Author: Soumith Chintala
PyTorch is a Python-based scientific computing package serving two broad purposes:
- A replacement for NumPy to use the power of GPUs and other accelerators.
- An automatic differentiation library that is useful to implement neural networks.
- Understand PyTorch’s Tensor library and neural networks at a high level.
- Train a small neural network to classify images
To run the tutorials below, make sure you have the torch, torchvision, and matplotlib packages installed.
.. toctree:: :hidden: /beginner/blitz/tensor_tutorial /beginner/blitz/autograd_tutorial /beginner/blitz/neural_networks_tutorial /beginner/blitz/cifar10_tutorial
.. grid:: 4 .. grid-item-card:: :octicon:`file-code;1em` Tensors :link: blitz/tensor_tutorial.html In this tutorial, you will learn the basics of PyTorch tensors. +++ :octicon:`code;1em` Code .. grid-item-card:: :octicon:`file-code;1em` A Gentle Introduction to torch.autograd :link: blitz/autograd_tutorial.html Learn about autograd. +++ :octicon:`code;1em` Code .. grid-item-card:: :octicon:`file-code;1em` Neural Networks :link: blitz/neural_networks_tutorial.html This tutorial demonstrates how you can train neural networks in PyTorch. +++ :octicon:`code;1em` Code .. grid-item-card:: :octicon:`file-code;1em` Training a Classifier :link: blitz/cifar10_tutorial.html Learn how to train an image classifier in PyTorch by using the CIFAR10 dataset. +++ :octicon:`code;1em` Code