Skip to content

Latest commit

 

History

History
793 lines (569 loc) · 32.4 KB

value-types.rst

File metadata and controls

793 lines (569 loc) · 32.4 KB
.. index:: ! value type, ! type;value

Value Types

The following types are also called value types because variables of these types will always be passed by value, i.e. they are always copied when they are used as function arguments or in assignments.

.. index:: ! bool, ! true, ! false

Booleans

bool: The possible values are constants true and false.

Operators:

  • ! (logical negation)
  • && (logical conjunction, "and")
  • || (logical disjunction, "or")
  • == (equality)
  • != (inequality)

The operators || and && apply the common short-circuiting rules. This means that in the expression f(x) || g(y), if f(x) evaluates to true, g(y) will not be evaluated even if it may have side-effects.

.. index:: ! uint, ! int, ! integer

Integers

int / uint: Signed and unsigned integers of various sizes. Keywords uint8 to uint256 in steps of 8 (unsigned of 8 up to 256 bits) and int8 to int256. uint and int are aliases for uint256 and int256, respectively.

Operators:

  • Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)
  • Bit operators: &, |, ^ (bitwise exclusive or), ~ (bitwise negation)
  • Shift operators: << (left shift), >> (right shift)
  • Arithmetic operators: +, -, unary -, *, /, % (modulo), ** (exponentiation)

For an integer type X, you can use type(X).min and type(X).max to access the minimum and maximum value representable by the type.

Warning

Integers in Solidity are restricted to a certain range. For example, with uint32, this is 0 up to 2**32 - 1. If the result of some operation on those numbers does not fit inside this range, it is truncated. These truncations can have serious consequences that you should :ref:`be aware of and mitigate against<underflow-overflow>`.

Comparisons

The value of a comparison is the one obtained by comparing the integer value.

Bit operations

Bit operations are performed on the two's complement representation of the number. This means that, for example ~int256(0) == int256(-1).

Shifts

The result of a shift operation has the type of the left operand, truncating the result to match the type. Right operand must be unsigned type. Trying to shift by signed type will produce a compilation error.

  • For positive and negative x values, x << y is equivalent to x * 2**y.
  • For positive x values, x >> y is equivalent to x / 2**y.
  • For negative x values, x >> y is equivalent to (x + 1) / 2**y - 1 (which is the same as dividing x by 2**y while rounding down towards negative infinity).

Warning

Before version 0.5.0 a right shift x >> y for negative x was equivalent to x / 2**y, i.e., right shifts used rounding up (towards zero) instead of rounding down (towards negative infinity).

Addition, Subtraction and Multiplication

Addition, subtraction and multiplication have the usual semantics. They wrap in two's complement representation, meaning that for example uint256(0) - uint256(1) == 2**256 - 1. You have to take these overflows into account when designing safe smart contracts.

The expression -x is equivalent to (T(0) - x) where T is the type of x. This means that -x will not be negative if the type of x is an unsigned integer type. Also, -x can be positive if x is negative. There is another caveat also resulting from two's complement representation:

int x = -2**255;
assert(-x == x);

This means that even if a number is negative, you cannot assume that its negation will be positive.

Division

Since the type of the result of an operation is always the type of one of the operands, division on integers always results in an integer. In Solidity, division rounds towards zero. This mean that int256(-5) / int256(2) == int256(-2).

Note that in contrast, division on :ref:`literals<rational_literals>` results in fractional values of arbitrary precision.

Note

Division by zero causes a failing assert.

Modulo

The modulo operation a % n yields the remainder r after the division of the operand a by the operand n, where q = int(a / n) and r = a - (n * q). This means that modulo results in the same sign as its left operand (or zero) and a % n == -(-a % n) holds for negative a:

  • int256(5) % int256(2) == int256(1)
  • int256(5) % int256(-2) == int256(1)
  • int256(-5) % int256(2) == int256(-1)
  • int256(-5) % int256(-2) == int256(-1)

Note

Modulo with zero causes a failing assert.

Exponentiation

Exponentiation is only available for unsigned types in the exponent. The resulting type of an exponentiation is always equal to the type of the base. Please take care that it is large enough to hold the result and prepare for potential wrapping behaviour.

Note

Note that 0**0 is defined by the EVM as 1.

.. index:: ! ufixed, ! fixed, ! fixed point number

Fixed Point Numbers

Warning

Fixed point numbers are not fully supported by Solidity yet. They can be declared, but cannot be assigned to or from.

fixed / ufixed: Signed and unsigned fixed point number of various sizes. Keywords ufixedMxN and fixedMxN, where M represents the number of bits taken by the type and N represents how many decimal points are available. M must be divisible by 8 and goes from 8 to 256 bits. N must be between 0 and 80, inclusive. ufixed and fixed are aliases for ufixed128x18 and fixed128x18, respectively.

Operators:

  • Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)
  • Arithmetic operators: +, -, unary -, *, /, % (modulo)

Note

The main difference between floating point (float and double in many languages, more precisely IEEE 754 numbers) and fixed point numbers is that the number of bits used for the integer and the fractional part (the part after the decimal dot) is flexible in the former, while it is strictly defined in the latter. Generally, in floating point almost the entire space is used to represent the number, while only a small number of bits define where the decimal point is.

.. index:: address, balance, send, call, delegatecall, staticcall, transfer

Address

The address type comes in two flavours, which are largely identical:

  • address: Holds a 20 byte value (size of an Ethereum address).
  • address payable: Same as address, but with the additional members transfer and send.

The idea behind this distinction is that address payable is an address you can send Ether to, while a plain address cannot be sent Ether.

Type conversions:

Implicit conversions from address payable to address are allowed, whereas conversions from address to address payable must be explicit via payable(<address>).

:ref:`Address literals<address_literals>` can be implicitly converted to address payable.

Explicit conversions to and from address are allowed for integers, integer literals, bytes20 and contract types with the following caveat: The result of a conversion of the form address(x) has the type address payable, if x is of integer or fixed bytes type, a literal or a contract with a receive or payable fallback function. If x is a contract without a receive or payable fallback function, then address(x) will be of type address. In external function signatures address is used for both the address and the address payable type.

Only expressions of type address can be converted to type address payable via payable(<address>).

Note

It might very well be that you do not need to care about the distinction between address and address payable and just use address everywhere. For example, if you are using the :ref:`withdrawal pattern<withdrawal_pattern>`, you can (and should) store the address itself as address, because you invoke the transfer function on msg.sender, which is an address payable.

Operators:

  • <=, <, ==, !=, >= and >

Warning

If you convert a type that uses a larger byte size to an address, for example bytes32, then the address is truncated. To reduce conversion ambiguity version 0.4.24 and higher of the compiler force you make the truncation explicit in the conversion. Take for example the 32-byte value 0x111122223333444455556666777788889999AAAABBBBCCCCDDDDEEEEFFFFCCCC.

You can use address(uint160(bytes20(b))), which results in 0x111122223333444455556666777788889999aAaa, or you can use address(uint160(uint256(b))), which results in 0x777788889999AaAAbBbbCcccddDdeeeEfFFfCcCc.

Note

The distinction between address and address payable was introduced with version 0.5.0. Also starting from that version, contracts do not derive from the address type, but can still be explicitly converted to address or to address payable, if they have a receive or payable fallback function.

Members of Addresses

For a quick reference of all members of address, see :ref:`address_related`.

  • balance and transfer

It is possible to query the balance of an address using the property balance and to send Ether (in units of wei) to a payable address using the transfer function:

address payable x = address(0x123);
address myAddress = address(this);
if (x.balance < 10 && myAddress.balance >= 10) x.transfer(10);

The transfer function fails if the balance of the current contract is not large enough or if the Ether transfer is rejected by the receiving account. The transfer function reverts on failure.

Note

If x is a contract address, its code (more specifically: its :ref:`receive-ether-function`, if present, or otherwise its :ref:`fallback-function`, if present) will be executed together with the transfer call (this is a feature of the EVM and cannot be prevented). If that execution runs out of gas or fails in any way, the Ether transfer will be reverted and the current contract will stop with an exception.

  • send

Send is the low-level counterpart of transfer. If the execution fails, the current contract will not stop with an exception, but send will return false.

Warning

There are some dangers in using send: The transfer fails if the call stack depth is at 1024 (this can always be forced by the caller) and it also fails if the recipient runs out of gas. So in order to make safe Ether transfers, always check the return value of send, use transfer or even better: use a pattern where the recipient withdraws the money.

  • call, delegatecall and staticcall

In order to interface with contracts that do not adhere to the ABI, or to get more direct control over the encoding, the functions call, delegatecall and staticcall are provided. They all take a single bytes memory parameter and return the success condition (as a bool) and the returned data (bytes memory). The functions abi.encode, abi.encodePacked, abi.encodeWithSelector and abi.encodeWithSignature can be used to encode structured data.

Example:

bytes memory payload = abi.encodeWithSignature("register(string)", "MyName");
(bool success, bytes memory returnData) = address(nameReg).call(payload);
require(success);

Warning

All these functions are low-level functions and should be used with care. Specifically, any unknown contract might be malicious and if you call it, you hand over control to that contract which could in turn call back into your contract, so be prepared for changes to your state variables when the call returns. The regular way to interact with other contracts is to call a function on a contract object (x.f()).

Note

Previous versions of Solidity allowed these functions to receive arbitrary arguments and would also handle a first argument of type bytes4 differently. These edge cases were removed in version 0.5.0.

It is possible to adjust the supplied gas with the gas modifier:

address(nameReg).call{gas: 1000000}(abi.encodeWithSignature("register(string)", "MyName"));

Similarly, the supplied Ether value can be controlled too:

address(nameReg).call{value: 1 ether}(abi.encodeWithSignature("register(string)", "MyName"));

Lastly, these modifiers can be combined. Their order does not matter:

address(nameReg).call{gas: 1000000, value: 1 ether}(abi.encodeWithSignature("register(string)", "MyName"));

In a similar way, the function delegatecall can be used: the difference is that only the code of the given address is used, all other aspects (storage, balance, ...) are taken from the current contract. The purpose of delegatecall is to use library code which is stored in another contract. The user has to ensure that the layout of storage in both contracts is suitable for delegatecall to be used.

Note

Prior to homestead, only a limited variant called callcode was available that did not provide access to the original msg.sender and msg.value values. This function was removed in version 0.5.0.

Since byzantium staticcall can be used as well. This is basically the same as call, but will revert if the called function modifies the state in any way.

All three functions call, delegatecall and staticcall are very low-level functions and should only be used as a last resort as they break the type-safety of Solidity.

The gas option is available on all three methods, while the value option is not supported for delegatecall.

Note

It is best to avoid relying on hardcoded gas values in your smart contract code, regardless of whether state is read from or written to, as this can have many pitfalls. Also, access to gas might change in the future.

Note

All contracts can be converted to address type, so it is possible to query the balance of the current contract using address(this).balance.

.. index:: ! contract type, ! type; contract

Contract Types

Every :ref:`contract<contracts>` defines its own type. You can implicitly convert contracts to contracts they inherit from. Contracts can be explicitly converted to and from the address type.

Explicit conversion to and from the address payable type is only possible if the contract type has a receive or payable fallback function. The conversion is still performed using address(x). If the contract type does not have a receive or payable fallback function, the conversion to address payable can be done using payable(address(x)). You can find more information in the section about the :ref:`address type<address>`.

Note

Before version 0.5.0, contracts directly derived from the address type and there was no distinction between address and address payable.

If you declare a local variable of contract type (MyContract c), you can call functions on that contract. Take care to assign it from somewhere that is the same contract type.

You can also instantiate contracts (which means they are newly created). You can find more details in the :ref:`'Contracts via new'<creating-contracts>` section.

The data representation of a contract is identical to that of the address type and this type is also used in the :ref:`ABI<ABI>`.

Contracts do not support any operators.

The members of contract types are the external functions of the contract including any state variables marked as public.

For a contract C you can use type(C) to access :ref:`type information<meta-type>` about the contract.

.. index:: byte array, bytes32

Fixed-size byte arrays

The value types bytes1, bytes2, bytes3, ..., bytes32 hold a sequence of bytes from one to up to 32. byte is an alias for bytes1.

Operators:

  • Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)
  • Bit operators: &, |, ^ (bitwise exclusive or), ~ (bitwise negation)
  • Shift operators: << (left shift), >> (right shift)
  • Index access: If x is of type bytesI, then x[k] for 0 <= k < I returns the k th byte (read-only).

The shifting operator works with unsigned integer type as right operand (but returns the type of the left operand), which denotes the number of bits to shift by. Shifting by a signed type will produce a compilation error.

Members:

  • .length yields the fixed length of the byte array (read-only).

Note

The type byte[] is an array of bytes, but due to padding rules, it wastes 31 bytes of space for each element (except in storage). It is better to use the bytes type instead.

Dynamically-sized byte array

bytes:
Dynamically-sized byte array, see :ref:`arrays`. Not a value-type!
string:
Dynamically-sized UTF-8-encoded string, see :ref:`arrays`. Not a value-type!
.. index:: address, literal;address

Address Literals

Hexadecimal literals that pass the address checksum test, for example 0xdCad3a6d3569DF655070DEd06cb7A1b2Ccd1D3AF are of address payable type. Hexadecimal literals that are between 39 and 41 digits long and do not pass the checksum test produce an error. You can prepend (for integer types) or append (for bytesNN types) zeros to remove the error.

Note

The mixed-case address checksum format is defined in EIP-55.

.. index:: literal, literal;rational

Rational and Integer Literals

Integer literals are formed from a sequence of numbers in the range 0-9. They are interpreted as decimals. For example, 69 means sixty nine. Octal literals do not exist in Solidity and leading zeros are invalid.

Decimal fraction literals are formed by a . with at least one number on one side. Examples include 1., .1 and 1.3.

Scientific notation is also supported, where the base can have fractions and the exponent cannot. Examples include 2e10, -2e10, 2e-10, 2.5e1.

Underscores can be used to separate the digits of a numeric literal to aid readability. For example, decimal 123_000, hexadecimal 0x2eff_abde, scientific decimal notation 1_2e345_678 are all valid. Underscores are only allowed between two digits and only one consecutive underscore is allowed. There is no additional semantic meaning added to a number literal containing underscores, the underscores are ignored.

Number literal expressions retain arbitrary precision until they are converted to a non-literal type (i.e. by using them together with a non-literal expression or by explicit conversion). This means that computations do not overflow and divisions do not truncate in number literal expressions.

For example, (2**800 + 1) - 2**800 results in the constant 1 (of type uint8) although intermediate results would not even fit the machine word size. Furthermore, .5 * 8 results in the integer 4 (although non-integers were used in between).

Any operator that can be applied to integers can also be applied to number literal expressions as long as the operands are integers. If any of the two is fractional, bit operations are disallowed and exponentiation is disallowed if the exponent is fractional (because that might result in a non-rational number).

Shifts and exponentiation with literal numbers as left (or base) operand and integer types as the right (exponent) operand are always performed in the uint256 (for non-negative literals) or int256 (for a negative literals) type, regardless of the type of the right (exponent) operand.

Warning

Division on integer literals used to truncate in Solidity prior to version 0.4.0, but it now converts into a rational number, i.e. 5 / 2 is not equal to 2, but to 2.5.

Note

Solidity has a number literal type for each rational number. Integer literals and rational number literals belong to number literal types. Moreover, all number literal expressions (i.e. the expressions that contain only number literals and operators) belong to number literal types. So the number literal expressions 1 + 2 and 2 + 1 both belong to the same number literal type for the rational number three.

Note

Number literal expressions are converted into a non-literal type as soon as they are used with non-literal expressions. Disregarding types, the value of the expression assigned to b below evaluates to an integer. Because a is of type uint128, the expression 2.5 + a has to have a proper type, though. Since there is no common type for the type of 2.5 and uint128, the Solidity compiler does not accept this code.

uint128 a = 1;
uint128 b = 2.5 + a + 0.5;
.. index:: literal, literal;string, string

String Literals and Types

String literals are written with either double or single-quotes ("foo" or 'bar'), and they can also be split into multiple consecutive parts ("foo" "bar" is equivalent to "foobar") which can be helpful when dealing with long strings. They do not imply trailing zeroes as in C; "foo" represents three bytes, not four. As with integer literals, their type can vary, but they are implicitly convertible to bytes1, ..., bytes32, if they fit, to bytes and to string.

For example, with bytes32 samevar = "stringliteral" the string literal is interpreted in its raw byte form when assigned to a bytes32 type.

String literals can only contain printable ASCII characters, which means the characters between and including 0x1F .. 0x7E.

Additionally, string literals also support the following escape characters:

  • \<newline> (escapes an actual newline)
  • \\ (backslash)
  • \' (single quote)
  • \" (double quote)
  • \b (backspace)
  • \f (form feed)
  • \n (newline)
  • \r (carriage return)
  • \t (tab)
  • \v (vertical tab)
  • \xNN (hex escape, see below)
  • \uNNNN (unicode escape, see below)

\xNN takes a hex value and inserts the appropriate byte, while \uNNNN takes a Unicode codepoint and inserts an UTF-8 sequence.

The string in the following example has a length of ten bytes. It starts with a newline byte, followed by a double quote, a single quote a backslash character and then (without separator) the character sequence abcdef.

"\n\"\'\\abc\
def"

Any Unicode line terminator which is not a newline (i.e. LF, VF, FF, CR, NEL, LS, PS) is considered to terminate the string literal. Newline only terminates the string literal if it is not preceded by a \.

Unicode Literals

While regular string literals can only contain ASCII, Unicode literals – prefixed with the keyword unicode – can contain any valid UTF-8 sequence. They also support the very same escape sequences as regular string literals.

string memory a = unicode"Hello 😃";
.. index:: literal, bytes

Hexadecimal Literals

Hexadecimal literals are prefixed with the keyword hex and are enclosed in double or single-quotes (hex"001122FF", hex'0011_22_FF'). Their content must be hexadecimal digits which can optionally use a single underscore as separator between byte boundaries. The value of the literal will be the binary representation of the hexadecimal sequence.

Multiple hexadecimal literals separated by whitespace are concatenated into a single literal: hex"00112233" hex"44556677" is equivalent to hex"0011223344556677"

Hexadecimal literals behave like :ref:`string literals <string_literals>` and have the same convertibility restrictions.

.. index:: enum

Enums

Enums are one way to create a user-defined type in Solidity. They are explicitly convertible to and from all integer types but implicit conversion is not allowed. The explicit conversion from integer checks at runtime that the value lies inside the range of the enum and causes a failing assert otherwise. Enums require at least one member, and its default value when declared is the first member.

The data representation is the same as for enums in C: The options are represented by subsequent unsigned integer values starting from 0.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

contract test {
    enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
    ActionChoices choice;
    ActionChoices constant defaultChoice = ActionChoices.GoStraight;

    function setGoStraight() public {
        choice = ActionChoices.GoStraight;
    }

    // Since enum types are not part of the ABI, the signature of "getChoice"
    // will automatically be changed to "getChoice() returns (uint8)"
    // for all matters external to Solidity. The integer type used is just
    // large enough to hold all enum values, i.e. if you have more than 256 values,
    // `uint16` will be used and so on.
    function getChoice() public view returns (ActionChoices) {
        return choice;
    }

    function getDefaultChoice() public pure returns (uint) {
        return uint(defaultChoice);
    }
}

Note

Enums can also be declared on the file level, outside of contract or library definitions.

.. index:: ! function type, ! type; function

Function Types

Function types are the types of functions. Variables of function type can be assigned from functions and function parameters of function type can be used to pass functions to and return functions from function calls. Function types come in two flavours - internal and external functions:

Internal functions can only be called inside the current contract (more specifically, inside the current code unit, which also includes internal library functions and inherited functions) because they cannot be executed outside of the context of the current contract. Calling an internal function is realized by jumping to its entry label, just like when calling a function of the current contract internally.

External functions consist of an address and a function signature and they can be passed via and returned from external function calls.

Function types are notated as follows:

function (<parameter types>) {internal|external} [pure|view|payable] [returns (<return types>)]

In contrast to the parameter types, the return types cannot be empty - if the function type should not return anything, the whole returns (<return types>) part has to be omitted.

By default, function types are internal, so the internal keyword can be omitted. Note that this only applies to function types. Visibility has to be specified explicitly for functions defined in contracts, they do not have a default.

Conversions:

A function type A is implicitly convertible to a function type B if and only if their parameter types are identical, their return types are identical, their internal/external property is identical and the state mutability of A is not more restrictive than the state mutability of B. In particular:

  • pure functions can be converted to view and non-payable functions
  • view functions can be converted to non-payable functions
  • payable functions can be converted to non-payable functions

No other conversions between function types are possible.

The rule about payable and non-payable might be a little confusing, but in essence, if a function is payable, this means that it also accepts a payment of zero Ether, so it also is non-payable. On the other hand, a non-payable function will reject Ether sent to it, so non-payable functions cannot be converted to payable functions.

If a function type variable is not initialised, calling it results in a failed assertion. The same happens if you call a function after using delete on it.

If external function types are used outside of the context of Solidity, they are treated as the function type, which encodes the address followed by the function identifier together in a single bytes24 type.

Note that public functions of the current contract can be used both as an internal and as an external function. To use f as an internal function, just use f, if you want to use its external form, use this.f.

Members:

External (or public) functions have the following members:

Note

External (or public) functions used to have the additional members .gas(uint) and .value(uint). These were deprecated in Solidity 0.6.2 and removed in Solidity 0.7.0. Instead use {gas: ...} and {value: ...} to specify the amount of gas or the amount of wei sent to a function, respectively. See :ref:`External Function Calls <external-function-calls>` for more information.

Example that shows how to use the members:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.4 <0.8.0;

contract Example {
    function f() public payable returns (bytes4) {
        assert(this.f.address == address(this));
        return this.f.selector;
    }

    function g() public {
        this.f{gas: 10, value: 800}();
    }
}

Example that shows how to use internal function types:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.8.0;

library ArrayUtils {
    // internal functions can be used in internal library functions because
    // they will be part of the same code context
    function map(uint[] memory self, function (uint) pure returns (uint) f)
        internal
        pure
        returns (uint[] memory r)
    {
        r = new uint[](self.length);
        for (uint i = 0; i < self.length; i++) {
            r[i] = f(self[i]);
        }
    }

    function reduce(
        uint[] memory self,
        function (uint, uint) pure returns (uint) f
    )
        internal
        pure
        returns (uint r)
    {
        r = self[0];
        for (uint i = 1; i < self.length; i++) {
            r = f(r, self[i]);
        }
    }

    function range(uint length) internal pure returns (uint[] memory r) {
        r = new uint[](length);
        for (uint i = 0; i < r.length; i++) {
            r[i] = i;
        }
    }
}


contract Pyramid {
    using ArrayUtils for *;

    function pyramid(uint l) public pure returns (uint) {
        return ArrayUtils.range(l).map(square).reduce(sum);
    }

    function square(uint x) internal pure returns (uint) {
        return x * x;
    }

    function sum(uint x, uint y) internal pure returns (uint) {
        return x + y;
    }
}

Another example that uses external function types:

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.22 <0.8.0;


contract Oracle {
    struct Request {
        bytes data;
        function(uint) external callback;
    }

    Request[] private requests;
    event NewRequest(uint);

    function query(bytes memory data, function(uint) external callback) public {
        requests.push(Request(data, callback));
        emit NewRequest(requests.length - 1);
    }

    function reply(uint requestID, uint response) public {
        // Here goes the check that the reply comes from a trusted source
        requests[requestID].callback(response);
    }
}


contract OracleUser {
    Oracle constant private ORACLE_CONST = Oracle(0x1234567); // known contract
    uint private exchangeRate;

    function buySomething() public {
        ORACLE_CONST.query("USD", this.oracleResponse);
    }

    function oracleResponse(uint response) public {
        require(
            msg.sender == address(ORACLE_CONST),
            "Only oracle can call this."
        );
        exchangeRate = response;
    }
}

Note

Lambda or inline functions are planned but not yet supported.