-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy pathgraphics.hpp
365 lines (346 loc) · 12.4 KB
/
graphics.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#pragma once
#define WINDOW_NAME "FluidX3D"
//#define INTERACTIVE_GRAPHICS
//#define INTERACTIVE_GRAPHICS_ASCII
//#define GRAPHICS
#include "defines.hpp"
#include "utilities.hpp"
#include <atomic>
#include <mutex>
extern vector<string> main_arguments; // console arguments
extern std::atomic_bool running;
#ifdef GRAPHICS
void main_label(const double frametime); // implement these three
void main_graphics();
void main_physics();
class Camera {
public:
int* bitmap = nullptr;
int* zbuffer = nullptr;
uint width = 1920u; // screen width
uint height = 1080u; // screen height
uint fps_limit = 60u; // default value for screen frames per second limit
float fov = 100.0f; // field of view, default: 100
float zoom=0.5f*(float)min(width, height), dis=0.5f*(float)width/tan(fov*pif/360.0f); // zoom, distance from camera to rotation center
float3x3 R = float3x3(1.0f); // camera rotation matrix
double rx=0.5*pi, ry=pi; // rotation angles
float3 pos = float3(0.0f); // free camera position
bool free = false; // free camera mode
double free_camera_velocity = 1.0; // free camera speed; default: 1 cell per second
bool vr=false, tv=false; // virtual reality mode (enables stereoscopic rendering), VR TV mode
float eye_distance = 8.0f; // distance between cameras in VR mode
bool autorotation = false; // autorotation
bool lockmouse = false; // mouse movement won't change camera view when this is true
std::atomic_bool key_update = true; // a key variable has been updated
std::atomic_bool allow_rendering = false; // allows interactive redering if true
std::atomic_bool allow_labeling = true; // allows drawing label if true
std::mutex rendring_frame; // a frame for interactive graphics is currently rendered
private:
float log_zoom=4.0f*log(zoom), target_log_zoom=log_zoom;
double mouse_x=0.0, mouse_y=0.0, target_mouse_x=0.0, target_mouse_y=0.0; // mouse position
double mouse_sensitivity = 1.0; // mouse sensitivity
bool key_state[512] = { 0 };
public:
Camera(const uint width, const uint height, const uint fps_limit) {
this->width = width;
this->height = height;
this->fps_limit = fps_limit;
bitmap = new int[width*height];
zbuffer = new int[width*height];
set_zoom(1.0f); // set initial zoom
update_matrix();
}
Camera() = default; // default constructor
~Camera() {
delete[] bitmap;
delete[] zbuffer;
}
Camera& operator=(Camera&& camera) noexcept { // move assignment
this->width = camera.width;
this->height = camera.height;
this->fps_limit = camera.fps_limit;
std::swap(bitmap, camera.bitmap);
std::swap(zbuffer, camera.zbuffer);
set_zoom(1.0f); // set initial zoom
update_matrix();
return *this;
}
void set_zoom(const float rad) {
zoom = 0.5f*(float)min(width, height)/rad;
log_zoom = target_log_zoom = 4.0f*log(zoom);
}
void update_matrix() {
dis = 0.5f*(float)width/tan(fov*pif/360.0f);
const float sinrx=sin((float)rx), cosrx=cos((float)rx), sinry=sin((float)ry), cosry=cos((float)ry);
R.xx = cosrx; R.xy = sinrx; R.xz = 0.0f;
R.yx = sinrx*sinry; R.yy = -cosrx*sinry; R.yz = cosry;
R.zx = -sinrx*cosry; R.zy = cosrx*cosry; R.zz = sinry;
if(!free) {
pos.x = R.zx*dis/zoom;
pos.y = R.zy*dis/zoom;
pos.z = R.zz*dis/zoom;
}
}
void set_key_state(const int key, const bool state) {
key_state[clamp(256+key, 0, 511)] = state;
}
bool get_key_state(const int key) {
return key_state[clamp(256+key, 0, 511)];
}
void input_key(const int key) {
key_update = true;
switch(key) {
case 'R': input_R(); break;
case 'U': input_U(); break;
case 'I': input_I(); break;
case 'J': input_J(); break;
case 'K': input_K(); break;
case 'L': input_L(); break;
case 'V': input_V(); break;
case 'B': input_B(); break;
case '+': input_scroll_down(); break;
case '-': input_scroll_up(); break;
case 'F': input_F(); break;
case 27: running=false; println(); exit(0);
}
#ifdef INTERACTIVE_GRAPHICS_ASCII
if(free) { // move free camera
if(key=='W') input_W();
if(key=='A') input_A();
if(key=='S') input_S();
if(key=='D') input_D();
if(key==' ') input_Space();
if(key=='C') input_C();
}
if(!lockmouse) {
if(key=='I') input_I(); // rotating camera with keys
if(key=='J') input_J();
if(key=='K') input_K();
if(key=='L') input_L();
}
if(key=='Y') input_Y(); // adjusting field of view
if(key=='X') input_X();
if(key=='N') input_N(); // adjust camera.vr eye distance
if(key=='M') input_M();
#endif // INTERACTIVE_GRAPHICS_ASCII
}
void update_state(const double frametime) {
if(!free) {
log_zoom = (float)exp_decay((double)log_zoom, (double)target_log_zoom, frametime, 0.083); // smoothed zoom
zoom = exp(log_zoom*0.25f);
} else { // move free camera
if(get_key_state('W')) input_W(frametime);
if(get_key_state('A')) input_A(frametime);
if(get_key_state('S')) input_S(frametime);
if(get_key_state('D')) input_D(frametime);
if(get_key_state(' ')) input_Space(frametime);
if(get_key_state('C')) input_C(frametime);
}
if(!lockmouse) {
if(get_key_state('I')) input_I(frametime); // rotate camera with keys
if(get_key_state('J')) input_J(frametime);
if(get_key_state('K')) input_K(frametime);
if(get_key_state('L')) input_L(frametime);
}
if(autorotation) update_rotation(-45.0*frametime, 0.0); // 45 degrees per second
if(get_key_state('Y')) input_Y(); // adjust field of view
if(get_key_state('X')) input_X();
if(get_key_state('N')) input_N(); // adjust vr eye distance
if(get_key_state('M')) input_M();
if(!lockmouse) {
mouse_x = exp_decay(mouse_x, target_mouse_x, frametime, 0.031); // smoothed mouse movement
mouse_y = exp_decay(mouse_y, target_mouse_y, frametime, 0.031);
update_rotation(mouse_x, mouse_y);
} else {
mouse_x = mouse_y = 0.0;
}
target_mouse_x = target_mouse_y = 0.0;
}
void clear_frame() {
std::fill(bitmap, bitmap+width*height, GRAPHICS_BACKGROUND_COLOR); // faster than "for(uint i=0u; i<width*height; i++) bitmap[i] = GRAPHICS_BACKGROUND_COLOR;"
std::fill(zbuffer, zbuffer+width*height, min_int); // faster than "for(uint i=0u; i<width*height; i++) zbuffer[i] = min_int;"
}
float data(const uint i) const { // returns all camera data required for rendering
switch(i) {
case 0: return zoom ; // camera zoom
case 1: return dis ; // distance from camera to rotation center
case 2: return free ? pos.x : 0.0f; // camera position
case 3: return free ? pos.y : 0.0f;
case 4: return free ? pos.z : 0.0f;
case 5: return R.xx; // camera rotation matrix
case 6: return R.xy;
case 7: return R.xz;
case 8: return R.yx;
case 9: return R.yy;
case 10: return R.yz;
case 11: return R.zx;
case 12: return R.zy;
case 13: return R.zz;
case 14: return as_float((uint)vr<<31|(uint)tv<<30|((uint)float_to_half(eye_distance)&0xFFFF)); // stereoscopic rendering parameters
default: return 0.0f;
}
}
void input_mouse_moved(const int x, const int y) {
if(!lockmouse) {
target_mouse_x = mouse_sensitivity*(double)((int)width /2-x);
target_mouse_y = mouse_sensitivity*(double)((int)height/2-y);
}
}
void input_mouse_dragged(const int dx, const int dy) {
if(!lockmouse) {
target_mouse_x -= mouse_sensitivity*(double)(dx);
target_mouse_y -= mouse_sensitivity*(double)(dy);
}
}
void input_scroll_up() {
if(!free) { // zoom
target_log_zoom -= 1.0f;
} else if(!lockmouse) {
free_camera_velocity *= 1.284;
}
key_update = true;
}
void input_scroll_down() {
if(!free) { // zoom
target_log_zoom += 1.0f;
} else if(!lockmouse) {
free_camera_velocity /= 1.284;
}
key_update = true;
}
private:
void input_F() {
free = !free;
if(!free) {
zoom = exp(log_zoom*0.25f);
} else {
pos.x = R.zx*dis/zoom;
pos.y = R.zy*dis/zoom;
pos.z = R.zz*dis/zoom;
zoom = 1E16f;
}
}
void input_V() {
vr = !vr;
}
void input_B() {
tv = !tv;
}
void input_W(const double frametime=1.0/60.0) {
pos.x += R.xy*R.yz*(float)(free_camera_velocity*frametime);
pos.y -= R.xx*R.yz*(float)(free_camera_velocity*frametime);
pos.z -= R.zz*(float)(free_camera_velocity*frametime);
}
void input_A(const double frametime=1.0/60.0) {
pos.x -= R.xx*(float)(free_camera_velocity*frametime);
pos.y -= R.xy*(float)(free_camera_velocity*frametime);
}
void input_S(const double frametime=1.0/60.0) {
pos.x -= R.xy*R.yz*(float)(free_camera_velocity*frametime);
pos.y += R.xx*R.yz*(float)(free_camera_velocity*frametime);
pos.z += R.zz*(float)(free_camera_velocity*frametime);
}
void input_D(const double frametime=1.0/60.0) {
pos.x += R.xx*(float)(free_camera_velocity*frametime);
pos.y += R.xy*(float)(free_camera_velocity*frametime);
}
void input_Space(const double frametime=1.0/60.0) {
pos.x -= R.xy*R.zz*(float)(free_camera_velocity*frametime);
pos.y += R.xx*R.zz*(float)(free_camera_velocity*frametime);
pos.z -= R.yz*(float)(free_camera_velocity*frametime);
}
void input_C(const double frametime=1.0/60.0) {
pos.x += R.xy*R.zz*(float)(free_camera_velocity*frametime);
pos.y -= R.xx*R.zz*(float)(free_camera_velocity*frametime);
pos.z += R.yz*(float)(free_camera_velocity*frametime);
}
void input_R() {
autorotation = !autorotation;
}
void input_U() {
lockmouse = !lockmouse;
}
void input_I(const double frametime=1.0/60.0) {
if(lockmouse) {
double d = (ry*18.0/pi)-(double)((int)(ry*18.0f/pi));
d = d<1E-6 ? 1.0 : 1.0-d;
update_rotation(0.0, 10.0*d);
} else {
target_mouse_y += mouse_sensitivity*frametime*60.0;
}
}
void input_J(const double frametime=1.0/60.0) {
if(lockmouse) {
double d = (rx*18.0/pi)-(double)((int)(rx*18.0/pi));
d = d<1E-6 ? 1.0 : 1.0-d;
update_rotation(10.0*d, 0.0);
} else {
target_mouse_x += mouse_sensitivity*frametime*60.0;
}
}
void input_K(const double frametime=1.0/60.0) {
if(lockmouse) {
double d = (ry*18.0/pi)-(double)((int)(ry*18.0/pi));
d = d<1E-6 ? 1.0f : d;
update_rotation(0.0, -10.0*d);
} else {
target_mouse_y -= mouse_sensitivity*frametime*60.0;
}
}
void input_L(const double frametime=1.0/60.0) {
if(lockmouse) {
double d = (rx*18.0/pi)-(double)((int)(rx*18.0/pi));
d = d<1E-6 ? 1.0 : d;
update_rotation(-10.0*d, 0.0);
} else {
target_mouse_x -= mouse_sensitivity*frametime*60.0;
}
}
void input_X() {
fov = fmax(fov-1.0f, 1E-6f);
dis = 0.5f*(float)width/tan(fov*pif/360.0f);
}
void input_Y() {
fov = fmin(fov<1.0f ? 1.0f : fov+1.0f, 179.0f);
dis = 0.5f*(float)width/tan(fov*pif/360.0f);
}
void input_N() {
eye_distance = fmax(eye_distance-0.2f, 0.0f);
}
void input_M() {
eye_distance += 0.2f;
}
void update_rotation(const double arx, const double ary) {
rx += radians(arx);
ry += radians(ary);
rx = fmod(rx, 2.0*pi);
ry = clamp(ry, 0.5*pi, 1.5*pi);
update_matrix();
}
double exp_decay(const double a, const double b, const double frametime, const double halflife=1.0) {
return b+(a-b)*exp2(-frametime/halflife);
}
};
extern Camera camera;
extern bool key_E, key_G, key_H, key_O, key_P, key_Q, key_T, key_Z; // defined in graphics.cpp
extern bool key_1, key_2, key_3, key_4, key_5, key_6, key_7, key_8, key_9, key_0; // defined in graphics.cpp
#define GRAPHICS_CONSOLE // open console additionally to graphics window
#define FONT_HEIGHT 11 // default: 11
#define FONT_WIDTH 6 // default: 6
void set_light(const uint i, const float3& p);
void draw_bitmap(int* bitmap);
void draw_label(const int x, const int y, const string& s, const int color);
void draw_line_label(const int x0, const int y0, const int x1, const int y1, const int color);
void draw_pixel(const int x, const int y, const int color); // 2D drawing functions
void draw_circle(const int x, const int y, const int r, const int color);
void draw_line(const int x0, const int y0, const int x1, const int y1, const int color);
void draw_triangle(const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const int color);
void draw_rectangle(const int x0, const int y0, const int x1, const int y1, const int color);
void draw_text(const int x, const int y, const string& s, const int color);
void draw_pixel(const float3& p, const int color); // 3D drawing functions
void draw_circle(const float3& p, const float r, const int color);
void draw_line(const float3& p0, const float3& p1, const int color);
void draw_triangle(const float3& p0, const float3& p1, const float3& p2, const int color, const bool translucent=false);
void draw_triangle(const float3& p0, const float3& p1, const float3& p2, const int c0, const int c1, const int c2, const bool translucent=false);
void draw_text(const float3& p, const float r, const string& s, const int color);
#endif // GRAPHICS