-
-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathdep_graphs.jl
190 lines (174 loc) · 6.2 KB
/
dep_graphs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
using Test
using ModelingToolkit, Graphs, JumpProcesses, RecursiveArrayTools
using ModelingToolkit: t_nounits as t, D_nounits as D
import ModelingToolkit: value
#################################
# testing for Jumps / all dgs
#################################
@parameters k1 k2
@variables S(t) I(t) R(t)
j₁ = MassActionJump(k1, [0 => 1], [S => 1])
j₂ = MassActionJump(k1, [S => 1], [S => -1])
j₃ = MassActionJump(k2, [S => 1, I => 1], [S => -1, I => 1])
j₄ = MassActionJump(k2, [S => 2, R => 1], [R => -1])
j₅ = ConstantRateJump(k1 * I, [R ~ R + 1])
j₆ = VariableRateJump(k1 * k2 / (1 + t) * S, [S ~ S - 1, R ~ R + 1])
eqs = [j₁, j₂, j₃, j₄, j₅, j₆]
@named js = JumpSystem(eqs, t, [S, I, R], [k1, k2])
S = value(S)
I = value(I)
R = value(R)
k1 = value(k1)
k2 = value(k2)
# eq to vars they depend on
eq_sdeps = [Variable[], [S], [S, I], [S, R], [I], [S]]
eq_sidepsf = [Int[], [1], [1, 2], [1, 3], [2], [1]]
eq_sidepsb = [[2, 3, 4, 6], [3, 5], [4]]
deps = equation_dependencies(js)
@test all(i -> isequal(Set(eq_sdeps[i]), Set(deps[i])), 1:length(eqs))
depsbg = asgraph(js)
@test depsbg.fadjlist == eq_sidepsf
@test depsbg.badjlist == eq_sidepsb
# eq to params they depend on
eq_pdeps = [[k1], [k1], [k2], [k2], [k1], [k1, k2]]
eq_pidepsf = [[1], [1], [2], [2], [1], [1, 2]]
eq_pidepsb = [[1, 2, 5, 6], [3, 4, 6]]
deps = equation_dependencies(js, variables = parameters(js))
@test all(i -> isequal(Set(eq_pdeps[i]), Set(deps[i])), 1:length(eqs))
depsbg2 = asgraph(js, variables = parameters(js))
@test depsbg2.fadjlist == eq_pidepsf
@test depsbg2.badjlist == eq_pidepsb
# var to eqs that modify them
s_eqdepsf = [[1, 2, 3, 6], [3], [4, 5, 6]]
s_eqdepsb = [[1], [1], [1, 2], [3], [3], [1, 3]]
ne = 8
bg = BipartiteGraph(ne, s_eqdepsf, s_eqdepsb)
deps2 = variable_dependencies(js)
@test isequal(bg, deps2)
# eq to eqs that depend on them
eq_eqdeps = [[2, 3, 4, 6], [2, 3, 4, 6], [2, 3, 4, 5, 6], [4], [4], [2, 3, 4, 6]]
dg = SimpleDiGraph(6)
for (eqidx, eqdeps) in enumerate(eq_eqdeps)
for eqdepidx in eqdeps
add_edge!(dg, eqidx, eqdepidx)
end
end
dg3 = eqeq_dependencies(depsbg, deps2)
@test dg == dg3
# var to vars that depend on them
var_vardeps = [[1, 2, 3], [1, 2, 3], [3]]
ne = 7
dg = SimpleDiGraph(3)
for (vidx, vdeps) in enumerate(var_vardeps)
for vdepidx in vdeps
add_edge!(dg, vidx, vdepidx)
end
end
dg4 = varvar_dependencies(depsbg, deps2)
@test dg == dg4
# testing when ignoring VariableRateJumps
let
@parameters k1 k2
@variables S(t) I(t) R(t)
j₁ = MassActionJump(k1, [0 => 1], [S => 1])
j₂ = MassActionJump(k1, [S => 1], [S => -1])
j₃ = MassActionJump(k2, [S => 1, I => 1], [S => -1, I => 1])
j₄ = MassActionJump(k2, [S => 2, R => 1], [R => -1])
j₅ = ConstantRateJump(k1 * I, [R ~ R + 1])
j₆ = VariableRateJump(k1 * k2 / (1 + t) * S, [S ~ S - 1, R ~ R + 1])
eqs = [j₁, j₂, j₃, j₄, j₅, j₆]
@named js = JumpSystem(eqs, t, [S, I, R], [k1, k2])
S = value(S)
I = value(I)
R = value(R)
k1 = value(k1)
k2 = value(k2)
# eq to vars they depend on
eq_sdeps = [Variable[], [S], [S, I], [S, R], [I]]
eq_sidepsf = [Int[], [1], [1, 2], [1, 3], [2]]
eq_sidepsb = [[2, 3, 4], [3, 5], [4]]
# filter out vrjs in making graphs
eqs = ArrayPartition(equations(js).x[1], equations(js).x[2])
deps = equation_dependencies(js; eqs)
@test length(deps) == length(eq_sdeps)
@test all(i -> isequal(Set(eq_sdeps[i]), Set(deps[i])), 1:length(eqs))
depsbg = asgraph(js; eqs)
@test depsbg.fadjlist == eq_sidepsf
@test depsbg.badjlist == eq_sidepsb
# eq to params they depend on
eq_pdeps = [[k1], [k1], [k2], [k2], [k1]]
eq_pidepsf = [[1], [1], [2], [2], [1]]
eq_pidepsb = [[1, 2, 5], [3, 4]]
deps = equation_dependencies(js; variables = parameters(js), eqs)
@test length(deps) == length(eq_pdeps)
@test all(i -> isequal(Set(eq_pdeps[i]), Set(deps[i])), 1:length(eqs))
depsbg2 = asgraph(js; variables = parameters(js), eqs)
@test depsbg2.fadjlist == eq_pidepsf
@test depsbg2.badjlist == eq_pidepsb
# var to eqs that modify them
s_eqdepsf = [[1, 2, 3], [3], [4, 5]]
s_eqdepsb = [[1], [1], [1, 2], [3], [3]]
ne = 6
bg = BipartiteGraph(ne, s_eqdepsf, s_eqdepsb)
deps2 = variable_dependencies(js; eqs)
@test isequal(bg, deps2)
# eq to eqs that depend on them
eq_eqdeps = [[2, 3, 4], [2, 3, 4], [2, 3, 4, 5], [4], [4], [2, 3, 4]]
dg = SimpleDiGraph(5)
for (eqidx, eqdeps) in enumerate(eq_eqdeps)
for eqdepidx in eqdeps
add_edge!(dg, eqidx, eqdepidx)
end
end
dg3 = eqeq_dependencies(depsbg, deps2)
@test dg == dg3
# var to vars that depend on them
var_vardeps = [[1, 2, 3], [1, 2, 3], [3]]
ne = 7
dg = SimpleDiGraph(3)
for (vidx, vdeps) in enumerate(var_vardeps)
for vdepidx in vdeps
add_edge!(dg, vidx, vdepidx)
end
end
dg4 = varvar_dependencies(depsbg, deps2)
@test dg == dg4
end
#####################################
# testing for ODE/SDEs
#####################################
@parameters k1 k2
@variables S(t) I(t) R(t)
eqs = [D(S) ~ k1 - k1 * S - k2 * S * I - k1 * k2 / (1 + t) * S,
D(I) ~ k2 * S * I,
D(R) ~ -k2 * S^2 * R / 2 + k1 * I + k1 * k2 * S / (1 + t)]
noiseeqs = [S, I, R]
@named os = ODESystem(eqs, t, [S, I, R], [k1, k2])
deps = equation_dependencies(os)
S = value(S);
I = value(I);
R = value(R);
k1 = value(k1);
k2 = value(k2);
eq_sdeps = [[S, I], [S, I], [S, I, R]]
@test all(i -> isequal(Set(eq_sdeps[i]), Set(deps[i])), 1:length(deps))
@parameters k1 k2
@variables S(t) I(t) R(t)
@named sdes = SDESystem(eqs, noiseeqs, t, [S, I, R], [k1, k2])
deps = equation_dependencies(sdes)
@test all(i -> isequal(Set(eq_sdeps[i]), Set(deps[i])), 1:length(deps))
deps = variable_dependencies(os)
s_eqdeps = [[1], [2], [3]]
@test deps.fadjlist == s_eqdeps
#####################################
# testing for nonlin sys
#####################################
@variables x y z
@parameters σ ρ β
eqs = [0 ~ σ * (y - x),
0 ~ ρ - y,
0 ~ y - β * z]
@named ns = NonlinearSystem(eqs, [x, y, z], [σ, ρ, β])
deps = equation_dependencies(ns)
eq_sdeps = [[x, y], [y], [y, z]]
@test all(i -> isequal(Set(deps[i]), Set(value.(eq_sdeps[i]))), 1:length(deps))