Skip to content

Commit edfb77b

Browse files
committed
[api] Add tf.nn list
1 parent 0158c38 commit edfb77b

File tree

3 files changed

+100
-0
lines changed

3 files changed

+100
-0
lines changed

docs/_sidebar.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,7 @@
3737

3838
* API
3939
* [tf](api/tf.md)
40+
* [tf.nn](api/tf.nn.md)
4041

4142

4243
* Contribute

docs/api/tf.nn.md

Lines changed: 98 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
# API of `tf.nn`
2+
3+
## Classes
4+
5+
| Name | Description | Has Test Case | Has Completed |
6+
| ----------- | ----------------------------------------- | ------------- | ------------- |
7+
| [`class RNNCellDeviceWrapper`](https://www.tensorflow.org/api_docs/python/tf/nn/RNNCellDeviceWrapper) | : Operator that ensures an RNNCell runs on a particular device. | | |
8+
| [`class RNNCellDropoutWrapper`](https://www.tensorflow.org/api_docs/python/tf/nn/RNNCellDropoutWrapper) | : Operator adding dropout to inputs and outputs of the given cell. | | |
9+
| [`class RNNCellResidualWrapper`](https://www.tensorflow.org/api_docs/python/tf/nn/RNNCellResidualWrapper) | : RNNCell wrapper that ensures cell inputs are added to the outputs. | | |
10+
11+
## Functions
12+
13+
| Name | Description | Has Test Case | Has Completed |
14+
| ----------- | ----------------------------------------- | ------------- | ------------- |
15+
| [`all_candidate_sampler(...)`](https://www.tensorflow.org/api_docs/python/tf/random/all_candidate_sampler) | : Generate the set of all classes. | | |
16+
| [`atrous_conv2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/atrous_conv2d) | : Atrous convolution (a.k.a. convolution with holes or dilated convolution). | | |
17+
| [`atrous_conv2d_transpose(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/atrous_conv2d_transpose) | : The transpose of `atrous_conv2d`. | | |
18+
| [`avg_pool(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/avg_pool) | : Performs the avg pooling on the input. | | |
19+
| [`avg_pool1d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/avg_pool1d) | : Performs the average pooling on the input. | | |
20+
| [`avg_pool2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/avg_pool2d) | : Performs the average pooling on the input. | | |
21+
| [`avg_pool3d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/avg_pool3d) | : Performs the average pooling on the input. | | |
22+
| [`batch_norm_with_global_normalization(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/batch_norm_with_global_normalization) | : Batch normalization. | | |
23+
| [`batch_normalization(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/batch_normalization) | : Batch normalization. | | |
24+
| [`bias_add(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/bias_add) | : Adds `bias` to `value`. | | |
25+
| [`collapse_repeated(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/collapse_repeated) | : Merge repeated labels into single labels. | | |
26+
| [`compute_accidental_hits(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/compute_accidental_hits) | : Compute the position ids in `sampled_candidates` matching `true_classes`. | | |
27+
| [`compute_average_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/compute_average_loss) | : Scales per-example losses with sample_weights and computes their average. | | |
28+
| [`conv1d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv1d) | : Computes a 1-D convolution given 3-D input and filter tensors. | | |
29+
| [`conv1d_transpose(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv1d_transpose) | : The transpose of `conv1d`. | | |
30+
| [`conv2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d) | : Computes a 2-D convolution given `input` and 4-D `filters` tensors. | | |
31+
| [`conv2d_transpose(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_transpose) | : The transpose of `conv2d`. | | |
32+
| [`conv3d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv3d) | : Computes a 3-D convolution given 5-D `input` and `filters` tensors. | | |
33+
| [`conv3d_transpose(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv3d_transpose) | : The transpose of `conv3d`. | | |
34+
| [`conv_transpose(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/conv_transpose) | : The transpose of `convolution`. | | |
35+
| [`convolution(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/convolution) | : Computes sums of N-D convolutions (actually cross-correlation). | | |
36+
| [`crelu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/crelu) | : Computes Concatenated ReLU. | | |
37+
| [`ctc_beam_search_decoder(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_beam_search_decoder) | : Performs beam search decoding on the logits given in input. | | |
38+
| [`ctc_greedy_decoder(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_greedy_decoder) | : Performs greedy decoding on the logits given in input (best path). | | |
39+
| [`ctc_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_loss) | : Computes CTC (Connectionist Temporal Classification) loss. | | |
40+
[`ctc_unique_labels(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_unique_labels) | : Get unique labels and indices for batched labels for [`tf.nn.ctc_loss`](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_loss). | | | |
41+
| [`depth_to_space(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/depth_to_space) | : DepthToSpace for tensors of type T. | | |
42+
| [`depthwise_conv2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d) | : Depthwise 2-D convolution. | | |
43+
| [`depthwise_conv2d_backprop_filter(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d_backprop_filter) | : Computes the gradients of depthwise convolution with respect to the filter. | | |
44+
| [`depthwise_conv2d_backprop_input(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d_backprop_input) | : Computes the gradients of depthwise convolution with respect to the input. | | |
45+
| [`dilation2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/dilation2d) | : Computes the grayscale dilation of 4-D `input` and 3-D `filters` tensors. | | |
46+
| [`dropout(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/dropout) | : Computes dropout: randomly sets elements to zero to prevent overfitting. | | |
47+
| [`elu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/elu) | : Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. | | |
48+
| [`embedding_lookup(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup) | : Looks up embeddings for the given `ids` from a list of tensors. | | |
49+
| [`embedding_lookup_sparse(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup_sparse) | : Looks up embeddings for the given ids and weights from a list of tensors. | | |
50+
| [`erosion2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/erosion2d) | : Computes the grayscale erosion of 4-D `value` and 3-D `filters` tensors. | | |
51+
| [`fixed_unigram_candidate_sampler(...)`](https://www.tensorflow.org/api_docs/python/tf/random/fixed_unigram_candidate_sampler) | : Samples a set of classes using the provided (fixed) base distribution. | | |
52+
| [`fractional_avg_pool(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/fractional_avg_pool) | : Performs fractional average pooling on the input. | | |
53+
| [`fractional_max_pool(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/fractional_max_pool) | : Performs fractional max pooling on the input. | | |
54+
| [`gelu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/gelu) | : Compute the Gaussian Error Linear Unit (GELU) activation function. | | |
55+
| [`in_top_k(...)`](https://www.tensorflow.org/api_docs/python/tf/math/in_top_k) | : Says whether the targets are in the top `K` predictions. | | |
56+
| [`isotonic_regression(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/isotonic_regression) | : Solves isotonic regression problems along the given axis. | | |
57+
| [`l2_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss) | : L2 Loss. | | |
58+
| [`l2_normalize(...)`](https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize) | : Normalizes along dimension `axis` using an L2 norm. | | |
59+
| [`leaky_relu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/leaky_relu) | : Compute the Leaky ReLU activation function. | | |
60+
| [`learned_unigram_candidate_sampler(...)`](https://www.tensorflow.org/api_docs/python/tf/random/learned_unigram_candidate_sampler) | : Samples a set of classes from a distribution learned during training. | | |
61+
| [`local_response_normalization(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization) | : Local Response Normalization. | | |
62+
| [`log_poisson_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/log_poisson_loss) | : Computes log Poisson loss given `log_input`. | | |
63+
| [`log_softmax(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/log_softmax) | : Computes log softmax activations. | | |
64+
| [`lrn(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization) | : Local Response Normalization. | | |
65+
| [`max_pool(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool) | : Performs the max pooling on the input. | | |
66+
| [`max_pool1d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool1d) | : Performs the max pooling on the input. | | |
67+
| [`max_pool2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool2d) | : Performs the max pooling on the input. | | |
68+
| [`max_pool3d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool3d) | : Performs the max pooling on the input. | | |
69+
| [`max_pool_with_argmax(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/max_pool_with_argmax) | : Performs max pooling on the input and outputs both max values and indices. | | |
70+
| [`moments(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/moments) | : Calculates the mean and variance of `x`. | | |
71+
| [`nce_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/nce_loss) | : Computes and returns the noise-contrastive estimation training loss. | | |
72+
| [`normalize_moments(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/normalize_moments) | : Calculate the mean and variance of based on the sufficient statistics. | | |
73+
| [`pool(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/pool) | : Performs an N-D pooling operation. | | |
74+
| [`relu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/relu) | : Computes rectified linear: `max(features, 0)`. | | |
75+
| [`relu6(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/relu6) | : Computes Rectified Linear 6: `min(max(features, 0), 6)`. | | |
76+
| [`safe_embedding_lookup_sparse(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/safe_embedding_lookup_sparse) | : Lookup embedding results, accounting for invalid IDs and empty features. | | |
77+
| [`sampled_softmax_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss) | : Computes and returns the sampled softmax training loss. | | |
78+
| [`scale_regularization_loss(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/scale_regularization_loss) | : Scales the sum of the given regularization losses by number of replicas. | | |
79+
| [`selu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/selu) | : Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` | | |
80+
| [`separable_conv2d(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d) | : 2-D convolution with separable filters. | | |
81+
| [`sigmoid(...)`](https://www.tensorflow.org/api_docs/python/tf/math/sigmoid) | : Computes sigmoid of `x` element-wise. | | |
82+
| [`sigmoid_cross_entropy_with_logits(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits) | : Computes sigmoid cross entropy given `logits`. | | |
83+
| [`silu(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/silu) | : Computes the SiLU or Swish activation function: `x * sigmoid(x)`. | | |
84+
| [`softmax(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/softmax) | : Computes softmax activations. | | |
85+
| [`softmax_cross_entropy_with_logits(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits) | : Computes softmax cross entropy between `logits` and `labels`. | | |
86+
| [`softplus(...)`](https://www.tensorflow.org/api_docs/python/tf/math/softplus) | : Computes softplus: `log(exp(features) + 1)`. | | |
87+
| [`softsign(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/softsign) | : Computes softsign: `features / (abs(features) + 1)`. | | |
88+
| [`space_to_batch(...)`](https://www.tensorflow.org/api_docs/python/tf/space_to_batch) | : SpaceToBatch for N-D tensors of type T. | | |
89+
| [`space_to_depth(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/space_to_depth) | : SpaceToDepth for tensors of type T. | | |
90+
| [`sparse_softmax_cross_entropy_with_logits(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/sparse_softmax_cross_entropy_with_logits) | : Computes sparse softmax cross entropy between `logits` and `labels`. | | |
91+
| [`sufficient_statistics(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/sufficient_statistics) | : Calculate the sufficient statistics for the mean and variance of `x`. | | |
92+
| [`swish(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/silu) | : Computes the SiLU or Swish activation function: `x * sigmoid(x)`. | | |
93+
| [`tanh(...)`](https://www.tensorflow.org/api_docs/python/tf/math/tanh) | : Computes hyperbolic tangent of `x` element-wise. | | |
94+
| [`top_k(...)`](https://www.tensorflow.org/api_docs/python/tf/math/top_k) | : Finds values and indices of the `k` largest entries for the last dimension. | | |
95+
| [`weighted_cross_entropy_with_logits(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits) | : Computes a weighted cross entropy. | | |
96+
| [`weighted_moments(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/weighted_moments) | : Returns the frequency-weighted mean and variance of `x`. | | |
97+
| [`with_space_to_batch(...)`](https://www.tensorflow.org/api_docs/python/tf/nn/with_space_to_batch) | : Performs `op` on the space-to-batch representation of `input`. | | |
98+
| [`zero_fraction(...)`](https://www.tensorflow.org/api_docs/python/tf/math/zero_fraction) | : Returns the fraction of zeros in `value`. | | |

docs/zh-cn/_sidebar.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@
1010

1111
* API
1212
* [tf](api/tf.md)
13+
* [tf.nn](api/tf.nn.md)
1314

1415

1516
* 加入专业团队

0 commit comments

Comments
 (0)