As the first ODE example, we have chosen a simple and well-behaved problem, which is a variation of a standard first-year physics problem: what is the trajectory of an object (say, a ball or a rocket) thrown vertically at velocity $v$ from the surface of a planet? Assuming a constant acceleration of gravity, $g$, every burgeoning physicist knows the answer: $x(t) = x(0) + vt - \frac{1}{2}gt^2$. However, what happens if $g$ is not constant? Specifically, $g$ is inversely proportional to the distant from the center of the planet. If $v$ is large and the projectile travels a large fraction of the radius of the planet, the assumption of constant gravity does not hold anymore. However, unless $v$ is large compared to the escape velocity, the correction is usually small. After simplifications and change of variables to dimensionless, the problem becomes
0 commit comments