Skip to content

Commit 1cbc6d9

Browse files
committed
fix OS和网络错别字,病句
1 parent 01d8de7 commit 1cbc6d9

7 files changed

+16
-16
lines changed

docs/cs-basics/network/arp.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ ARP 的工作原理将分两种场景讨论:
7878

7979
### 不同局域网内的 MAC 寻址
8080

81-
更复杂的情况是,发送主机 A 和接收主机 B 不在同一个子网中,假设一个一般场景,两台主机所在的子网由一台路由器联通。这里需要注意的是,一般情况下,我们说网络设备都有一个 IP 地址和一个 MAC 地址,这里说的网络设备,更严谨的说法应该是一个接口。路由器作为互联设备,具有多个接口,每个接口同样也应该具备不重复的 IP 地址和 MAC 地址。因此,在讨论 ARP 表时,路由器的多个接口都个各自维护一个 ARP 表,而非一个路由器只维护一个 ARP 表。
81+
更复杂的情况是,发送主机 A 和接收主机 B 不在同一个子网中,假设一个一般场景,两台主机所在的子网由一台路由器联通。这里需要注意的是,一般情况下,我们说网络设备都有一个 IP 地址和一个 MAC 地址,这里说的网络设备,更严谨的说法应该是一个接口。路由器作为互联设备,具有多个接口,每个接口同样也应该具备不重复的 IP 地址和 MAC 地址。因此,在讨论 ARP 表时,路由器的多个接口都各自维护一个 ARP 表,而非一个路由器只维护一个 ARP 表。
8282

8383
接下来,回顾同一子网内的 MAC 寻址,如果主机 A 发送一个广播问询分组,那么 A 所在子网内的所有设备(接口)都将不会捕获该分组,因为该分组的目的 IP 地址在另一个子网中,本子网内不会有设备成功接收。那么,主机 A 应该发送怎样的查询分组呢?整个过程按照时间顺序发生的事件如下:
8484

docs/cs-basics/network/http&https.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ HTTPS 之所以能达到较高的安全性要求,就是结合了 SSL/TLS 和 T
4747

4848
**SSL 和 TLS 没有太大的区别。**
4949

50-
SSL 指安全套接字协议(Secure Sockets Layer),首次发布与 1996 年。SSL 的首次发布其实已经是他的 3.0 版本,SSL 1.0 从未面世,SSL 2.0 则具有较大的缺陷(DROWN 缺陷——Decrypting RSA with Obsolete and Weakened eNcryption)。很快,在 1999 年,SSL 3.0 进一步升级,**新版本被命名为 TLS 1.0**。因此,TLS 是基于 SSL 之上的,但由于习惯叫法,通常把 HTTPS 中的核心加密协议混成为 SSL/TLS。
50+
SSL 指安全套接字协议(Secure Sockets Layer),首次发布与 1996 年。SSL 的首次发布其实已经是他的 3.0 版本,SSL 1.0 从未面世,SSL 2.0 则具有较大的缺陷(DROWN 缺陷——Decrypting RSA with Obsolete and Weakened eNcryption)。很快,在 1999 年,SSL 3.0 进一步升级,**新版本被命名为 TLS 1.0**。因此,TLS 是基于 SSL 之上的,但由于习惯叫法,通常把 HTTPS 中的核心加密协议混称为 SSL/TLS。
5151

5252
### SSL/TLS 的工作原理
5353

docs/cs-basics/network/osi&tcp-ip-model.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -161,7 +161,7 @@ OSI 七层模型虽然失败了,但是却提供了很多不错的理论基础
161161

162162
1. **各层之间相互独立**:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)**。这个和我们对开发时系统进行分层是一个道理。**
163163
2. **提高了整体灵活性** :每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。**这个和我们平时开发系统的时候要求的高内聚、低耦合的原则也是可以对应上的。**
164-
3. **大问题化小**分层可以将复杂的网络间题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 **这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。**
164+
3. **大问题化小**分层可以将复杂的网络问题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 **这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。**
165165

166166
我想到了计算机世界非常非常有名的一句话,这里分享一下:
167167

docs/cs-basics/network/other-network-questions.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ tag:
7474
3. **FTP 协议**:文件传输协议 FTP(File Transfer Protocol),提供文件传输服务,**基于 TCP** 实现可靠的传输。使用 FTP 传输文件的好处是可以屏蔽操作系统和文件存储方式。
7575
4. **SMTP 协议**:简单邮件传输协议(SMTP,Simple Mail Transfer Protocol)的缩写,**基于 TCP 协议**,用来发送电子邮件。注意 ⚠️:接受邮件的协议不是 SMTP 而是 POP3 协议。
7676
5. **POP3/IMAP 协议**: POP3 和 IMAP 两者都是负责邮件接收的协议。
77-
6. **Telent 协议**:远程登陆协议,通过一个终端登陆到其他服务器。被一种称为 SSH 的非常安全的协议所取代。
77+
6. **Telnet 协议**:远程登陆协议,通过一个终端登陆到其他服务器。被一种称为 SSH 的非常安全的协议所取代。
7878
7. **SSH 协议** : SSH( Secure Shell)是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH 建立在可靠的传输协议 TCP 之上。
7979
8. ......
8080

docs/cs-basics/network/tcp-connection-and-disconnection.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ tag:
1717

1818
- **一次握手**:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 **SYN_SEND** 状态,等待服务器的确认;
1919
- **二次握手**:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 **SYN_RECV** 状态
20-
- **三次握手**:客户端发送带有带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务器端都进入**ESTABLISHED** 状态,完成TCP三次握手。
20+
- **三次握手**:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务器端都进入**ESTABLISHED** 状态,完成TCP三次握手。
2121

2222
**当建立了 3 次握手之后,客户端和服务端就可以传输数据啦!**
2323

@@ -75,7 +75,7 @@ TCP是全双工通信,可以双向传输数据。任何一方都可以在数
7575
### 为什么第四次挥手客户端需要等待 2\*MSL(报文段最长寿命)时间后才进入 CLOSED 状态?
7676

7777

78-
第四次挥手时,客户端发送给服务器的 ACK 有可能丢失,如果服务端没有因为某些原因而没有收到 ACK 的话,服务端就会重发 FIN,如果客户端在 2\*MSL 的时间内收到了 FIN,就会重新发送 ACK 并再次等待 2MSL,防止 Server 没有收到 ACK 而不断重发 FIN。
78+
第四次挥手时,客户端发送给服务器的 ACK 有可能丢失,如果服务端因为某些原因而没有收到 ACK 的话,服务端就会重发 FIN,如果客户端在 2\*MSL 的时间内收到了 FIN,就会重新发送 ACK 并再次等待 2MSL,防止 Server 没有收到 ACK 而不断重发 FIN。
7979

8080
> **MSL(Maximum Segment Lifetime)** : 一个片段在网络中最大的存活时间,2MSL 就是一个发送和一个回复所需的最大时间。如果直到 2MSL,Client 都没有再次收到 FIN,那么 Client 推断 ACK 已经被成功接收,则结束 TCP 连接。
8181

docs/cs-basics/network/tcp-reliability-guarantee.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ TCP 为全双工(Full-Duplex, FDX)通信,双方可以进行双向通信,客
7070
TCP 的拥塞控制采用了四种算法,即 **慢开始****拥塞避免****快重传****快恢复**。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。
7171

7272
- **慢开始:** 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。
73-
- **拥塞避免:** 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送放的 cwnd 加 1.
73+
- **拥塞避免:** 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送方的 cwnd 加 1.
7474
- **快重传与快恢复:** 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。  当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。
7575

7676
## ARQ 协议了解吗?

docs/cs-basics/operating-system/operating-system-basic-questions-01.md

+9-9
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ head:
156156
- **非抢占**:资源不能被抢占。只能在持有资源的进程完成任务后,该资源才会被释放。
157157
- **循环等待**:有一组等待进程 `{P0, P1,..., Pn}``P0` 等待的资源被 `P1` 占有,`P1` 等待的资源被 `P2` 占有,......,`Pn-1` 等待的资源被 `Pn` 占有,`Pn` 等待的资源被 `P0` 占有。
158158

159-
**注意 ⚠️** :这四个条件是产生死锁的 **必要条件** ,也就是说只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生产生死锁
159+
**注意 ⚠️** :这四个条件是产生死锁的 **必要条件** ,也就是说只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁
160160

161161
下面是百度百科对必要条件的解释:
162162

@@ -187,7 +187,7 @@ head:
187187

188188
静态分配策略可以破坏死锁产生的第二个条件(占有并等待)。所谓静态分配策略,就是指一个进程必须在执行前就申请到它所需要的全部资源,并且知道它所要的资源都得到满足之后才开始执行。进程要么占有所有的资源然后开始执行,要么不占有资源,不会出现占有一些资源等待一些资源的情况。
189189

190-
静态分配策略逻辑简单,实现也很容易,但这种策略 **严重地降低了资源利用率**,因为在每个进程所占有的资源中,有些资源是在比较靠后的执行时间里采用的,甚至有些资源是在额外的情况下才是用的,这样就可能造成了一个进程占有了一些 **几乎不用的资源而使其他需要该资源的进程产生等待** 的情况。
190+
静态分配策略逻辑简单,实现也很容易,但这种策略 **严重地降低了资源利用率**,因为在每个进程所占有的资源中,有些资源是在比较靠后的执行时间里采用的,甚至有些资源是在额外的情况下才使用的,这样就可能造成一个进程占有了一些 **几乎不用的资源而使其他需要该资源的进程产生等待** 的情况。
191191

192192
**2、层次分配策略**
193193

@@ -205,9 +205,9 @@ head:
205205

206206
银行家算法详情可见:[《一句话+一张图说清楚——银行家算法》](https://blog.csdn.net/qq_33414271/article/details/80245715)
207207

208-
操作系统教程树中讲述的银行家算法也比较清晰,可以一看.
208+
操作系统教程书中讲述的银行家算法也比较清晰,可以一看.
209209

210-
死锁的避免(银行家算法)改善解决了 **资源使用率低的问题** ,但是它要不断地检测每个进程对各类资源的占用和申请情况,以及做 **安全性检查** ,需要花费较多的时间。
210+
死锁的避免(银行家算法)改善了 **资源使用率低的问题** ,但是它要不断地检测每个进程对各类资源的占用和申请情况,以及做 **安全性检查** ,需要花费较多的时间。
211211

212212
#### 死锁的检测
213213

@@ -290,7 +290,7 @@ head:
290290
3. 如果该页不在快表中,就访问内存中的页表,再从页表中得到物理地址,同时将页表中的该映射表项添加到快表中;
291291
4. 当快表填满后,又要登记新页时,就按照一定的淘汰策略淘汰掉快表中的一个页。
292292

293-
看完了之后你会发现快表和我们平时经常在我们开发的系统使用的缓存(比如 Redis)很像,的确是这样的,操作系统中的很多思想、很多经典的算法,你都可以在我们日常开发使用的各种工具或者框架中找到它们的影子。
293+
看完了之后你会发现快表和我们平时经常在开发系统中使用的缓存(比如 Redis)很像,的确是这样的,操作系统中的很多思想、很多经典的算法,你都可以在我们日常开发使用的各种工具或者框架中找到它们的影子。
294294

295295
#### 多级页表
296296

@@ -331,7 +331,7 @@ head:
331331

332332
> 这部分内容参考了 Microsoft 官网的介绍,地址:<https://docs.microsoft.com/zh-cn/windows-hardware/drivers/gettingstarted/virtual-address-spaces?redirectedfrom=MSDN>
333333
334-
现代处理器使用的是一种称为 **虚拟寻址(Virtual Addressing)** 的寻址方式。**使用虚拟寻址,CPU 需要将虚拟地址翻译成物理地址,这样才能访问到真实的物理内存。** 实际上完成虚拟地址转换为物理地址转换的硬件是 CPU 中含有一个被称为 **内存管理单元(Memory Management Unit, MMU)** 的硬件。如下图所示:
334+
现代处理器使用的是一种称为 **虚拟寻址(Virtual Addressing)** 的寻址方式。**使用虚拟寻址,CPU 需要将虚拟地址翻译成物理地址,这样才能访问到真实的物理内存。** 实际上完成虚拟地址转换为物理地址的硬件是 CPU 中含有一个被称为 **内存管理单元(Memory Management Unit, MMU)** 的硬件。如下图所示:
335335

336336
![MMU_principle_updated](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/2b27dac8cc647f8aac989da2d1166db2.png)
337337

@@ -340,7 +340,7 @@ head:
340340
先从没有虚拟地址空间的时候说起吧!没有虚拟地址空间的时候,**程序直接访问和操作的都是物理内存** 。但是这样有什么问题呢?
341341

342342
1. 用户程序可以访问任意内存,寻址内存的每个字节,这样就很容易(有意或者无意)破坏操作系统,造成操作系统崩溃。
343-
2. 想要同时运行多个程序特别困难,比如你想同时运行一个微信和一个 QQ 音乐都不行。为什么呢?举个简单的例子:微信在运行的时候给内存地址 1xxx 赋值后,QQ 音乐也同样给内存地址 1xxx 赋值,那么 QQ 音乐对内存的赋值就会覆盖微信之前所赋的值,这就造成了微信这个程序就会崩溃
343+
2. 想要同时运行多个程序特别困难,比如你想同时运行一个微信和一个 QQ 音乐都不行。为什么呢?举个简单的例子:微信在运行的时候给内存地址 1xxx 赋值后,QQ 音乐也同样给内存地址 1xxx 赋值,那么 QQ 音乐对内存的赋值就会覆盖微信之前所赋的值,这就造成微信这个程序会崩溃
344344

345345
**总结来说:如果直接把物理地址暴露出来的话会带来严重问题,比如可能对操作系统造成伤害以及给同时运行多个程序造成困难。**
346346

@@ -356,7 +356,7 @@ head:
356356

357357
👨‍💻**面试官** :再问你一个常识性的问题!**什么是虚拟内存(Virtual Memory)?**
358358

359-
🙋 **** :这个在我们平时使用电脑特别是 Windows 系统的时候太常见了。很多时候我们使用了很多占内存的软件,这些软件占用的内存可能已经远远超出了我们电脑本身具有的物理内存。**为什么可以这样呢?** 正是因为 **虚拟内存** 的存在,通过 **虚拟内存** 可以让程序可以拥有超过系统物理内存大小的可用内存空间。另外,**虚拟内存为每个进程提供了一个一致的、私有的地址空间,它让每个进程产生了一种自己在独享主存的错觉(每个进程拥有一片连续完整的内存空间)**。这样会更加有效地管理内存并减少出错。
359+
🙋 **** :这个在我们平时使用电脑特别是 Windows 系统的时候太常见了。很多时候我们使用了很多占内存的软件,这些软件占用的内存可能已经远远超出了我们电脑本身具有的物理内存。**为什么可以这样呢?** 正是因为 **虚拟内存** 的存在,通过 **虚拟内存** 可以让程序拥有超过系统物理内存大小的可用内存空间。另外,**虚拟内存为每个进程提供了一个一致的、私有的地址空间,它让每个进程产生了一种自己在独享主存的错觉(每个进程拥有一片连续完整的内存空间)**。这样会更加有效地管理内存并减少出错。
360360

361361
**虚拟内存**是计算机系统内存管理的一种技术,我们可以手动设置自己电脑的虚拟内存。不要单纯认为虚拟内存只是“使用硬盘空间来扩展内存“的技术。**虚拟内存的重要意义是它定义了一个连续的虚拟地址空间**,并且 **把内存扩展到硬盘空间**。推荐阅读:[《虚拟内存的那点事儿》](https://juejin.im/post/59f8691b51882534af254317)
362362

@@ -407,7 +407,7 @@ head:
407407

408408
**这里多说一下?很多人容易搞混请求分页与分页存储管理,两者有何不同呢?**
409409

410-
请求分页存储管理建立在分页管理之上。他们的根本区别是是否将程序全部所需的全部地址空间都装入主存,这也是请求分页存储管理可以提供虚拟内存的原因,我们在上面已经分析过了。
410+
请求分页存储管理建立在分页管理之上。他们的根本区别是是否将程序所需的全部地址空间都装入主存,这也是请求分页存储管理可以提供虚拟内存的原因,我们在上面已经分析过了。
411411

412412
它们之间的根本区别在于是否将一作业的全部地址空间同时装入主存。请求分页存储管理不要求将作业全部地址空间同时装入主存。基于这一点,请求分页存储管理可以提供虚存,而分页存储管理却不能提供虚存。
413413

0 commit comments

Comments
 (0)