Skip to content

Commit a85e98d

Browse files
committed
Solve #295
1 parent c0000fa commit a85e98d

File tree

2 files changed

+132
-0
lines changed

2 files changed

+132
-0
lines changed

src/lib.rs

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -221,3 +221,4 @@ mod n0287_find_the_duplicate_number;
221221
mod n0289_game_of_life;
222222
mod n0290_word_pattern;
223223
mod n0292_nim_game;
224+
mod n0295_find_median_from_data_stream;
Lines changed: 131 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,131 @@
1+
/**
2+
* [295] Find Median from Data Stream
3+
*
4+
* Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
5+
* For example,
6+
*
7+
* [2,3,4], the median is 3
8+
*
9+
* [2,3], the median is (2 + 3) / 2 = 2.5
10+
*
11+
* Design a data structure that supports the following two operations:
12+
*
13+
*
14+
* void addNum(int num) - Add a integer number from the data stream to the data structure.
15+
* double findMedian() - Return the median of all elements so far.
16+
*
17+
*
18+
*
19+
*
20+
* Example:
21+
*
22+
*
23+
* addNum(1)
24+
* addNum(2)
25+
* findMedian() -> 1.5
26+
* addNum(3)
27+
* findMedian() -> 2
28+
*
29+
*
30+
*
31+
*
32+
* Follow up:
33+
*
34+
* <ol>
35+
* If all integer numbers from the stream are between 0 and 100, how would you optimize it?
36+
* If 99% of all integer numbers from the stream are between 0 and 100, how would you optimize it?
37+
* </ol>
38+
*
39+
*/
40+
pub struct Solution {}
41+
42+
// submission codes start here
43+
44+
use std::collections::BinaryHeap;
45+
use std::cmp::Ordering;
46+
#[derive(Eq, PartialEq)]
47+
struct Invert {
48+
value: i32
49+
}
50+
51+
impl Ord for Invert {
52+
fn cmp(&self, other: &Invert) -> Ordering {
53+
other.value.cmp(&self.value)
54+
}
55+
}
56+
57+
impl PartialOrd for Invert {
58+
fn partial_cmp(&self, other: &Invert) -> Option<Ordering> {
59+
Some(self.cmp(other))
60+
}
61+
}
62+
63+
struct MedianFinder {
64+
head: BinaryHeap<Invert>,
65+
tail: BinaryHeap<i32>,
66+
count: i32,
67+
}
68+
69+
/**
70+
* `&self` means the method takes an immutable reference.
71+
* If you need a mutable reference, change it to `&mut self` instead.
72+
*/
73+
impl MedianFinder {
74+
/** initialize your data structure here. */
75+
fn new() -> Self {
76+
MedianFinder{
77+
head: BinaryHeap::new(),
78+
tail: BinaryHeap::new(),
79+
count: 0,
80+
}
81+
}
82+
83+
fn add_num(&mut self, num: i32) {
84+
self.count += 1;
85+
if self.head.is_empty() || num > self.head.peek().unwrap().value {
86+
self.head.push(Invert{value: num});
87+
} else {
88+
self.tail.push(num);
89+
}
90+
// balance
91+
if self.head.len() > self.tail.len() + 1 {
92+
self.tail.push(self.head.pop().unwrap().value);
93+
} else if self.head.len() + 1 < self.tail.len() {
94+
self.head.push(Invert{value:self.tail.pop().unwrap()});
95+
}
96+
}
97+
98+
fn find_median(&self) -> f64 {
99+
if self.head.len() > self.tail.len() {
100+
self.head.peek().unwrap().value as f64
101+
} else if self.head.len() < self.tail.len() {
102+
*self.tail.peek().unwrap() as f64
103+
} else {
104+
(self.head.peek().unwrap().value as f64 + *self.tail.peek().unwrap() as f64) / 2.0
105+
}
106+
}
107+
}
108+
109+
/**
110+
* Your MedianFinder object will be instantiated and called as such:
111+
* let obj = MedianFinder::new();
112+
* obj.add_num(num);
113+
* let ret_2: f64 = obj.find_median();
114+
*/
115+
116+
// submission codes end
117+
118+
#[cfg(test)]
119+
mod tests {
120+
use super::*;
121+
122+
#[test]
123+
fn test_295() {
124+
let mut obj = MedianFinder::new();
125+
obj.add_num(1);
126+
obj.add_num(2);
127+
assert_eq!(obj.find_median(), 1.5);
128+
obj.add_num(3);
129+
assert_eq!(obj.find_median(), 2_f64);
130+
}
131+
}

0 commit comments

Comments
 (0)