-
-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathmodia_tearing.jl
130 lines (121 loc) · 5.2 KB
/
modia_tearing.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# This code is derived from the Modia project and is licensed as follows:
# https://github.com/ModiaSim/Modia.jl/blob/b61daad643ef7edd0c1ccce6bf462c6acfb4ad1a/LICENSE
function try_assign_eq!(ict::IncrementalCycleTracker, vj::Integer, eq::Integer)
G = ict.graph
add_edge_checked!(ict, Iterators.filter(!=(vj), 𝑠neighbors(G.graph, eq)), vj) do G
G.matching[vj] = eq
G.ne += length(𝑠neighbors(G.graph, eq)) - 1
end
end
function try_assign_eq!(ict::IncrementalCycleTracker, vars, v_active, eq::Integer,
condition::F = _ -> true) where {F}
G = ict.graph
for vj in vars
(vj in v_active && G.matching[vj] === unassigned && condition(vj)) || continue
try_assign_eq!(ict, vj, eq) && return true
end
return false
end
function tearEquations!(ict::IncrementalCycleTracker, Gsolvable, es::Vector{Int},
v_active::BitSet, isder′::F) where {F}
check_der = isder′ !== nothing
if check_der
has_der = Ref(false)
isder = let has_der = has_der, isder′ = isder′
v -> begin
r = isder′(v)
has_der[] |= r
r
end
end
end
# Heuristic: As a first pass, try to assign any equations that only have one
# solvable variable.
for only_single_solvable in (true, false)
for eq in es # iterate only over equations that are not in eSolvedFixed
vs = Gsolvable[eq]
((length(vs) == 1) ⊻ only_single_solvable) && continue
if check_der
# if there're differentiated variables, then only consider them
try_assign_eq!(ict, vs, v_active, eq, isder)
if has_der[]
has_der[] = false
continue
end
end
try_assign_eq!(ict, vs, v_active, eq)
end
end
return ict
end
function tear_graph_block_modia!(var_eq_matching, ict, solvable_graph, eqs, vars,
isder::F) where {F}
tearEquations!(ict, solvable_graph.fadjlist, eqs, vars, isder)
for var in vars
var_eq_matching[var] = ict.graph.matching[var]
end
return nothing
end
function build_var_eq_matching(structure::SystemStructure, ::Type{U} = Unassigned;
varfilter::F2 = v -> true, eqfilter::F3 = eq -> true) where {U, F2, F3}
@unpack graph, solvable_graph = structure
var_eq_matching = maximal_matching(graph, eqfilter, varfilter, U)
matching_len = max(length(var_eq_matching),
maximum(x -> x isa Int ? x : 0, var_eq_matching, init = 0))
return complete(var_eq_matching, matching_len), matching_len
end
function tear_graph_modia(structure::SystemStructure, isder::F = nothing,
::Type{U} = Unassigned;
varfilter::F2 = v -> true,
eqfilter::F3 = eq -> true) where {F, U, F2, F3}
# It would be possible here to simply iterate over all variables and attempt to
# use tearEquations! to produce a matching that greedily selects the minimal
# number of torn variables. However, we can do this process faster if we first
# compute the strongly connected components. In the absence of cycles and
# non-solvability, a maximal matching on the original graph will give us an
# optimal assignment. However, even with cycles, we can use the maximal matching
# to give us a good starting point for a good matching and then proceed to
# reverse edges in each scc to improve the solution. Note that it is possible
# to have optimal solutions that cannot be found by this process. We will not
# find them here [TODO: It would be good to have an explicit example of this.]
@unpack graph, solvable_graph = structure
var_eq_matching, matching_len = build_var_eq_matching(structure, U; varfilter, eqfilter)
full_var_eq_matching = copy(var_eq_matching)
var_sccs = find_var_sccs(graph, var_eq_matching)
vargraph = DiCMOBiGraph{true}(graph, 0, Matching(matching_len))
ict = IncrementalCycleTracker(vargraph; dir = :in)
ieqs = Int[]
filtered_vars = BitSet()
free_eqs = free_equations(graph, var_sccs, var_eq_matching, varfilter)
is_overdetermined = !isempty(free_eqs)
for vars in var_sccs
for var in vars
if varfilter(var)
push!(filtered_vars, var)
if var_eq_matching[var] !== unassigned
ieq = var_eq_matching[var]
push!(ieqs, ieq)
end
end
var_eq_matching[var] = unassigned
end
tear_graph_block_modia!(var_eq_matching, ict, solvable_graph, ieqs,
filtered_vars, isder)
# If the systems is overdetemined, we cannot assume the free equations
# will not form algebraic loops with equations in the sccs.
if !is_overdetermined
vargraph.ne = 0
for var in vars
vargraph.matching[var] = unassigned
end
end
empty!(ieqs)
empty!(filtered_vars)
end
if is_overdetermined
free_vars = findall(x -> !(x isa Int), var_eq_matching)
tear_graph_block_modia!(var_eq_matching, ict, solvable_graph, free_eqs,
BitSet(free_vars), isder)
end
return var_eq_matching, full_var_eq_matching, var_sccs
end