diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py
deleted file mode 100644
index 38691c4755c9..000000000000
--- a/data_structures/binary_tree/binary_search_tree.py
+++ /dev/null
@@ -1,294 +0,0 @@
-r"""
-A binary search Tree
-
-Example
-              8
-             / \
-            3   10
-           / \    \
-          1   6    14
-             / \   /
-            4   7 13
-
->>> t = BinarySearchTree()
->>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
->>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
-8 3 1 6 4 7 10 14 13
-
->>> tuple(i.value for i in t.traversal_tree(inorder))
-(1, 3, 4, 6, 7, 8, 10, 13, 14)
->>> tuple(t)
-(1, 3, 4, 6, 7, 8, 10, 13, 14)
->>> t.find_kth_smallest(3, t.root)
-4
->>> tuple(t)[3-1]
-4
-
->>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
-1 4 7 6 3 13 14 10 8
->>> t.remove(20)
-Traceback (most recent call last):
-    ...
-ValueError: Value 20 not found
->>> BinarySearchTree().search(6)
-Traceback (most recent call last):
-    ...
-IndexError: Warning: Tree is empty! please use another.
-
-Other example:
-
->>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
->>> t = BinarySearchTree()
->>> for i in testlist:
-...     t.insert(i)
-
-Prints all the elements of the list in order traversal
->>> print(t)
-{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
-
-Test existence
->>> t.search(6) is not None
-True
->>> 6 in t
-True
->>> t.search(-1) is not None
-False
->>> -1 in t
-False
-
->>> t.search(6).is_right
-True
->>> t.search(1).is_right
-False
-
->>> t.get_max().value
-14
->>> max(t)
-14
->>> t.get_min().value
-1
->>> min(t)
-1
->>> t.empty()
-False
->>> not t
-False
->>> for i in testlist:
-...     t.remove(i)
->>> t.empty()
-True
->>> not t
-True
-"""
-from __future__ import annotations
-
-from collections.abc import Iterable, Iterator
-from dataclasses import dataclass
-from typing import Any
-
-
-@dataclass
-class Node:
-    value: int
-    left: Node | None = None
-    right: Node | None = None
-    parent: Node | None = None  # Added in order to delete a node easier
-
-    def __iter__(self) -> Iterator[int]:
-        """
-        >>> list(Node(0))
-        [0]
-        >>> list(Node(0, Node(-1), Node(1), None))
-        [-1, 0, 1]
-        """
-        yield from self.left or []
-        yield self.value
-        yield from self.right or []
-
-    def __repr__(self) -> str:
-        from pprint import pformat
-
-        if self.left is None and self.right is None:
-            return str(self.value)
-        return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
-
-    @property
-    def is_right(self) -> bool:
-        return bool(self.parent and self is self.parent.right)
-
-
-@dataclass
-class BinarySearchTree:
-    root: Node | None = None
-
-    def __bool__(self) -> bool:
-        return bool(self.root)
-
-    def __iter__(self) -> Iterator[int]:
-        yield from self.root or []
-
-    def __str__(self) -> str:
-        """
-        Return a string of all the Nodes using in order traversal
-        """
-        return str(self.root)
-
-    def __reassign_nodes(self, node: Node, new_children: Node | None) -> None:
-        if new_children is not None:  # reset its kids
-            new_children.parent = node.parent
-        if node.parent is not None:  # reset its parent
-            if node.is_right:  # If it is the right child
-                node.parent.right = new_children
-            else:
-                node.parent.left = new_children
-        else:
-            self.root = new_children
-
-    def empty(self) -> bool:
-        return self.root is None
-
-    def __insert(self, value) -> None:
-        """
-        Insert a new node in Binary Search Tree with value label
-        """
-        new_node = Node(value)  # create a new Node
-        if self.empty():  # if Tree is empty
-            self.root = new_node  # set its root
-        else:  # Tree is not empty
-            parent_node = self.root  # from root
-            if parent_node is None:
-                return
-            while True:  # While we don't get to a leaf
-                if value < parent_node.value:  # We go left
-                    if parent_node.left is None:
-                        parent_node.left = new_node  # We insert the new node in a leaf
-                        break
-                    else:
-                        parent_node = parent_node.left
-                else:
-                    if parent_node.right is None:
-                        parent_node.right = new_node
-                        break
-                    else:
-                        parent_node = parent_node.right
-            new_node.parent = parent_node
-
-    def insert(self, *values) -> None:
-        for value in values:
-            self.__insert(value)
-
-    def search(self, value) -> Node | None:
-        if self.empty():
-            raise IndexError("Warning: Tree is empty! please use another.")
-        else:
-            node = self.root
-            # use lazy evaluation here to avoid NoneType Attribute error
-            while node is not None and node.value is not value:
-                node = node.left if value < node.value else node.right
-            return node
-
-    def get_max(self, node: Node | None = None) -> Node | None:
-        """
-        We go deep on the right branch
-        """
-        if node is None:
-            if self.root is None:
-                return None
-            node = self.root
-
-        if not self.empty():
-            while node.right is not None:
-                node = node.right
-        return node
-
-    def get_min(self, node: Node | None = None) -> Node | None:
-        """
-        We go deep on the left branch
-        """
-        if node is None:
-            node = self.root
-        if self.root is None:
-            return None
-        if not self.empty():
-            node = self.root
-            while node.left is not None:
-                node = node.left
-        return node
-
-    def remove(self, value: int) -> None:
-        # Look for the node with that label
-        node = self.search(value)
-        if node is None:
-            msg = f"Value {value} not found"
-            raise ValueError(msg)
-
-        if node.left is None and node.right is None:  # If it has no children
-            self.__reassign_nodes(node, None)
-        elif node.left is None:  # Has only right children
-            self.__reassign_nodes(node, node.right)
-        elif node.right is None:  # Has only left children
-            self.__reassign_nodes(node, node.left)
-        else:
-            predecessor = self.get_max(
-                node.left
-            )  # Gets the max value of the left branch
-            self.remove(predecessor.value)  # type: ignore
-            node.value = (
-                predecessor.value  # type: ignore
-            )  # Assigns the value to the node to delete and keep tree structure
-
-    def preorder_traverse(self, node: Node | None) -> Iterable:
-        if node is not None:
-            yield node  # Preorder Traversal
-            yield from self.preorder_traverse(node.left)
-            yield from self.preorder_traverse(node.right)
-
-    def traversal_tree(self, traversal_function=None) -> Any:
-        """
-        This function traversal the tree.
-        You can pass a function to traversal the tree as needed by client code
-        """
-        if traversal_function is None:
-            return self.preorder_traverse(self.root)
-        else:
-            return traversal_function(self.root)
-
-    def inorder(self, arr: list, node: Node | None) -> None:
-        """Perform an inorder traversal and append values of the nodes to
-        a list named arr"""
-        if node:
-            self.inorder(arr, node.left)
-            arr.append(node.value)
-            self.inorder(arr, node.right)
-
-    def find_kth_smallest(self, k: int, node: Node) -> int:
-        """Return the kth smallest element in a binary search tree"""
-        arr: list[int] = []
-        self.inorder(arr, node)  # append all values to list using inorder traversal
-        return arr[k - 1]
-
-
-def inorder(curr_node: Node | None) -> list[Node]:
-    """
-    inorder (left, self, right)
-    """
-    node_list = []
-    if curr_node is not None:
-        node_list = inorder(curr_node.left) + [curr_node] + inorder(curr_node.right)
-    return node_list
-
-
-def postorder(curr_node: Node | None) -> list[Node]:
-    """
-    postOrder (left, right, self)
-    """
-    node_list = []
-    if curr_node is not None:
-        node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
-    return node_list
-
-
-if __name__ == "__main__":
-    import doctest
-
-    doctest.testmod(verbose=True)