-
Notifications
You must be signed in to change notification settings - Fork 257
/
Copy pathspeech_recognition_pipeline_tutorial.html
953 lines (766 loc) ยท 63.5 KB
/
speech_recognition_pipeline_tutorial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Speech Recognition with Wav2Vec2 — PyTorch Tutorials 1.10.2+cu102 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.10.0-beta/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Speech Command Classification with torchaudio" href="speech_command_classification_with_torchaudio_tutorial.html" />
<link rel="prev" title="Audio Datasets" href="../beginner/audio_datasets_tutorial.html" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.kr/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.kr/get-started">์์ํ๊ธฐ</a>
</li>
<li class="active">
<a href="https://tutorials.pytorch.kr">ํํ ๋ฆฌ์ผ</a>
</li>
<li>
<a href="https://pytorch.kr/hub">ํ๋ธ</a>
</li>
<li>
<a href="https://discuss.pytorch.kr">์ปค๋ฎค๋ํฐ</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
1.10.2+cu102
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Tutorials" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption"><span class="caption-text">ํ์ดํ ์น(PyTorch) ๋ ์ํผ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../recipes/recipes_index.html">๋ชจ๋ ๋ ์ํผ ๋ณด๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../prototype/prototype_index.html">๋ชจ๋ ํ๋กํ ํ์
๋ ์ํผ ๋ณด๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">ํ์ดํ ์น(PyTorch) ์์ํ๊ธฐ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/intro.html">ํ์ดํ ์น(PyTorch) ๊ธฐ๋ณธ ์ตํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/quickstart_tutorial.html">๋น ๋ฅธ ์์(Quickstart)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/tensorqs_tutorial.html">ํ
์(Tensor)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/data_tutorial.html">Dataset๊ณผ DataLoader</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/transforms_tutorial.html">๋ณํ(Transform)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/buildmodel_tutorial.html">์ ๊ฒฝ๋ง ๋ชจ๋ธ ๊ตฌ์ฑํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/autogradqs_tutorial.html"><code class="docutils literal notranslate"><span class="pre">torch.autograd</span></code>๋ฅผ ์ฌ์ฉํ ์๋ ๋ฏธ๋ถ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/optimization_tutorial.html">๋ชจ๋ธ ๋งค๊ฐ๋ณ์ ์ต์ ํํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/basics/saveloadrun_tutorial.html">๋ชจ๋ธ ์ ์ฅํ๊ณ ๋ถ๋ฌ์ค๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">Introduction to PyTorch on YouTube</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt.html">Introduction to PyTorch - YouTube Series</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/introyt1_tutorial.html">Introduction to PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/tensors_deeper_tutorial.html">Introduction to PyTorch Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/autogradyt_tutorial.html">The Fundamentals of Autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/modelsyt_tutorial.html">Building Models with PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/tensorboardyt_tutorial.html">PyTorch TensorBoard Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/trainingyt.html">Training with PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/introyt/captumyt.html">Model Understanding with Captum</a></li>
</ul>
<p class="caption"><span class="caption-text">ํ์ดํ ์น(PyTorch) ๋ฐฐ์ฐ๊ธฐ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/deep_learning_60min_blitz.html">PyTorch๋ก ๋ฅ๋ฌ๋ํ๊ธฐ: 60๋ถ๋ง์ ๋์ฅ๋ด๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/pytorch_with_examples.html">์์ ๋ก ๋ฐฐ์ฐ๋ ํ์ดํ ์น(PyTorch)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/nn_tutorial.html"><cite>torch.nn</cite> ์ด <em>์ค์ ๋ก</em> ๋ฌด์์ธ๊ฐ์?</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensorboard_tutorial.html">TensorBoard๋ก ๋ชจ๋ธ, ๋ฐ์ดํฐ, ํ์ต ์๊ฐํํ๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">์ด๋ฏธ์ง/๋น๋์ค</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="torchvision_tutorial.html">TorchVision ๊ฐ์ฒด ๊ฒ์ถ ๋ฏธ์ธ์กฐ์ (Finetuning) ํํ ๋ฆฌ์ผ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/transfer_learning_tutorial.html">์ปดํจํฐ ๋น์ (Vision)์ ์ํ ์ ์ดํ์ต(Transfer Learning)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/fgsm_tutorial.html">์ ๋์ ์์ ์์ฑ(Adversarial Example Generation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/dcgan_faces_tutorial.html">DCGAN ํํ ๋ฆฌ์ผ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/vt_tutorial.html">๋ฐฐํฌ๋ฅผ ์ํ ๋น์ ํธ๋์คํฌ๋จธ(Vision Transformer) ๋ชจ๋ธ ์ต์ ํํ๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">์ค๋์ค</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_io_tutorial.html">Audio I/O</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_resampling_tutorial.html">Audio Resampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_data_augmentation_tutorial.html">Audio Data Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_feature_extractions_tutorial.html">Audio Feature Extractions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_feature_augmentation_tutorial.html">Audio Feature Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/audio_datasets_tutorial.html">Audio Datasets</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Speech Recognition with Wav2Vec2</a></li>
<li class="toctree-l1"><a class="reference internal" href="speech_command_classification_with_torchaudio_tutorial.html">Speech Command Classification with torchaudio</a></li>
<li class="toctree-l1"><a class="reference internal" href="text_to_speech_with_torchaudio.html">Text-to-speech with torchaudio</a></li>
<li class="toctree-l1"><a class="reference internal" href="forced_alignment_with_torchaudio_tutorial.html">Forced Alignment with Wav2Vec2</a></li>
</ul>
<p class="caption"><span class="caption-text">ํ
์คํธ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/transformer_tutorial.html">nn.Transformer ์ TorchText ๋ก ์ํ์ค-ํฌ-์ํ์ค(Sequence-to-Sequence) ๋ชจ๋ธ๋งํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="char_rnn_classification_tutorial.html">๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ๋ถ๋ฅํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="char_rnn_generation_tutorial.html">๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: ๋ฌธ์-๋จ์ RNN์ผ๋ก ์ด๋ฆ ์์ฑํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="seq2seq_translation_tutorial.html">๊ธฐ์ด๋ถํฐ ์์ํ๋ NLP: Sequence to Sequence ๋คํธ์ํฌ์ Attention์ ์ด์ฉํ ๋ฒ์ญ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/text_sentiment_ngrams_tutorial.html">torchtext ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ก ํ
์คํธ ๋ถ๋ฅํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/translation_transformer.html">nn.Transformer์ torchtext๋ก ์ธ์ด ๋ฒ์ญํ๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">๊ฐํํ์ต</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="reinforcement_q_learning.html">๊ฐํ ํ์ต (DQN) ํํ ๋ฆฌ์ผ</a></li>
<li class="toctree-l1"><a class="reference internal" href="mario_rl_tutorial.html">Train a Mario-playing RL Agent</a></li>
</ul>
<p class="caption"><span class="caption-text">PyTorch ๋ชจ๋ธ์ ํ๋ก๋์
ํ๊ฒฝ์ ๋ฐฐํฌํ๊ธฐ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="flask_rest_api_tutorial.html">Flask๋ฅผ ์ฌ์ฉํ์ฌ Python์์ PyTorch๋ฅผ REST API๋ก ๋ฐฐํฌํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/Intro_to_TorchScript_tutorial.html">TorchScript ์๊ฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/cpp_export.html">C++์์ TorchScript ๋ชจ๋ธ ๋ก๋ฉํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/super_resolution_with_onnxruntime.html">(์ ํ) PyTorch ๋ชจ๋ธ์ ONNX์ผ๋ก ๋ณํํ๊ณ ONNX ๋ฐํ์์์ ์คํํ๊ธฐ</a></li>
</ul>
<p class="caption"><span class="caption-text">Code Transforms with FX</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="fx_conv_bn_fuser.html">(๋ฒ ํ) FX์์ ํฉ์ฑ๊ณฑ/๋ฐฐ์น ์ ๊ทํ(Convolution/Batch Norm) ๊ฒฐํฉ๊ธฐ(Fuser) ๋ง๋ค๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="fx_profiling_tutorial.html">(beta) Building a Simple CPU Performance Profiler with FX</a></li>
</ul>
<p class="caption"><span class="caption-text">ํ๋ก ํธ์๋ API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="memory_format_tutorial.html">(๋ฒ ํ) PyTorch๋ฅผ ์ฌ์ฉํ Channels Last ๋ฉ๋ชจ๋ฆฌ ํ์</a></li>
<li class="toctree-l1"><a class="reference internal" href="forward_ad_usage.html">Forward-mode Automatic Differentiation (Beta)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/cpp_frontend.html">PyTorch C++ ํ๋ก ํธ์๋ ์ฌ์ฉํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/torch-script-parallelism.html">TorchScript์ ๋์ ๋ณ๋ ฌ ์ฒ๋ฆฌ(Dynamic Parallelism)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/cpp_autograd.html">C++ ํ๋ก ํธ์๋์ ์๋ ๋ฏธ๋ถ (autograd)</a></li>
</ul>
<p class="caption"><span class="caption-text">PyTorch ํ์ฅํ๊ธฐ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="custom_function_double_backward_tutorial.html">Double Backward with Custom Functions</a></li>
<li class="toctree-l1"><a class="reference internal" href="custom_function_conv_bn_tutorial.html">Fusing Convolution and Batch Norm using Custom Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/cpp_extension.html">Custom C++ and CUDA Extensions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/torch_script_custom_ops.html">Extending TorchScript with Custom C++ Operators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/torch_script_custom_classes.html">์ปค์คํ
C++ ํด๋์ค๋ก TorchScript ํ์ฅํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/dispatcher.html">Registering a Dispatched Operator in C++</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/extend_dispatcher.html">Extending dispatcher for a new backend in C++</a></li>
</ul>
<p class="caption"><span class="caption-text">๋ชจ๋ธ ์ต์ ํ</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/profiler.html">PyTorch ๋ชจ๋ ํ๋กํ์ผ๋ง ํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensorboard_profiler_tutorial.html">PyTorch Profiler With TensorBoard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/hyperparameter_tuning_tutorial.html">Hyperparameter tuning with Ray Tune</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/vt_tutorial.html">๋ฐฐํฌ๋ฅผ ์ํ ๋น์ ํธ๋์คํฌ๋จธ(Vision Transformer) ๋ชจ๋ธ ์ต์ ํํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="parametrizations.html">Parametrizations Tutorial</a></li>
<li class="toctree-l1"><a class="reference internal" href="pruning_tutorial.html">๊ฐ์ง์น๊ธฐ ๊ธฐ๋ฒ(Pruning) ํํ ๋ฆฌ์ผ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/dynamic_quantization_tutorial.html">(๋ฒ ํ) LSTM ๊ธฐ๋ฐ ๋จ์ด ๋จ์ ์ธ์ด ๋ชจ๋ธ์ ๋์ ์์ํ</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamic_quantization_bert_tutorial.html">(๋ฒ ํ) BERT ๋ชจ๋ธ ๋์ ์์ํํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="quantized_transfer_learning_tutorial.html">(๋ฒ ํ) ์ปดํจํฐ ๋น์ ํํ ๋ฆฌ์ผ์ ์ํ ์์ํ๋ ์ ์ดํ์ต(Quantized Transfer Learning)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/static_quantization_tutorial.html">(beta) Static Quantization with Eager Mode in PyTorch</a></li>
</ul>
<p class="caption"><span class="caption-text">๋ณ๋ ฌ ๋ฐ ๋ถ์ฐ ํ์ต</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/dist_overview.html">PyTorch Distributed Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_parallel_tutorial.html">๋จ์ผ ๋จธ์ ์ ์ฌ์ฉํ ๋ชจ๋ธ ๋ณ๋ ฌํ ๋ชจ๋ฒ ์ฌ๋ก</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp_tutorial.html">๋ถ์ฐ ๋ฐ์ดํฐ ๋ณ๋ ฌ ์ฒ๋ฆฌ ์์ํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="dist_tuto.html">PyTorch๋ก ๋ถ์ฐ ์ดํ๋ฆฌ์ผ์ด์
๊ฐ๋ฐํ๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc_tutorial.html">Getting Started with Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc_param_server_tutorial.html">Implementing a Parameter Server Using Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="dist_pipeline_parallel_tutorial.html">Distributed Pipeline Parallelism Using RPC</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc_async_execution.html">Implementing Batch RPC Processing Using Asynchronous Executions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/rpc_ddp_tutorial.html">๋ถ์ฐ ๋ฐ์ดํฐ ๋ณ๋ ฌ(DDP)๊ณผ ๋ถ์ฐ RPC ํ๋ ์์ํฌ ๊ฒฐํฉ</a></li>
<li class="toctree-l1"><a class="reference internal" href="pipeline_tutorial.html">ํ์ดํ๋ผ์ธ ๋ณ๋ ฌํ๋ก ํธ๋์คํฌ๋จธ ๋ชจ๋ธ ํ์ต์ํค๊ธฐ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/ddp_pipeline.html">๋ถ์ฐ ๋ฐ์ดํฐ ๋ณ๋ ฌ ์ฒ๋ฆฌ์ ๋ณ๋ ฌ ์ฒ๋ฆฌ ํ์ดํ๋ผ์ธ์ ์ฌ์ฉํ ํธ๋์คํฌ๋จธ ๋ชจ๋ธ ํ์ต</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/generic_join.html">Distributed Training with Uneven Inputs Using the Join Context Manager</a></li>
</ul>
<p class="caption"><span class="caption-text">Mobile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../beginner/deeplabv3_on_ios.html">iOS์์์ ์ด๋ฏธ์ง ๋ถํ DeepLapV3</a></li>
<li class="toctree-l1"><a class="reference internal" href="../beginner/deeplabv3_on_android.html">์๋๋ก์ด๋์์์ ์ด๋ฏธ์ง ๋ถํ DeepLapV3</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Tutorials
</a> >
</li>
<li>Speech Recognition with Wav2Vec2</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/intermediate/speech_recognition_pipeline_tutorial.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="pytorch-call-to-action-links">
<div id="tutorial-type">intermediate/speech_recognition_pipeline_tutorial</div>
<div id="google-colab-link">
<img class="call-to-action-img" src="../_static/images/pytorch-colab.svg"/>
<div class="call-to-action-desktop-view">Run in Google Colab</div>
<div class="call-to-action-mobile-view">Colab</div>
</div>
<div id="download-notebook-link">
<img class="call-to-action-notebook-img" src="../_static/images/pytorch-download.svg"/>
<div class="call-to-action-desktop-view">Download Notebook</div>
<div class="call-to-action-mobile-view">Notebook</div>
</div>
<div id="github-view-link">
<img class="call-to-action-img" src="../_static/images/pytorch-github.svg"/>
<div class="call-to-action-desktop-view">View on GitHub</div>
<div class="call-to-action-mobile-view">GitHub</div>
</div>
</div>
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="sphx-glr-download-link-note admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Click <a class="reference internal" href="#sphx-glr-download-intermediate-speech-recognition-pipeline-tutorial-py"><span class="std std-ref">here</span></a> to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="speech-recognition-with-wav2vec2">
<span id="sphx-glr-intermediate-speech-recognition-pipeline-tutorial-py"></span><h1>Speech Recognition with Wav2Vec2<a class="headerlink" href="#speech-recognition-with-wav2vec2" title="Permalink to this headline">ยถ</a></h1>
<p><strong>Author</strong>: <a class="reference external" href="mailto:moto%40fb.com">Moto Hira</a></p>
<p>This tutorial shows how to perform speech recognition using using
pre-trained models from wav2vec 2.0
[<a class="reference external" href="https://arxiv.org/abs/2006.11477">paper</a>].
Overview
โโโ</p>
<p>The process of speech recognition looks like the following.</p>
<ol class="arabic simple">
<li>Extract the acoustic features from audio waveform</li>
<li>Estimate the class of the acoustic features frame-by-frame</li>
<li>Generate hypothesis from the sequence of the class probabilities</li>
</ol>
<p>Torchaudio provides easy access to the pre-trained weights and
associated information, such as the expected sample rate and class
labels. They are bundled together and available under
<code class="docutils literal notranslate"><span class="pre">torchaudio.pipelines</span></code> module.</p>
<div class="section" id="preparation">
<h2>Preparation<a class="headerlink" href="#preparation" title="Permalink to this headline">ยถ</a></h2>
<p>First we import the necessary packages, and fetch data that we work on.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># %matplotlib inline</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torchaudio</span>
<span class="kn">import</span> <span class="nn">requests</span>
<span class="kn">import</span> <span class="nn">matplotlib</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">IPython</span>
<span class="n">matplotlib</span><span class="o">.</span><span class="n">rcParams</span><span class="p">[</span><span class="s1">'figure.figsize'</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="mf">16.0</span><span class="p">,</span> <span class="mf">4.8</span><span class="p">]</span>
<span class="n">torch</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">'cuda'</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s1">'cpu'</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">torchaudio</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="n">SPEECH_URL</span> <span class="o">=</span> <span class="s2">"https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"</span>
<span class="n">SPEECH_FILE</span> <span class="o">=</span> <span class="s2">"_assets/speech.wav"</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">SPEECH_FILE</span><span class="p">):</span>
<span class="n">os</span><span class="o">.</span><span class="n">makedirs</span><span class="p">(</span><span class="s1">'_assets'</span><span class="p">,</span> <span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">SPEECH_FILE</span><span class="p">,</span> <span class="s1">'wb'</span><span class="p">)</span> <span class="k">as</span> <span class="n">file</span><span class="p">:</span>
<span class="n">file</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">requests</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">SPEECH_URL</span><span class="p">)</span><span class="o">.</span><span class="n">content</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>1.10.0+cu102
0.10.0+cu102
cuda
</pre></div>
</div>
</div>
<div class="section" id="creating-a-pipeline">
<h2>Creating a pipeline<a class="headerlink" href="#creating-a-pipeline" title="Permalink to this headline">ยถ</a></h2>
<p>First, we will create a Wav2Vec2 model that performs the feature
extraction and the classification.</p>
<p>There are two types of Wav2Vec2 pre-trained weights available in
torchaudio. The ones fine-tuned for ASR task, and the ones not
fine-tuned.</p>
<p>Wav2Vec2 (and HuBERT) models are trained in self-supervised manner. They
are firstly trained with audio only for representation learning, then
fine-tuned for a specific task with additional labels.</p>
<p>The pre-trained weights without fine-tuning can be fine-tuned
for other downstream tasks as well, but this tutorial does not
cover that.</p>
<p>We will use <code class="xref py py-func docutils literal notranslate"><span class="pre">torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H()</span></code> here.</p>
<p>There are multiple models available as
<code class="xref py py-mod docutils literal notranslate"><span class="pre">torchaudio.pipelines</span></code>. Please check the documentation for
the detail of how they are trained.</p>
<p>The bundle object provides the interface to instantiate model and other
information. Sampling rate and the class labels are found as follow.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">bundle</span> <span class="o">=</span> <span class="n">torchaudio</span><span class="o">.</span><span class="n">pipelines</span><span class="o">.</span><span class="n">WAV2VEC2_ASR_BASE_960H</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Sample Rate:"</span><span class="p">,</span> <span class="n">bundle</span><span class="o">.</span><span class="n">sample_rate</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Labels:"</span><span class="p">,</span> <span class="n">bundle</span><span class="o">.</span><span class="n">get_labels</span><span class="p">())</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Sample Rate: 16000
Labels: ('<s>', '<pad>', '</s>', '<unk>', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z')
</pre></div>
</div>
<p>Model can be constructed as following. This process will automatically
fetch the pre-trained weights and load it into the model.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">bundle</span><span class="o">.</span><span class="n">get_model</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="vm">__class__</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span><class 'torchaudio.models.wav2vec2.model.Wav2Vec2Model'>
</pre></div>
</div>
</div>
<div class="section" id="loading-data">
<h2>Loading data<a class="headerlink" href="#loading-data" title="Permalink to this headline">ยถ</a></h2>
<p>We will use the speech data from <a class="reference external" href="https://iqtlabs.github.io/voices/">VOiCES
dataset</a>, which is licensed under
Creative Commos BY 4.0.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">IPython</span><span class="o">.</span><span class="n">display</span><span class="o">.</span><span class="n">Audio</span><span class="p">(</span><span class="n">SPEECH_FILE</span><span class="p">)</span>
</pre></div>
</div>
<p>To load data, we use <code class="xref py py-func docutils literal notranslate"><span class="pre">torchaudio.load()</span></code>.</p>
<p>If the sampling rate is different from what the pipeline expects, then
we can use <code class="xref py py-func docutils literal notranslate"><span class="pre">torchaudio.functional.resample()</span></code> for resampling.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<ul class="last simple">
<li><code class="xref py py-func docutils literal notranslate"><span class="pre">torchaudio.functional.resample()</span></code> works on CUDA tensors as well.</li>
<li>When performing resampling multiple times on the same set of sample rates,
using <code class="xref py py-func docutils literal notranslate"><span class="pre">torchaudio.transforms.Resample()</span></code> might improve the performace.</li>
</ul>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">waveform</span><span class="p">,</span> <span class="n">sample_rate</span> <span class="o">=</span> <span class="n">torchaudio</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">SPEECH_FILE</span><span class="p">)</span>
<span class="n">waveform</span> <span class="o">=</span> <span class="n">waveform</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="k">if</span> <span class="n">sample_rate</span> <span class="o">!=</span> <span class="n">bundle</span><span class="o">.</span><span class="n">sample_rate</span><span class="p">:</span>
<span class="n">waveform</span> <span class="o">=</span> <span class="n">torchaudio</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">resample</span><span class="p">(</span><span class="n">waveform</span><span class="p">,</span> <span class="n">sample_rate</span><span class="p">,</span> <span class="n">bundle</span><span class="o">.</span><span class="n">sample_rate</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="extracting-acoustic-features">
<h2>Extracting acoustic features<a class="headerlink" href="#extracting-acoustic-features" title="Permalink to this headline">ยถ</a></h2>
<p>The next step is to extract acoustic features from the audio.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Wav2Vec2 models fine-tuned for ASR task can perform feature
extraction and classification with one step, but for the sake of the
tutorial, we also show how to perform feature extraction here.</p>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">inference_mode</span><span class="p">():</span>
<span class="n">features</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">extract_features</span><span class="p">(</span><span class="n">waveform</span><span class="p">)</span>
</pre></div>
</div>
<p>The returned features is a list of tensors. Each tensor is the output of
a transformer layer.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">features</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">16</span><span class="p">,</span> <span class="mf">4.3</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">features</span><span class="p">)))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">feats</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">features</span><span class="p">):</span>
<span class="n">ax</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span>
<span class="n">ax</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Feature from transformer layer </span><span class="si">{</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">"Feature dimension"</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Frame (time-axis)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
<img alt="../_images/sphx_glr_speech_recognition_pipeline_tutorial_001.png" class="sphx-glr-single-img" src="../_images/sphx_glr_speech_recognition_pipeline_tutorial_001.png" />
</div>
<div class="section" id="feature-classification">
<h2>Feature classification<a class="headerlink" href="#feature-classification" title="Permalink to this headline">ยถ</a></h2>
<p>Once the acoustic features are extracted, the next step is to classify
them into a set of categories.</p>
<p>Wav2Vec2 model provides method to perform the feature extraction and
classification in one step.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">inference_mode</span><span class="p">():</span>
<span class="n">emission</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">waveform</span><span class="p">)</span>
</pre></div>
</div>
<p>The output is in the form of logits. It is not in the form of
probability.</p>
<p>Letโs visualize this.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">emission</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">T</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Classification result"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Frame (time-axis)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Class"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Class labels:"</span><span class="p">,</span> <span class="n">bundle</span><span class="o">.</span><span class="n">get_labels</span><span class="p">())</span>
</pre></div>
</div>
<img alt="../_images/sphx_glr_speech_recognition_pipeline_tutorial_002.png" class="sphx-glr-single-img" src="../_images/sphx_glr_speech_recognition_pipeline_tutorial_002.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Class labels: ('<s>', '<pad>', '</s>', '<unk>', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z')
</pre></div>
</div>
<p>We can see that there are strong indications to certain labels across
the time line.</p>
<p>Note that the class 1 to 3, (<code class="docutils literal notranslate"><span class="pre"><pad></span></code>, <code class="docutils literal notranslate"><span class="pre"></s></span></code> and <code class="docutils literal notranslate"><span class="pre"><unk></span></code>) have
mostly huge negative values, this is an artifact from the original
<code class="docutils literal notranslate"><span class="pre">fairseq</span></code> implementation where these labels are added by default but
not used during the training.</p>
</div>
<div class="section" id="generating-transcripts">
<h2>Generating transcripts<a class="headerlink" href="#generating-transcripts" title="Permalink to this headline">ยถ</a></h2>
<p>From the sequence of label probabilities, now we want to generate
transcripts. The process to generate hypotheses is often called
โdecodingโ.</p>
<p>Decoding is more elaborate than simple classification because
decoding at certain time step can be affected by surrounding
observations.</p>
<p>For example, take a word like <code class="docutils literal notranslate"><span class="pre">night</span></code> and <code class="docutils literal notranslate"><span class="pre">knight</span></code>. Even if their
prior probability distribution are differnt (in typical conversations,
<code class="docutils literal notranslate"><span class="pre">night</span></code> would occur way more often than <code class="docutils literal notranslate"><span class="pre">knight</span></code>), to accurately
generate transcripts with <code class="docutils literal notranslate"><span class="pre">knight</span></code>, such as <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre">knight</span> <span class="pre">with</span> <span class="pre">a</span> <span class="pre">sword</span></code>,
the decoding process has to postpone the final decision until it sees
enough context.</p>
<p>There are many decoding techniques proposed, and they require external
resources, such as word dictionary and language models.</p>
<p>In this tutorial, for the sake of simplicity, we will perform greedy
decoding which does not depend on such external components, and simply
pick up the best hypothesis at each time step. Therefore, the context
information are not used, and only one transcript can be generated.</p>
<p>We start by defining greedy decoding algorithm.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">GreedyCTCDecoder</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">,</span> <span class="n">ignore</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">labels</span> <span class="o">=</span> <span class="n">labels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">ignore</span> <span class="o">=</span> <span class="n">ignore</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">emission</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span>
<span class="sd">"""Given a sequence emission over labels, get the best path string</span>
<span class="sd"> Args:</span>
<span class="sd"> emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.</span>
<span class="sd"> Returns:</span>
<span class="sd"> str: The resulting transcript</span>
<span class="sd"> """</span>
<span class="n">indices</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">emission</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># [num_seq,]</span>
<span class="n">indices</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">unique_consecutive</span><span class="p">(</span><span class="n">indices</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">indices</span> <span class="k">if</span> <span class="n">i</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">ignore</span><span class="p">]</span>
<span class="k">return</span> <span class="s1">''</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">indices</span><span class="p">])</span>
</pre></div>
</div>
<p>Now create the decoder object and decode the transcript.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">decoder</span> <span class="o">=</span> <span class="n">GreedyCTCDecoder</span><span class="p">(</span>
<span class="n">labels</span><span class="o">=</span><span class="n">bundle</span><span class="o">.</span><span class="n">get_labels</span><span class="p">(),</span>
<span class="n">ignore</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="p">)</span>
<span class="n">transcript</span> <span class="o">=</span> <span class="n">decoder</span><span class="p">(</span><span class="n">emission</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</pre></div>
</div>
<p>Letโs check the result and listen again to the audio.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">transcript</span><span class="p">)</span>
<span class="n">IPython</span><span class="o">.</span><span class="n">display</span><span class="o">.</span><span class="n">Audio</span><span class="p">(</span><span class="n">SPEECH_FILE</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|
</pre></div>
</div>
<p>The ASR model is fine-tuned using a loss function called Connectionist Temporal Classification (CTC).
The detail of CTC loss is explained
<a class="reference external" href="https://distill.pub/2017/ctc/">here</a>. In CTC a blank token (ฯต) is a
special token which represents a repetition of the previous symbol. In
decoding, these are simply ignored.</p>
<p>Secondly, as is explained in the feature extraction section, the
Wav2Vec2 model originated from <code class="docutils literal notranslate"><span class="pre">fairseq</span></code> has labels that are not used.
These also have to be ignored.</p>
</div>
<div class="section" id="conclusion">
<h2>Conclusion<a class="headerlink" href="#conclusion" title="Permalink to this headline">ยถ</a></h2>
<p>In this tutorial, we looked at how to use <code class="xref py py-mod docutils literal notranslate"><span class="pre">torchaudio.pipelines</span></code> to
perform acoustic feature extraction and speech recognition. Constructing
a model and getting the emission is as short as two lines.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">torchaudio</span><span class="o">.</span><span class="n">pipelines</span><span class="o">.</span><span class="n">WAV2VEC2_ASR_BASE_960H</span><span class="o">.</span><span class="n">get_model</span><span class="p">()</span>
<span class="n">emission</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">waveforms</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 47.400 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-intermediate-speech-recognition-pipeline-tutorial-py">
<div class="sphx-glr-download docutils container">
<a class="reference download internal" download="" href="../_downloads/e17ada3b5b94e8fd77827d500d8a7973/speech_recognition_pipeline_tutorial.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">speech_recognition_pipeline_tutorial.py</span></code></a></div>
<div class="sphx-glr-download docutils container">
<a class="reference download internal" download="" href="../_downloads/f97099f41a883e6209cafcefbeb9a0e7/speech_recognition_pipeline_tutorial.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">speech_recognition_pipeline_tutorial.ipynb</span></code></a></div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.readthedocs.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="speech_command_classification_with_torchaudio_tutorial.html" class="btn btn-neutral float-right" title="Speech Command Classification with torchaudio" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../beginner/audio_datasets_tutorial.html" class="btn btn-neutral" title="Audio Datasets" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr class="rating-hr hr-top">
<div class="rating-container">
<div class="rating-prompt">Rate this Tutorial</div>
<div class="stars-outer">
<i class="far fa-star" title="1 Star" data-behavior="tutorial-rating" data-count="1"></i>
<i class="far fa-star" title="2 Stars" data-behavior="tutorial-rating" data-count="2"></i>
<i class="far fa-star" title="3 Stars" data-behavior="tutorial-rating" data-count="3"></i>
<i class="far fa-star" title="4 Stars" data-behavior="tutorial-rating" data-count="4"></i>
<i class="far fa-star" title="5 Stars" data-behavior="tutorial-rating" data-count="5"></i>
</div>
</div>
<hr class="rating-hr hr-bottom"/>
<div role="contentinfo">
<p>
© Copyright 2021, PyTorch & PyTorch Korea Community.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Speech Recognition with Wav2Vec2</a><ul>
<li><a class="reference internal" href="#preparation">Preparation</a></li>
<li><a class="reference internal" href="#creating-a-pipeline">Creating a pipeline</a></li>
<li><a class="reference internal" href="#loading-data">Loading data</a></li>
<li><a class="reference internal" href="#extracting-acoustic-features">Extracting acoustic features</a></li>
<li><a class="reference internal" href="#feature-classification">Feature classification</a></li>
<li><a class="reference internal" href="#generating-transcripts">Generating transcripts</a></li>
<li><a class="reference internal" href="#conclusion">Conclusion</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/clipboard.min.js"></script>
<script type="text/javascript" src="../_static/copybutton.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/contrib/auto-render.min.js"></script>
<script type="text/javascript" src="../_static/katex_autorenderer.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script>
//add microsoft link
if(window.location.href.indexOf("/beginner/basics/")!= -1)
{
var url="https://docs.microsoft.com/learn/paths/pytorch-fundamentals/?wt.mc_id=aiml-7486-cxa";
switch(window.location.pathname.split("/").pop().replace('.html',''))
{
case"quickstart_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/9-quickstart?WT.mc_id=aiml-7486-cxa";
break;
case"tensorqs_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/2-tensors?WT.mc_id=aiml-7486-cxa";
break;
case"data_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/3-data?WT.mc_id=aiml-7486-cxa";
break;
case"transforms_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/4-transforms?WT.mc_id=aiml-7486-cxa";
break;
case"buildmodel_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/5-model?WT.mc_id=aiml-7486-cxa";
break;
case"autogradqs_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/6-autograd?WT.mc_id=aiml-7486-cxa";
break;
case"optimization_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/7-optimization?WT.mc_id=aiml-7486-cxa";
break;
case"saveloadrun_tutorial":
url="https://docs.microsoft.com/learn/modules/intro-machine-learning-pytorch/8-inference?WT.mc_id=aiml-7486-cxa";
}
$(".pytorch-call-to-action-links").children().first().before("<a href="+url+' data-behavior="call-to-action-event" data-response="Run in Microsoft Learn" target="_blank"><div id="microsoft-learn-link" style="padding-bottom: 0.625rem;border-bottom: 1px solid #f3f4f7;padding-right: 2.5rem;display: -webkit-box; display: -ms-flexbox; isplay: flex; -webkit-box-align: center;-ms-flex-align: center;align-items: center;"><img class="call-to-action-img" src="../../_static/images/microsoft-logo.svg"/><div class="call-to-action-desktop-view">Run in Microsoft Learn</div><div class="call-to-action-mobile-view">Learn</div></div></a>')
}
</script>
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-71919972-3"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-71919972-3');
</script>
<script>
$("[data-behavior='call-to-action-event']").on('click', function(){
ga('send', {
hitType: 'event',
eventCategory: $(this).attr("data-response"),
eventAction: 'click',
eventLabel: window.location.href
});
gtag('event', 'click', {
'event_category': $(this).attr("data-response"),
'event_label': $("h1").first().text(),
'tutorial_link': window.location.href
});
});
$("[data-behavior='tutorial-rating']").on('click', function(){
gtag('event', 'click', {
'event_category': 'Tutorial Rating',
'event_label': $("h1").first().text(),
'value': $(this).attr("data-count")
});
});
if (location.pathname == "/") {
$(".rating-container").hide();
$(".hr-bottom").hide();
}
</script>
<script type="text/javascript">
var collapsedSections = ['ํ์ดํ ์น(PyTorch) ๋ ์ํผ', 'ํ์ดํ ์น(PyTorch) ๋ฐฐ์ฐ๊ธฐ', '์ด๋ฏธ์ง/๋น๋์ค', '์ค๋์ค', 'ํ
์คํธ', '๊ฐํํ์ต', 'PyTorch ๋ชจ๋ธ์ ํ๋ก๋์
ํ๊ฒฝ์ ๋ฐฐํฌํ๊ธฐ', 'Code Transforms with FX', 'ํ๋ก ํธ์๋ API', 'PyTorch ํ์ฅํ๊ธฐ', '๋ชจ๋ธ ์ต์ ํ', '๋ณ๋ ฌ ๋ฐ ๋ถ์ฐ ํ์ต', 'Mobile'];
</script>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>๊ณต์ ๋ฌธ์ (์์ด)</h2>
<p>PyTorch ๊ณต์ ๋ฌธ์์
๋๋ค.</p>
<a id="orgTutorialLink" class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html" target="_blank">๊ณต์ ๋ฌธ์๋ก ์ด๋</a>
</div>
<div class="col-md-4 text-center">
<h2>ํ๊ตญ์ด ํํ ๋ฆฌ์ผ</h2>
<p>ํ๊ตญ์ด๋ก ๋ฒ์ญ ์ค์ธ PyTorch ํํ ๋ฆฌ์ผ์
๋๋ค.</p>
<a class="with-right-arrow" href="https://tutorials.pytorch.kr">ํํ ๋ฆฌ์ผ๋ก ์ด๋</a>
</div>
<div class="col-md-4 text-center">
<h2>์ปค๋ฎค๋ํฐ</h2>
<p>๋ค๋ฅธ ์ฌ์ฉ์๋ค๊ณผ ์๊ฒฌ์ ๋๋ ๋ณด์ธ์!</p>
<a class="with-right-arrow" href="https://discuss.pytorch.kr">์ปค๋ฎค๋ํฐ๋ก ์ด๋</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.kr/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org">PyTorch ํํ์ด์ง (๊ณต์)</a></li>
<li><a href="https://pytorch.org" target="_blank">๊ณต์ ํํ์ด์ง</a></li>
<li><a href="https://pytorch.org/tutorials" target="_blank">๊ณต์ ํํ ๋ฆฌ์ผ</a></li>
<li><a href="https://pytorch.org/docs" target="_blank">๊ณต์ ๋ฌธ์</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="">ํ๊ตญ ์ฌ์ฉ์ ๋ชจ์</a></li>
<li><a href="https://pytorch.kr/about">์ฌ์ดํธ ์๊ฐ</a></li>
<li><a href="https://tutorials.pytorch.kr/">ํ๊ตญ์ด ํํ ๋ฆฌ์ผ</a></li>
<li><a href="https://github.com/9bow/PyTorch-tutorials-kr" target="_blank">ํ๊ตญ์ด ํํ ๋ฆฌ์ผ ์ ์ฅ์</a></li>
</ul>
</div>
</div>
<div class="trademark-disclaimer">
<ul>
<li>์ด ์ฌ์ดํธ๋ PyTorch ํ๊ตญ ์ฌ์ฉ์ ์ปค๋ฎค๋ํฐ๋ก Facebook, Inc์์ ์ด์ํ๋ ์ฌ์ดํธ๊ฐ ์๋๋๋ค. PyTorch, PyTorch ๋ก๊ณ ๋ฐ ๋ชจ๋ ๊ด๋ จ ํ๊ธฐ๋ Facebook, Inc์ ์ํ์
๋๋ค.</li>
<li>This site is a user community and is not operated by Facebook, Inc. PyTorch, the PyTorch logo and any related marks are trademarks of Facebook, Inc.</li>
</ul>
</div>
</div>
</footer>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.kr/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.kr/get-started">์์ํ๊ธฐ</a>
</li>
<li class="active">
<a href="https://tutorials.pytorch.kr">ํํ ๋ฆฌ์ผ</a>
</li>
<li>
<a href="https://pytorch.kr/hub">ํ๋ธ</a>
</li>
<li>
<a href="https://discuss.pytorch.kr">์ปค๋ฎค๋ํฐ</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>