-
-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathdomain_connectors.jl
155 lines (122 loc) · 3.34 KB
/
domain_connectors.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
using Test
@connector function HydraulicPort(; p_int, name)
pars = @parameters begin
ρ
β
μ
end
vars = @variables begin
p(t) = p_int
dm(t), [connect = Flow]
end
ODESystem(Equation[], t, vars, pars; name, defaults = [dm => 0])
end
@connector function HydraulicFluid(;
density = 997,
bulk_modulus = 2.09e9,
viscosity = 0.0010016,
name)
pars = @parameters begin
ρ = density
β = bulk_modulus
μ = viscosity
end
vars = @variables begin
dm(t), [connect = Flow]
end
eqs = [
dm ~ 0
]
ODESystem(eqs, t, vars, pars; name, defaults = [dm => 0])
end
function FixedPressure(; p, name)
pars = @parameters begin
p = p
end
vars = []
systems = @named begin
port = HydraulicPort(; p_int = p)
end
eqs = [
port.p ~ p
]
ODESystem(eqs, t, vars, pars; name, systems)
end
function FixedVolume(; vol, p_int, name)
pars = @parameters begin
p_int = p_int
vol = vol
end
systems = @named begin
port = HydraulicPort(; p_int)
end
vars = @variables begin
rho(t) = port.ρ
drho(t) = 0
end
# let
dm = port.dm
p = port.p
eqs = [D(rho) ~ drho
rho ~ port.ρ * (1 + p / port.β)
dm ~ drho * vol]
ODESystem(eqs, t, vars, pars; name, systems)
end
function Valve2Port(; p_s_int, p_r_int, p_int, name)
pars = @parameters begin
p_s_int = p_s_int
p_r_int = p_r_int
p_int = p_int
x_int = 0
scale = 1.0
k = 0.1
end
systems = @named begin
HS = HydraulicPort(; p_int = p_s_int)
HR = HydraulicPort(; p_int = p_r_int)
port = HydraulicPort(; p_int)
end
vars = @variables begin
x(t) = x_int
end
# let (flow) ---------
Δp_s = HS.p - port.p
Δp_r = port.p - HR.p
x̃ = abs(x / scale)
Δp̃_s = abs(Δp_s)
Δp̃_r = abs(Δp_r)
flow(Δp̃) = (k) * (Δp̃) * (x̃)
#
eqs = [domain_connect(port, HS, HR)
port.dm ~ -ifelse(x >= 0, +flow(Δp̃_s), -flow(Δp̃_r))
HS.dm ~ ifelse(x >= 0, port.dm, 0)
HR.dm ~ ifelse(x < 0, port.dm, 0)]
ODESystem(eqs, t, vars, pars; name, systems)
end
function System(; name)
vars = []
pars = []
systems = @named begin
fluid = HydraulicFluid(; density = 500, bulk_modulus = 1e9, viscosity = 0.01)
src = FixedPressure(; p = 200)
rtn = FixedPressure(; p = 0)
valve = Valve2Port(; p_s_int = 200, p_r_int = 0, p_int = 100)
vol = FixedVolume(; vol = 0.1, p_int = 100)
end
eqs = [domain_connect(fluid, src.port)
connect(src.port, valve.HS)
connect(rtn.port, valve.HR)
connect(vol.port, valve.port)
valve.x ~ sin(2π * t * 10)]
return ODESystem(eqs, t, vars, pars; systems, name)
end
@named odesys = System()
esys = ModelingToolkit.expand_connections(odesys)
@test length(equations(esys)) == length(unknowns(esys))
csys = complete(odesys)
sys = structural_simplify(odesys)
@test length(equations(sys)) == length(unknowns(sys))
sys_defs = ModelingToolkit.defaults(sys)
@test Symbol(sys_defs[csys.vol.port.ρ]) == Symbol(csys.fluid.ρ)