Skip to content

Adds Gaussian Function in maths section #1051

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added Maths/images/gaussian.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
59 changes: 59 additions & 0 deletions maths/gaussian.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
"""
Reference: https://en.wikipedia.org/wiki/Gaussian_function

python/black : True


"""
from numpy import pi, sqrt, exp


def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
"""
>>> gaussian(1)
0.24197072451914337

>>> gaussian(24)
3.342714441794458e-126

# Supports NumPy Arrays
# Use numpy.meshgrid with this to generate gaussian blur on images.
>>> import numpy as np
>>> x = np.arange(15)
>>> gaussian(x)
array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03,
1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12,
5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27,
2.14638374e-32, 7.99882776e-38, 1.09660656e-43])

>>> gaussian(15)
5.530709549844416e-50

>>> gaussian([1,2, 'string'])
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for -: 'list' and 'float'

>>> gaussian('hello world')
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for -: 'str' and 'float'

>>> gaussian(10**234)
Traceback (most recent call last):
...
OverflowError: (34, 'Result too large')

>>> gaussian(10**-326)
0.3989422804014327

>>> gaussian(2523, mu=234234, sigma=3425)
0.0
"""
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2)


if __name__ == "__main__":
import doctest

doctest.testmod()
87 changes: 87 additions & 0 deletions physics/harmonic_oscillator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
"""
Class to return properties of harmonic motion at x displacement.
This object can be used in game physics too.

python/black: True
"""
__authors__ = ["n0vice"]
__created__ = "2-14-2019"
__last_modified__ = "7-20-2019"

from numpy import sqrt, linspace, cos


class HarmonicOscillator:
"""
Harmonic Oscillator object.
Parameters:
mass
k ==> stifness of the oscillator
angular_frequency ==>
Amplitude
"""

def __init__(self):
self.mass = 1
self.k = 1
self.angular_frequency = sqrt(self.k / self.mass)
self.AMPLITUDE = 6
self.E = 0.5 * self.k * self.AMPLITUDE ** 2

def force(self, x):
return -self.k * x

def position(self, t, A, phase):
return A * cos(self.angular_frequency * t + phase)

def kinetic_energy(self, x):
return (0.5 * self.mass * self.angular_frequency ** 2) * (
self.AMPLITUDE ** 2 - x ** 2
)

def potential_energy(self, x):
return self.E - self.kinetic_energy(x)

def hamiltonian(self, x):
return self.potential_energy(x) + self.kinetic_energy(x)

def lagrangian(self, x):
return self.kinetic_energy(x) - self.potential_energy(x)

def demo(self):
import matplotlib.pyplot as plt

oscillator = self
# Displacement of oscillator
x = linspace(-6, 6, 100)

plt.title("Properties of Harmonic Oscillator")

plt.subplot(2, 2, 1)
plt.plot(oscillator.force(x), oscillator.potential_energy(x))
plt.xlabel("Applied Force")
plt.ylabel("Potential")

plt.subplot(2, 2, 2)
plt.plot(oscillator.force(x), oscillator.position(x, 1, 1))
plt.xlabel("Applied Force")
plt.ylabel("Position")

plt.subplot(2, 2, 3)
plt.plot(oscillator.potential_energy(x), label="Potential Energy")
plt.plot(oscillator.kinetic_energy(x), label="Kinetic Energy")
plt.xlabel("Displacement")
plt.ylabel("Energy")
plt.legend()

plt.subplot(2, 2, 4)
plt.plot(oscillator.hamiltonian(x), label="Hamiltonian")
plt.plot(oscillator.lagrangian(x), label="Lagrangian")
plt.xlabel("Displacement")
plt.ylabel("Energy")
plt.legend()
plt.show()


if __name__ == "__main__":
HarmonicOscillator().demo()