-
-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathsplit_parameters.jl
218 lines (178 loc) · 7.63 KB
/
split_parameters.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
using ModelingToolkit, Test
using ModelingToolkitStandardLibrary.Blocks
using OrdinaryDiffEq
using BlockArrays: BlockedArray
using ModelingToolkit: t_nounits as t, D_nounits as D
using ModelingToolkit: MTKParameters, ParameterIndex, NONNUMERIC_PORTION
using SciMLStructures: Tunable, Discrete, Constants
using StaticArrays: SizedVector
x = [1, 2.0, false, [1, 2, 3], Parameter(1.0)]
y = ModelingToolkit.promote_to_concrete(x)
@test eltype(y) == Union{Float64, Parameter{Float64}, Vector{Int64}}
y = ModelingToolkit.promote_to_concrete(x; tofloat = false)
@test eltype(y) == Union{Bool, Float64, Int64, Parameter{Float64}, Vector{Int64}}
x = [1, 2.0, false, [1, 2, 3]]
y = ModelingToolkit.promote_to_concrete(x)
@test eltype(y) == Union{Float64, Vector{Int64}}
x = Any[1, 2.0, false]
y = ModelingToolkit.promote_to_concrete(x; tofloat = false)
@test eltype(y) == Union{Bool, Float64, Int64}
y = ModelingToolkit.promote_to_concrete(x; use_union = false)
@test eltype(y) == Float64
x = Float16[1.0, 2.0, 3.0]
y = ModelingToolkit.promote_to_concrete(x)
@test eltype(y) == Float16
# ------------------------ Mixed Single Values and Vector
dt = 4e-4
t_end = 10.0
time = 0:dt:t_end
x = @. time^2 + 1.0
struct Interpolator
data::Vector{Float64}
dt::Float64
end
function (i::Interpolator)(t)
return i.data[round(Int, t / i.dt + 1)]
end
@register_symbolic (i::Interpolator)(t)
get_value(interp::Interpolator, t) = interp(t)
@register_symbolic get_value(interp::Interpolator, t)
# get_value(data, t, dt) = data[round(Int, t / dt + 1)]
# @register_symbolic get_value(data::Vector, t, dt)
function Sampled(; name, interp = Interpolator(Float64[], 0.0))
pars = @parameters begin
interpolator::Interpolator = interp
end
vars = []
systems = @named begin
output = RealOutput()
end
eqs = [
output.u ~ get_value(interpolator, t)
]
return ODESystem(eqs, t, vars, [interpolator]; name, systems,
defaults = [output.u => interp.data[1]])
end
vars = @variables y(t)=1 dy(t)=0 ddy(t)=0
@named src = Sampled(; interp = Interpolator(x, dt))
@named int = Integrator()
eqs = [y ~ src.output.u
D(y) ~ dy
D(dy) ~ ddy
connect(src.output, int.input)]
@named sys = ODESystem(eqs, t, vars, []; systems = [int, src])
s = complete(sys)
sys = structural_simplify(sys)
prob = ODEProblem(
sys, [], (0.0, t_end), [s.src.interpolator => Interpolator(x, dt)]; tofloat = false)
sol = solve(prob, ImplicitEuler());
@test sol.retcode == ReturnCode.Success
@test sol[y][end] == x[end]
#TODO: remake becomes more complicated now, how to improve?
defs = ModelingToolkit.defaults(sys)
defs[s.src.interpolator] = Interpolator(2x, dt)
p′ = ModelingToolkit.MTKParameters(sys, defs)
prob′ = remake(prob; p = p′)
sol = solve(prob′, ImplicitEuler());
@test sol.retcode == ReturnCode.Success
@test sol[y][end] == 2x[end]
# ------------------------ Mixed Type Converted to float (default behavior)
vars = @variables y(t)=1 dy(t)=0 ddy(t)=0
pars = @parameters a=1.0 b=2.0 c=3
eqs = [D(y) ~ dy * a
D(dy) ~ ddy * b
ddy ~ sin(t) * c]
@named model = ODESystem(eqs, t, vars, pars)
sys = structural_simplify(model; split = false)
tspan = (0.0, t_end)
prob = ODEProblem(sys, [], tspan, [])
@test prob.p isa Vector{Float64}
sol = solve(prob, ImplicitEuler());
@test sol.retcode == ReturnCode.Success
# ------------------------ Mixed Type Conserved
prob = ODEProblem(sys, [], tspan, []; tofloat = false, use_union = true)
@test prob.p isa Tuple{Vector{Float64}, Vector{Int64}}
sol = solve(prob, ImplicitEuler());
@test sol.retcode == ReturnCode.Success
# ------------------------- Bug
using ModelingToolkit, LinearAlgebra
using ModelingToolkitStandardLibrary.Mechanical.Rotational
using ModelingToolkitStandardLibrary.Blocks
using ModelingToolkitStandardLibrary.Blocks: t
using ModelingToolkit: connect
"A wrapper function to make symbolic indexing easier"
function wr(sys)
ODESystem(Equation[], ModelingToolkit.get_iv(sys), systems = [sys], name = :a_wrapper)
end
indexof(sym, syms) = findfirst(isequal(sym), syms)
# Parameters
m1 = 1.0
m2 = 1.0
k = 10.0 # Spring stiffness
c = 3.0 # Damping coefficient
@named inertia1 = Inertia(; J = m1)
@named inertia2 = Inertia(; J = m2)
@named spring = Spring(; c = k)
@named damper = Damper(; d = c)
@named torque = Torque(use_support = false)
function SystemModel(u = nothing; name = :model)
eqs = [connect(torque.flange, inertia1.flange_a)
connect(inertia1.flange_b, spring.flange_a, damper.flange_a)
connect(inertia2.flange_a, spring.flange_b, damper.flange_b)]
if u !== nothing
push!(eqs, connect(torque.tau, u.output))
return @named model = ODESystem(eqs,
t;
systems = [torque, inertia1, inertia2, spring, damper, u])
end
ODESystem(eqs, t; systems = [torque, inertia1, inertia2, spring, damper], name)
end
model = SystemModel() # Model with load disturbance
@named d = Step(start_time = 1.0, duration = 10.0, offset = 0.0, height = 1.0) # Disturbance
model_outputs = [model.inertia1.w, model.inertia2.w, model.inertia1.phi, model.inertia2.phi] # This is the state realization we want to control
inputs = [model.torque.tau.u]
matrices, ssys = ModelingToolkit.linearize(wr(model), inputs, model_outputs)
# Design state-feedback gain using LQR
# Define cost matrices
x_costs = [model.inertia1.w => 1.0
model.inertia2.w => 1.0
model.inertia1.phi => 1.0
model.inertia2.phi => 1.0]
L = randn(1, 4) # Post-multiply by `C` to get the correct input to the controller
# This old definition of MatrixGain will work because the parameter space does not include K (an Array term)
# @component function MatrixGainAlt(K::AbstractArray; name)
# nout, nin = size(K, 1), size(K, 2)
# @named input = RealInput(; nin = nin)
# @named output = RealOutput(; nout = nout)
# eqs = [output.u[i] ~ sum(K[i, j] * input.u[j] for j in 1:nin) for i in 1:nout]
# compose(ODESystem(eqs, t, [], []; name = name), [input, output])
# end
@named state_feedback = MatrixGain(K = -L) # Build negative feedback into the feedback matrix
@named add = Add(; k1 = 1.0, k2 = 1.0) # To add the control signal and the disturbance
connections = [[state_feedback.input.u[i] ~ model_outputs[i] for i in 1:4]
connect(d.output, :d, add.input1)
connect(add.input2, state_feedback.output)
connect(add.output, :u, model.torque.tau)]
@named closed_loop = ODESystem(connections, t, systems = [model, state_feedback, add, d])
S = get_sensitivity(closed_loop, :u)
@testset "Indexing MTKParameters with ParameterIndex" begin
ps = MTKParameters(collect(1.0:10.0),
(BlockedArray([true, false, false, true], [2, 2]),
BlockedArray([[1 2; 3 4], [2 4; 6 8]], [1, 1])),
# (BlockedArray([[true, false], [false, true]]), BlockedArray([[[1 2; 3 4]], [[2 4; 6 8]]])),
([5, 6],),
(["hi", "bye"], [:lie, :die]))
@test ps[ParameterIndex(Tunable(), 1)] == 1.0
@test ps[ParameterIndex(Tunable(), 2:4)] == collect(2.0:4.0)
@test ps[ParameterIndex(Tunable(), reshape(4:7, 2, 2))] == reshape(4.0:7.0, 2, 2)
@test ps[ParameterIndex(Discrete(), (2, 1, 2, 2))] == 4
@test ps[ParameterIndex(Discrete(), (2, 2))] == [2 4; 6 8]
@test ps[ParameterIndex(Constants(), (1, 1))] == 5
@test ps[ParameterIndex(NONNUMERIC_PORTION, (2, 2))] == :die
ps[ParameterIndex(Tunable(), 1)] = 1.5
ps[ParameterIndex(Tunable(), 2:4)] = [2.5, 3.5, 4.5]
ps[ParameterIndex(Tunable(), reshape(5:8, 2, 2))] = [5.5 7.5; 6.5 8.5]
ps[ParameterIndex(Discrete(), (2, 1, 2, 2))] = 5
@test ps[ParameterIndex(Tunable(), 1:8)] == collect(1.0:8.0) .+ 0.5
@test ps[ParameterIndex(Discrete(), (2, 1, 2, 2))] == 5
end