|
| 1 | +using ModelingToolkit, OrdinaryDiffEq, LinearAlgebra, ControlSystemsBase |
| 2 | +using ModelingToolkitStandardLibrary.Mechanical.Rotational |
| 3 | +using ModelingToolkitStandardLibrary.Blocks |
| 4 | +using ModelingToolkit: connect, AnalysisPoint, t_nounits as t, D_nounits as D |
| 5 | +import ControlSystemsBase as CS |
| 6 | + |
| 7 | +@testset "Complicated model" begin |
| 8 | + # Parameters |
| 9 | + m1 = 1 |
| 10 | + m2 = 1 |
| 11 | + k = 1000 # Spring stiffness |
| 12 | + c = 10 # Damping coefficient |
| 13 | + @named inertia1 = Inertia(; J = m1) |
| 14 | + @named inertia2 = Inertia(; J = m2) |
| 15 | + @named spring = Spring(; c = k) |
| 16 | + @named damper = Damper(; d = c) |
| 17 | + @named torque = Torque() |
| 18 | + |
| 19 | + function SystemModel(u = nothing; name = :model) |
| 20 | + eqs = [connect(torque.flange, inertia1.flange_a) |
| 21 | + connect(inertia1.flange_b, spring.flange_a, damper.flange_a) |
| 22 | + connect(inertia2.flange_a, spring.flange_b, damper.flange_b)] |
| 23 | + if u !== nothing |
| 24 | + push!(eqs, connect(torque.tau, u.output)) |
| 25 | + return ODESystem(eqs, t; |
| 26 | + systems = [ |
| 27 | + torque, |
| 28 | + inertia1, |
| 29 | + inertia2, |
| 30 | + spring, |
| 31 | + damper, |
| 32 | + u |
| 33 | + ], |
| 34 | + name) |
| 35 | + end |
| 36 | + ODESystem(eqs, t; systems = [torque, inertia1, inertia2, spring, damper], name) |
| 37 | + end |
| 38 | + |
| 39 | + @named r = Step(start_time = 0) |
| 40 | + model = SystemModel() |
| 41 | + @named pid = PID(k = 100, Ti = 0.5, Td = 1) |
| 42 | + @named filt = SecondOrder(d = 0.9, w = 10) |
| 43 | + @named sensor = AngleSensor() |
| 44 | + @named er = Add(k2 = -1) |
| 45 | + |
| 46 | + connections = [connect(r.output, :r, filt.input) |
| 47 | + connect(filt.output, er.input1) |
| 48 | + connect(pid.ctr_output, :u, model.torque.tau) |
| 49 | + connect(model.inertia2.flange_b, sensor.flange) |
| 50 | + connect(sensor.phi, :y, er.input2) |
| 51 | + connect(er.output, :e, pid.err_input)] |
| 52 | + |
| 53 | + closed_loop = ODESystem(connections, t, systems = [model, pid, filt, sensor, r, er], |
| 54 | + name = :closed_loop, defaults = [ |
| 55 | + model.inertia1.phi => 0.0, |
| 56 | + model.inertia2.phi => 0.0, |
| 57 | + model.inertia1.w => 0.0, |
| 58 | + model.inertia2.w => 0.0, |
| 59 | + filt.x => 0.0, |
| 60 | + filt.xd => 0.0 |
| 61 | + ]) |
| 62 | + |
| 63 | + sys = structural_simplify(closed_loop) |
| 64 | + prob = ODEProblem(sys, unknowns(sys) .=> 0.0, (0.0, 4.0)) |
| 65 | + sol = solve(prob, Rodas5P(), reltol = 1e-6, abstol = 1e-9) |
| 66 | + |
| 67 | + matrices, ssys = linearize(closed_loop, AnalysisPoint(:r), AnalysisPoint(:y)) |
| 68 | + lsys = ss(matrices...) |> sminreal |
| 69 | + @test lsys.nx == 8 |
| 70 | + |
| 71 | + stepres = ControlSystemsBase.step(c2d(lsys, 0.001), 4) |
| 72 | + @test Array(stepres.y[:])≈Array(sol(0:0.001:4, idxs = model.inertia2.phi)) rtol=1e-4 |
| 73 | + |
| 74 | + matrices, ssys = get_sensitivity(closed_loop, :y) |
| 75 | + So = ss(matrices...) |
| 76 | + |
| 77 | + matrices, ssys = get_sensitivity(closed_loop, :u) |
| 78 | + Si = ss(matrices...) |
| 79 | + |
| 80 | + @test tf(So) ≈ tf(Si) |
| 81 | +end |
| 82 | + |
| 83 | +@testset "Analysis points with subsystems" begin |
| 84 | + @named P = FirstOrder(k = 1, T = 1) |
| 85 | + @named C = Gain(; k = 1) |
| 86 | + @named add = Blocks.Add(k2 = -1) |
| 87 | + |
| 88 | + eqs = [connect(P.output, :plant_output, add.input2) |
| 89 | + connect(add.output, C.input) |
| 90 | + connect(C.output, :plant_input, P.input)] |
| 91 | + |
| 92 | + # eqs = [connect(P.output, add.input2) |
| 93 | + # connect(add.output, C.input) |
| 94 | + # connect(C.output, P.input)] |
| 95 | + |
| 96 | + sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner) |
| 97 | + |
| 98 | + @named r = Constant(k = 1) |
| 99 | + @named F = FirstOrder(k = 1, T = 3) |
| 100 | + |
| 101 | + eqs = [connect(r.output, F.input) |
| 102 | + connect(F.output, sys_inner.add.input1)] |
| 103 | + sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer) |
| 104 | + |
| 105 | + # test first that the structural_simplify works correctly |
| 106 | + ssys = structural_simplify(sys_outer) |
| 107 | + prob = ODEProblem(ssys, Pair[], (0, 10)) |
| 108 | + @test_nowarn solve(prob, Rodas5()) |
| 109 | + |
| 110 | + matrices, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_input) |
| 111 | + lsys = sminreal(ss(matrices...)) |
| 112 | + @test lsys.A[] == -2 |
| 113 | + @test lsys.B[] * lsys.C[] == -1 # either one negative |
| 114 | + @test lsys.D[] == 1 |
| 115 | + |
| 116 | + matrices_So, _ = get_sensitivity(sys_outer, sys_outer.inner.plant_output) |
| 117 | + lsyso = sminreal(ss(matrices_So...)) |
| 118 | + @test lsys == lsyso || lsys == -1 * lsyso * (-1) # Output and input sensitivities are equal for SISO systems |
| 119 | +end |
| 120 | + |
| 121 | +@testset "multilevel system with loop openings" begin |
| 122 | + @named P_inner = FirstOrder(k = 1, T = 1) |
| 123 | + @named feedback = Feedback() |
| 124 | + @named ref = Step() |
| 125 | + @named sys_inner = ODESystem( |
| 126 | + [connect(P_inner.output, :y, feedback.input2) |
| 127 | + connect(feedback.output, :u, P_inner.input) |
| 128 | + connect(ref.output, :r, feedback.input1)], |
| 129 | + t, |
| 130 | + systems = [P_inner, feedback, ref]) |
| 131 | + |
| 132 | + P_not_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y)) |
| 133 | + @test P_not_broken.A[] == -2 |
| 134 | + P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y), |
| 135 | + loop_openings = [AnalysisPoint(:u)]) |
| 136 | + @test P_broken.A[] == -1 |
| 137 | + P_broken, _ = linearize(sys_inner, AnalysisPoint(:u), AnalysisPoint(:y), |
| 138 | + loop_openings = [AnalysisPoint(:y)]) |
| 139 | + @test P_broken.A[] == -1 |
| 140 | + |
| 141 | + Sinner = sminreal(ss(get_sensitivity(sys_inner, :u)[1]...)) |
| 142 | + |
| 143 | + @named sys_inner = ODESystem( |
| 144 | + [connect(P_inner.output, :y, feedback.input2) |
| 145 | + connect(feedback.output, :u, P_inner.input)], |
| 146 | + t, |
| 147 | + systems = [P_inner, feedback]) |
| 148 | + |
| 149 | + @named P_outer = FirstOrder(k = rand(), T = rand()) |
| 150 | + |
| 151 | + @named sys_outer = ODESystem( |
| 152 | + [connect(sys_inner.P_inner.output, :y2, P_outer.input) |
| 153 | + connect(P_outer.output, :u2, sys_inner.feedback.input1)], |
| 154 | + t, |
| 155 | + systems = [P_outer, sys_inner]) |
| 156 | + |
| 157 | + Souter = sminreal(ss(get_sensitivity(sys_outer, :sys_inner_u)[1]...)) |
| 158 | + |
| 159 | + Sinner2 = sminreal(ss(get_sensitivity( |
| 160 | + sys_outer, :sys_inner_u, loop_openings = [:y2])[1]...)) |
| 161 | + |
| 162 | + @test Sinner.nx == 1 |
| 163 | + @test Sinner == Sinner2 |
| 164 | + @test Souter.nx == 2 |
| 165 | +end |
| 166 | + |
| 167 | +@testset "sensitivities in multivariate signals" begin |
| 168 | + A = [-0.994 -0.0794; -0.006242 -0.0134] |
| 169 | + B = [-0.181 -0.389; 1.1 1.12] |
| 170 | + C = [1.74 0.72; -0.33 0.33] |
| 171 | + D = [0.0 0.0; 0.0 0.0] |
| 172 | + @named P = Blocks.StateSpace(A, B, C, D) |
| 173 | + Pss = CS.ss(A, B, C, D) |
| 174 | + |
| 175 | + A = [-0.097;;] |
| 176 | + B = [-0.138 -1.02] |
| 177 | + C = [-0.076; 0.09;;] |
| 178 | + D = [0.0 0.0; 0.0 0.0] |
| 179 | + @named K = Blocks.StateSpace(A, B, C, D) |
| 180 | + Kss = CS.ss(A, B, C, D) |
| 181 | + |
| 182 | + eqs = [connect(P.output, :plant_output, K.input) |
| 183 | + connect(K.output, :plant_input, P.input)] |
| 184 | + sys = ODESystem(eqs, t, systems = [P, K], name = :hej) |
| 185 | + |
| 186 | + matrices, _ = Blocks.get_sensitivity(sys, :plant_input) |
| 187 | + S = CS.feedback(I(2), Kss * Pss, pos_feedback = true) |
| 188 | + |
| 189 | + @test CS.tf(CS.ss(matrices...)) ≈ CS.tf(S) |
| 190 | + |
| 191 | + matrices, _ = Blocks.get_comp_sensitivity(sys, :plant_input) |
| 192 | + T = -CS.feedback(Kss * Pss, I(2), pos_feedback = true) |
| 193 | + |
| 194 | + # bodeplot([ss(matrices...), T]) |
| 195 | + @test CS.tf(CS.ss(matrices...)) ≈ CS.tf(T) |
| 196 | + |
| 197 | + matrices, _ = Blocks.get_looptransfer( |
| 198 | + sys, :plant_input) |
| 199 | + L = Kss * Pss |
| 200 | + @test CS.tf(CS.ss(matrices...)) ≈ CS.tf(L) |
| 201 | + |
| 202 | + matrices, _ = linearize(sys, :plant_input, :plant_output) |
| 203 | + G = CS.feedback(Pss, Kss, pos_feedback = true) |
| 204 | + @test CS.tf(CS.ss(matrices...)) ≈ CS.tf(G) |
| 205 | +end |
| 206 | + |
| 207 | +@testset "multiple analysis points" begin |
| 208 | + @named P = FirstOrder(k = 1, T = 1) |
| 209 | + @named C = Gain(; k = 1) |
| 210 | + @named add = Blocks.Add(k2 = -1) |
| 211 | + |
| 212 | + eqs = [connect(P.output, :plant_output, add.input2) |
| 213 | + connect(add.output, C.input) |
| 214 | + connect(C.output, :plant_input, P.input)] |
| 215 | + |
| 216 | + sys_inner = ODESystem(eqs, t, systems = [P, C, add], name = :inner) |
| 217 | + |
| 218 | + @named r = Constant(k = 1) |
| 219 | + @named F = FirstOrder(k = 1, T = 3) |
| 220 | + |
| 221 | + eqs = [connect(r.output, F.input) |
| 222 | + connect(F.output, sys_inner.add.input1)] |
| 223 | + sys_outer = ODESystem(eqs, t, systems = [F, sys_inner, r], name = :outer) |
| 224 | + |
| 225 | + matrices, _ = get_sensitivity(sys_outer, [:, :inner_plant_output]) |
| 226 | + |
| 227 | + Ps = tf(1, [1, 1]) |> ss |
| 228 | + Cs = tf(1) |> ss |
| 229 | + |
| 230 | + G = CS.ss(matrices...) |> sminreal |
| 231 | + Si = CS.feedback(1, Cs * Ps) |
| 232 | + @test tf(G[1, 1]) ≈ tf(Si) |
| 233 | +end |
0 commit comments