnhance, ImageFilter |
| 163 | + |
| 164 | +# Open an image file |
| 165 | +img = Image.open('/mnt/data/sample_image.jpg') |
| 166 | + |
| 167 | +# Apply enhancements and filters |
| 168 | +enhancer = ImageEnhance.Contrast(img) |
| 169 | +img_enhanced = enhancer.enhance(2) |
| 170 | +img_filtered = img_enhanced.filter(ImageFilter.DETAIL) |
| 171 | + |
| 172 | +# Save the processed image |
| 173 | +img_filtered.save('/mnt/data/processed_image.jpg') |
| 174 | + |
| 175 | +# Display the processed image |
| 176 | +img_filtered.show() |
| 177 | +``` |
| 178 | + |
| 179 | +## Interactive Widgets |
| 180 | + |
| 181 | +Creating Interactive Widgets with ipywidgets |
| 182 | + |
| 183 | +Creating interactive widgets to enhance user interaction within Jupyter notebooks. |
| 184 | + |
| 185 | +```python |
| 186 | +import ipywidgets as widgets |
| 187 | +from IPython.display import display |
| 188 | + |
| 189 | +# Create a slider widget |
| 190 | +slider = widgets.IntSlider(value=10, min=0, max=100, step=1, description='Value:') |
| 191 | + |
| 192 | +# Define an event handler |
| 193 | +def on_value_change(change): |
| 194 | + print(f'Slider value: {change["new"]}') |
| 195 | + |
| 196 | +# Attach the event handler to the slider |
| 197 | +slider.observe(on_value_change, names='value') |
| 198 | + |
| 199 | +# Display the slider |
| 200 | +display(slider) |
| 201 | +``` |
| 202 | + |
| 203 | +## Troubleshooting |
| 204 | + |
| 205 | +Here are some common issues and their solutions: |
| 206 | + |
| 207 | +- `ImportError: No module named '...'`: Ensure that all required libraries are installed. Use `pip install <library_name>` to install any missing libraries. |
| 208 | +- `FileNotFoundError: [Errno 2] No such file or directory: '...'`: Check the file path and ensure that the file is in the correct directory. Use absolute paths or ensure that the file is saved in `/mnt/data`. |
| 209 | +- `PermissionError: [Errno 13] Permission denied: '...'`: Ensure that you have permissions to read and write in the `/mnt/data` directory. |
| 210 | + |
| 211 | +If you encounter further issues, open an issue on GitHub or contact the project maintainer. |
| 212 | + |
| 213 | +## Contributing |
| 214 | +Contributions are welcome! Please feel free to submit a pull request. |
| 215 | + |
| 216 | +## [❤️](https://jugendamt-deutschland.de) Thank you for your support! |
| 217 | +If you appreciate my work, please consider supporting me: |
| 218 | + |
| 219 | + |
| 220 | +### 👣 other GPT stuff |
| 221 | +- [Link to ChatGPT Shellmaster](https://github.com/VolkanSah/ChatGPT-ShellMaster/) |
| 222 | +- [GPT-Security-Best-Practices](https://github.com/VolkanSah/GPT-Security-Best-Practices) |
| 223 | +- [OpenAi cost calculator](https://github.com/VolkanSah/OpenAI-Cost-Calculator) |
| 224 | +- [GPT over CLI](https://github.com/VolkanSah/GPT-over-CLI) |
| 225 | +- [Secure Implementation of Artificial Intelligence (AI)](https://github.com/VolkanSah/Implementing-AI-Systems-Whitepaper) |
| 226 | +- [Comments Reply with GPT (davinci3)](https://github.com/VolkanSah/GPT-Comments-Reply-WordPress-Plugin) |
| 227 | +- [Basic GPT Webinterface](https://github.com/VolkanSah/GPT-API-Integration-in-HTML-CSS-with-JS-PHP) |
| 228 | + |
| 229 | + |
| 230 | + |
| 231 | +### Credits |
| 232 | +- [Volkan Kücükbudak //NCF](https://gihub.com/volkansah) |
| 233 | +- and OpenAI's ChatGPT4 with Code Interpreter for providing interactive coding assistance and insights & tipps. |
| 234 | +- Become a Sponsor: [Link to my sponsorship page](https://github.com/sponsors/volkansah) |
| 235 | +- :star: my projects: Starring projects on GitHub helps increase their visibility and can help others find my work. |
| 236 | +- Follow me: Stay updated with my latest projects and releases. |
| 237 | +- [Source of this resposerity](https://github.com/VolkanSah/The-Code-Interpreter-in-OpenAI-GPT/) |
0 commit comments