This repository will contain both code and additional links to code / reading material refrences for Machine-Learning-with-Python - Machine-Learning-with-Python
-
1.5b-PyTorch_normalization_SOUMITH_CHINTALA_reply_for_transform.Normalize
-
[2]
Diffusers - Text to Image
-
[3]
detectron2 from Facebook AI Research- for Object Detection
-
3.3-detectron2-config_explained -self.get_config.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
-
[pyCOCO-get-annotation-ID's]
-
annotation_ids = coco_obj.getAnnIds(imgIds=ls_image_ids_bikes[iter_image], catIds=[2])
(https://github.com/RohitDhankar/Obj_Detect_Detectron2/blob/950503a6f64783d8d54e50af49e3e9888a14b428/src/det2_1.py#L101C5-L101C91) -
3.5-kaggle_sartorius-cell-instance-segmentation-GIT-Repo 3.2-kaggle_sartorius-YOuTube-Explainer
- 1-detectron2-DensePose-CSE-Continuous_Surface_Embeddings
- [1-detectron2-DensePose]
-
[1]
Neural Networks - mostly CNN for Image tasks
-
1.1c-Book-1-->Image-Feature-Extraction_for_ACTIVE_Learning_LIGHTLY-YouTube -2-Book-2-->PyTorch-SimpleNet-AirplaneClassifier
#
-TRAIN----torch.cuda.memory_allocated---> 0.02 GB
Epoch:10,TRAIN_Loss:0.00,VAL_Loss:0.00, Accuracy = 1.00
---labels[prediction]----
not_plane
---labels[prediction]----
not_plane
- [1]
Active Learning - mostly Lightly
- testing Lightly
- 1.1-Lightly Active Learning -YouTube
- 1.2-Lightly Active Learning-SimSiam -YouTube
- 1.3-Lightly Active Learning- -YouTube
- 1.4-FeatureExtraction-Resnet50
- [1]
Using Large Language Models - LangChain , ScikitLLM
- [TODO] -ScikitLLM- https://github.com/iryna-kondr/scikit-llm
- [TODO]
- [TODO]
- [FaceBook-WebHooks-ChatBot]
- [TODO]
- [TODO]
- [1]
raster-vision
- raster-vision
- 1.1-raster-vision
- 1.2-QGIS-SpaceNet
- 1.2a-QGIS-SpaceNet
- 1.3-QGIS-LAStools_LIDAR_1
- 1.3-QGIS-LAStools_LIDAR
- [1]
OpenCV Projects
- 1.1-MediaPipe_OpenCV_Hand_Pose_Tracking
- 1.2-Credit Card Digit Detection
- 1.2a-Credit Card Digit Detection
- 1.3-OpenCV_mask_blue - cv2.bitwise_and)
- 1.4-OpenCV_SIFT_ORB_KeyPoints_Detection)
-
[1]
Python-3 basics , data transforms etc.
-
[2]
Download and Preprocess various kinds of Data
-
[3]
Visualizations of Data for EDA and others
-
[3.4-statsmodels] --> TODO (https://github.com/RohitDhankar/time_series/blob/main/ts_1.ipynb)
-
[3.5-matplotlib-TimeSeries-Plots] --> TODO (https://github.com/RohitDhankar/time_series/blob/main/ts_1.ipynb)
- [1]
Software Development - Data Focused App Development
- 1.1-ChatGPT-FlaskApp
- 1.1a-ChatGPT-FlaskApp-VariationAPI
- 1.2-Django-jQuery-Bokeh-Exploratory-Data-Analysis
- 1.2-uWSGI
- Django-wsgi - https://github.com/RohitDhankar/digitalCognition/blob/master/dc_dash_proj/wsgi.py
- 1.3-NGINX
- 1.3-Nginx_uWsgi_Django_Registration_Redux
- [2]
Tornado - async framework
- [2.1-Tornado] (https://github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/tree/master/dev_tornado)