Skip to content

Commit 393c35c

Browse files
authored
Merge pull request #2310 from FengWei2000/patch-5
Update data-cold-hot-separation.md
2 parents 52dc3be + 408cbab commit 393c35c

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

docs/high-performance/data-cold-hot-separation.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,8 @@ head:
2020

2121
冷热数据到底如何区分呢?有两个常见的区分方法:
2222

23-
1. **时间维度区分**:按照数据的创建时间、更新时间、过期时间等,将一定时间段内的数据视为热数据,超过该时间段的数据视为冷数据。例如,订单系统可以将 1 年后的订单数据作为冷数据,1 年内的订单数据作为热数据。这种方法适用于数据的访问频率和时间有较强的相关性的场景。
24-
2. **访问评率区分**:将高频访问的数据视为热数据,低频访问的数据视为冷数据。例如,内容系统可以将浏览量非常低的文章作为冷数据,浏览量较高的文章作为热数据。这种方法需要记录数据的访问频率,成本较高,适合访问频率和数据本身有较强的相关性的场景。
23+
1. **时间维度区分**:按照数据的创建时间、更新时间、过期时间等,将一定时间段内的数据视为热数据,超过该时间段的数据视为冷数据。例如,订单系统可以将 1 年前的订单数据作为冷数据,1 年内的订单数据作为热数据。这种方法适用于数据的访问频率和时间有较强的相关性的场景。
24+
2. **访问频率区分**:将高频访问的数据视为热数据,低频访问的数据视为冷数据。例如,内容系统可以将浏览量非常低的文章作为冷数据,浏览量较高的文章作为热数据。这种方法需要记录数据的访问频率,成本较高,适合访问频率和数据本身有较强的相关性的场景。
2525

2626
几年前的数据并不一定都是热数据,例如一些优质文章发表几年后依然有很多人访问,大部分普通用户新发表的文章却基本没什么人访问。
2727

0 commit comments

Comments
 (0)