-
Notifications
You must be signed in to change notification settings - Fork 258
/
Copy pathspatial_transformer_tutorial.py
250 lines (203 loc) Β· 9.19 KB
/
spatial_transformer_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding: utf-8 -*-
"""
κ³΅κ° λ³ν λ€νΈμν¬(Spatial Transformer Networks) νν 리μΌ
==========================================================================
**Author**: `Ghassen HAMROUNI <https://github.com/GHamrouni>`_
**λ²μ**: `ν©μ±μ <https://github.com/adonisues>`_ , `μ μ μ <https://github.com/SSinyu>`_
.. figure:: /_static/img/stn/FSeq.png
μ΄ νν 리μΌμμλ κ³΅κ° λ³ν λ€νΈμν¬(spatial transformer networks, μ΄ν STN)μ΄λΌ
λΆλ¦¬λ λΉμ£ΌμΌ μ΄ν
μ
λ©μ»€λμ¦μ μ΄μ©ν΄ μ κ²½λ§μ μ¦κ°(augment)μν€λ λ°©λ²μ λν΄
νμ΅ν©λλ€. μ΄ λ°©λ²μ λν μμΈν λ΄μ©μ `DeepMind paper <https://arxiv.org/abs/1506.02025>`__ μμ
νμΈν μ μμ΅λλ€.
STNμ μ΄λ ν 곡κ°μ λ³ν(spatial transformation)μλ μ μ©ν μ μλ λ―ΈλΆ κ°λ₯ν
μ΄ν
μ
μ μΌλ°νμ
λλ€. λ°λΌμ STNμ μ κ²½λ§μ κΈ°ννμ λΆλ³μ±(geometric invariance)μ
κ°ννκΈ° μν΄ μ
λ ₯ μ΄λ―Έμ§λ₯Ό λμμΌλ‘ μ΄λ ν 곡κ°μ λ³νμ μνν΄μΌ νλμ§ νμ΅νλλ‘
ν©λλ€.
μλ₯Ό λ€μ΄ μ΄λ―Έμ§μ κ΄μ¬ μμμ μλΌλ΄κ±°λ, ν¬κΈ°λ₯Ό μ‘°μ νκ±°λ, λ°©ν₯(orientation)μ
μμ ν μ μμ΅λλ€. CNNμ μ΄λ¬ν νμ , ν¬κΈ° μ‘°μ λ±μ μΌλ°μ μΈ μν(affine) λ³νλ
μ
λ ₯μ λν΄ κ²°κ³Όμ λ³λμ΄ ν¬κΈ° λλ¬Έμ (λ―Όκ°νκΈ° λλ¬Έμ), STNμ μ΄λ₯Ό 극볡νλλ° λ§€μ°
μ μ©ν λ©μ»€λμ¦μ΄ λ μ μμ΅λλ€.
STNμ΄ κ°μ§ μ₯μ μ€ νλλ μμ£Ό μμ μμ λ§μΌλ‘ κΈ°μ‘΄μ μ¬μ©νλ CNNμ κ°λ¨νκ² μ°κ²° μν¬
μ μλ€λ κ²μ
λλ€.
"""
# λΌμ΄μΌμ€: BSD
# μ μ: Ghassen Hamrouni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # λνν λͺ¨λ
######################################################################
# λ°μ΄ν° λΆλ¬μ€κΈ°
# ----------------
#
# μ΄ νν 리μΌμμλ MNIST λ°μ΄ν°μ
μ μ΄μ©ν΄ μ€νν©λλ€. μ€νμλ STNμΌλ‘
# μ¦κ°λ μΌλ°μ μΈ CNNμ μ¬μ©ν©λλ€.
from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# νμ΅μ© λ°μ΄ν°μ
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# ν
μ€νΈμ© λ°μ΄ν°μ
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
######################################################################
# Spatial Transformer Networks(STN) ꡬμ±νκΈ°
# ---------------------------------------------------
#
# STNμ λ€μμ μΈ κ°μ§ μ£Όμ κ΅¬μ± μμλ‘ μμ½λ©λλ€.
#
# - μμΉ κ²°μ λ€νΈμν¬(localization network)λ κ³΅κ° λ³ν νλΌλ―Έν°λ₯Ό μμΈ‘(regress)
# νλ μΌλ°μ μΈ CNN μ
λλ€. κ³΅κ° λ³νμ λ°μ΄ν° μ
μΌλ‘λΆν° λͺ
μμ μΌλ‘ νμ΅λμ§ μκ³ ,
# μ κ²½λ§μ΄ μ 체 μ νλλ₯Ό ν₯μ μν€λλ‘ κ³΅κ° λ³νμ μλμΌλ‘ νμ΅ν©λλ€.
# - 그리λ μμ±κΈ°(grid generator)λ μΆλ ₯ μ΄λ―Έμ§λ‘λΆν° κ° ν½μ
μ λμνλ μ
λ ₯
# μ΄λ―Έμ§ λ΄ μ’ν 그리λλ₯Ό μμ±ν©λλ€.
# - μνλ¬(sampler)λ κ³΅κ° λ³ν νλΌλ―Έν°λ₯Ό μ
λ ₯ μ΄λ―Έμ§μ μ μ©ν©λλ€.
#
# .. figure:: /_static/img/stn/stn-arch.png
#
# .. note::
# affine_grid λ° grid_sample λͺ¨λμ΄ ν¬ν¨λ μ΅μ λ²μ μ PyTorchκ° νμν©λλ€.
#
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# κ³΅κ° λ³νμ μν μμΉ κ²°μ λ€νΈμν¬ (localization-network)
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# [3 * 2] ν¬κΈ°μ μν(affine) νλ ¬μ λν΄ μμΈ‘
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# νλ± λ³ν(identity transformation)μΌλ‘ κ°μ€μΉ/λ°μ΄μ΄μ€ μ΄κΈ°ν
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# STNμ forward ν¨μ
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# μ
λ ₯μ λ³ν
x = self.stn(x)
# μΌλ°μ μΈ forward passλ₯Ό μν
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
######################################################################
# λͺ¨λΈ νμ΅νκΈ°
# ------------------
#
# μ΄μ SGD μκ³ λ¦¬μ¦μ μ΄μ©ν΄ λͺ¨λΈμ νμ΅μμΌ λ΄
μλ€. μμ ꡬμ±ν μ κ²½λ§μ
# κ°λ
νμ΅ λ°©μ(supervised way)μΌλ‘ λΆλ₯ λ¬Έμ λ₯Ό νμ΅ν©λλ€. λν μ΄ λͺ¨λΈμ
# end-to-end λ°©μμΌλ‘ STNμ μλμΌλ‘ νμ΅ν©λλ€.
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# MNIST λ°μ΄ν°μ
μμ STNμ μ±λ₯μ μΈ‘μ νκΈ° μν κ°λ¨ν ν
μ€νΈ μ μ°¨
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# λ°°μΉ μμ€ ν©νκΈ°
test_loss += F.nll_loss(output, target, size_average=False).item()
# λ‘κ·Έ-νλ₯ μ μ΅λκ°μ ν΄λΉνλ μΈλ±μ€ κ°μ Έμ€κΈ°
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
######################################################################
# STN κ²°κ³Ό μκ°ννκΈ°
# ---------------------------
#
# μ΄μ νμ΅ν λΉμ£ΌμΌ μ΄ν
μ
λ©μ»€λμ¦μ κ²°κ³Όλ₯Ό μ΄ν΄λ³΄κ² μ΅λλ€.
#
# νμ΅νλ λμ λ³νλ κ²°κ³Όλ₯Ό μκ°ννκΈ° μν΄ μμ λμ(helper) ν¨μλ₯Ό μ μν©λλ€.
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# νμ΅ ν κ³΅κ° λ³ν κ³μΈ΅μ μΆλ ₯μ μκ°ννκ³ , μ
λ ₯ μ΄λ―Έμ§ λ°°μΉ λ°μ΄ν° λ°
# STNμ μ¬μ©ν΄ λ³νλ λ°°μΉ λ°μ΄ν°λ₯Ό μκ°ν ν©λλ€.
def visualize_stn():
with torch.no_grad():
# νμ΅ λ°μ΄ν°μ λ°°μΉ κ°μ Έμ€κΈ°
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# κ²°κ³Όλ₯Ό λλν νμνκΈ°
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# μΌλΆ μ
λ ₯ λ°°μΉ λ°μ΄ν°μμ STN λ³ν κ²°κ³Όλ₯Ό μκ°ν
visualize_stn()
plt.ioff()
plt.show()