1+ {
2+ "metadata" : {
3+ "name" : " basic"
4+ },
5+ "nbformat" : 3 ,
6+ "nbformat_minor" : 0 ,
7+ "worksheets" : [
8+ {
9+ "cells" : [
10+ {
11+ "cell_type" : " code" ,
12+ "collapsed" : false ,
13+ "input" : [
14+ " from start import *"
15+ ],
16+ "language" : " python" ,
17+ "metadata" : {},
18+ "outputs" : [],
19+ "prompt_number" : 1
20+ },
21+ {
22+ "cell_type" : " markdown" ,
23+ "metadata" : {},
24+ "source" : [
25+ " Reshaping"
26+ ]
27+ },
28+ {
29+ "cell_type" : " code" ,
30+ "collapsed" : false ,
31+ "input" : [
32+ " a = np.arange(12)\n " ,
33+ " a"
34+ ],
35+ "language" : " python" ,
36+ "metadata" : {},
37+ "outputs" : [
38+ {
39+ "output_type" : " pyout" ,
40+ "prompt_number" : 4 ,
41+ "text" : [
42+ " array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])"
43+ ]
44+ }
45+ ],
46+ "prompt_number" : 4
47+ },
48+ {
49+ "cell_type" : " code" ,
50+ "collapsed" : false ,
51+ "input" : [
52+ " a.shape"
53+ ],
54+ "language" : " python" ,
55+ "metadata" : {},
56+ "outputs" : [
57+ {
58+ "output_type" : " pyout" ,
59+ "prompt_number" : 5 ,
60+ "text" : [
61+ " (12,)"
62+ ]
63+ }
64+ ],
65+ "prompt_number" : 5
66+ },
67+ {
68+ "cell_type" : " code" ,
69+ "collapsed" : false ,
70+ "input" : [
71+ " print np.reshape(a, (2,6) )"
72+ ],
73+ "language" : " python" ,
74+ "metadata" : {},
75+ "outputs" : [
76+ {
77+ "output_type" : " stream" ,
78+ "stream" : " stdout" ,
79+ "text" : [
80+ " [[ 0 1 2 3 4 5]\n " ,
81+ " [ 6 7 8 9 10 11]]\n "
82+ ]
83+ }
84+ ],
85+ "prompt_number" : 6
86+ },
87+ {
88+ "cell_type" : " code" ,
89+ "collapsed" : false ,
90+ "input" : [
91+ " # unknown dimension\n " ,
92+ " a.shape = ( -1, 2)\n " ,
93+ " print a"
94+ ],
95+ "language" : " python" ,
96+ "metadata" : {},
97+ "outputs" : [
98+ {
99+ "output_type" : " stream" ,
100+ "stream" : " stdout" ,
101+ "text" : [
102+ " [[ 0 1]\n " ,
103+ " [ 2 3]\n " ,
104+ " [ 4 5]\n " ,
105+ " [ 6 7]\n " ,
106+ " [ 8 9]\n " ,
107+ " [10 11]]\n "
108+ ]
109+ }
110+ ],
111+ "prompt_number" : 7
112+ },
113+ {
114+ "cell_type" : " code" ,
115+ "collapsed" : false ,
116+ "input" : [
117+ " # flatten\n " ,
118+ " for i in a.flat: # iterator\n " ,
119+ " print i "
120+ ],
121+ "language" : " python" ,
122+ "metadata" : {},
123+ "outputs" : [
124+ {
125+ "output_type" : " stream" ,
126+ "stream" : " stdout" ,
127+ "text" : [
128+ " 0\n " ,
129+ " 1\n " ,
130+ " 2\n " ,
131+ " 3\n " ,
132+ " 4\n " ,
133+ " 5\n " ,
134+ " 6\n " ,
135+ " 7\n " ,
136+ " 8\n " ,
137+ " 9\n " ,
138+ " 10\n " ,
139+ " 11\n "
140+ ]
141+ }
142+ ],
143+ "prompt_number" : 8
144+ },
145+ {
146+ "cell_type" : " code" ,
147+ "collapsed" : false ,
148+ "input" : [
149+ " np.ravel(a)"
150+ ],
151+ "language" : " python" ,
152+ "metadata" : {},
153+ "outputs" : [
154+ {
155+ "output_type" : " pyout" ,
156+ "prompt_number" : 9 ,
157+ "text" : [
158+ " array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])"
159+ ]
160+ }
161+ ],
162+ "prompt_number" : 9
163+ },
164+ {
165+ "cell_type" : " code" ,
166+ "collapsed" : false ,
167+ "input" : [
168+ " a.T"
169+ ],
170+ "language" : " python" ,
171+ "metadata" : {},
172+ "outputs" : [
173+ {
174+ "output_type" : " pyout" ,
175+ "prompt_number" : 10 ,
176+ "text" : [
177+ " array([[ 0, 2, 4, 6, 8, 10],\n " ,
178+ " [ 1, 3, 5, 7, 9, 11]])"
179+ ]
180+ }
181+ ],
182+ "prompt_number" : 10
183+ },
184+ {
185+ "cell_type" : " code" ,
186+ "collapsed" : false ,
187+ "input" : [
188+ " a = np.ravel(a)"
189+ ],
190+ "language" : " python" ,
191+ "metadata" : {},
192+ "outputs" : [],
193+ "prompt_number" : 11
194+ },
195+ {
196+ "cell_type" : " code" ,
197+ "collapsed" : false ,
198+ "input" : [
199+ " a"
200+ ],
201+ "language" : " python" ,
202+ "metadata" : {},
203+ "outputs" : [
204+ {
205+ "output_type" : " pyout" ,
206+ "prompt_number" : 12 ,
207+ "text" : [
208+ " array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])"
209+ ]
210+ }
211+ ],
212+ "prompt_number" : 12
213+ },
214+ {
215+ "cell_type" : " markdown" ,
216+ "metadata" : {},
217+ "source" : [
218+ " Checking dimensions:"
219+ ]
220+ },
221+ {
222+ "cell_type" : " code" ,
223+ "collapsed" : false ,
224+ "input" : [
225+ " a = np.atleast_2d(a)\n " ,
226+ " a"
227+ ],
228+ "language" : " python" ,
229+ "metadata" : {},
230+ "outputs" : [
231+ {
232+ "output_type" : " pyout" ,
233+ "prompt_number" : 15 ,
234+ "text" : [
235+ " array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])"
236+ ]
237+ }
238+ ],
239+ "prompt_number" : 15
240+ },
241+ {
242+ "cell_type" : " code" ,
243+ "collapsed" : false ,
244+ "input" : [
245+ " a.shape"
246+ ],
247+ "language" : " python" ,
248+ "metadata" : {},
249+ "outputs" : [
250+ {
251+ "output_type" : " pyout" ,
252+ "prompt_number" : 16 ,
253+ "text" : [
254+ " (1, 12)"
255+ ]
256+ }
257+ ],
258+ "prompt_number" : 16
259+ },
260+ {
261+ "cell_type" : " code" ,
262+ "collapsed" : false ,
263+ "input" : [
264+ " # reducing:\n " ,
265+ " a.shape = (2,1,6)\n " ,
266+ " a.shape"
267+ ],
268+ "language" : " python" ,
269+ "metadata" : {},
270+ "outputs" : [
271+ {
272+ "output_type" : " pyout" ,
273+ "prompt_number" : 19 ,
274+ "text" : [
275+ " (2, 1, 6)"
276+ ]
277+ }
278+ ],
279+ "prompt_number" : 19
280+ },
281+ {
282+ "cell_type" : " code" ,
283+ "collapsed" : false ,
284+ "input" : [
285+ " b = np.squeeze(a)\n " ,
286+ " b.shape"
287+ ],
288+ "language" : " python" ,
289+ "metadata" : {},
290+ "outputs" : [
291+ {
292+ "output_type" : " pyout" ,
293+ "prompt_number" : 20 ,
294+ "text" : [
295+ " (2, 6)"
296+ ]
297+ }
298+ ],
299+ "prompt_number" : 20
300+ },
301+ {
302+ "cell_type" : " code" ,
303+ "collapsed" : false ,
304+ "input" : [
305+ " # re-arranging:\n " ,
306+ " b\n " ,
307+ " print np.flipud(b)"
308+ ],
309+ "language" : " python" ,
310+ "metadata" : {},
311+ "outputs" : [
312+ {
313+ "output_type" : " stream" ,
314+ "stream" : " stdout" ,
315+ "text" : [
316+ " [[ 6 7 8 9 10 11]\n " ,
317+ " [ 0 1 2 3 4 5]]\n "
318+ ]
319+ }
320+ ],
321+ "prompt_number" : 22
322+ },
323+ {
324+ "cell_type" : " code" ,
325+ "collapsed" : false ,
326+ "input" : [
327+ " print np.fliplr(b)"
328+ ],
329+ "language" : " python" ,
330+ "metadata" : {},
331+ "outputs" : [
332+ {
333+ "output_type" : " stream" ,
334+ "stream" : " stdout" ,
335+ "text" : [
336+ " [[ 5 4 3 2 1 0]\n " ,
337+ " [11 10 9 8 7 6]]\n "
338+ ]
339+ }
340+ ],
341+ "prompt_number" : 23
342+ },
343+ {
344+ "cell_type" : " code" ,
345+ "collapsed" : false ,
346+ "input" : [],
347+ "language" : " python" ,
348+ "metadata" : {},
349+ "outputs" : []
350+ }
351+ ],
352+ "metadata" : {}
353+ }
354+ ]
355+ }
0 commit comments