forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwork.py
310 lines (267 loc) · 12.5 KB
/
work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import re
from concurrent import futures
import chat_chain
import interface
import requests
import transformers
import utils
import websocket
from chat_chain_prompts import (
ASSISTANT_PREFIX,
CUSTOM_INSTRUCTIONS_PREFIX,
END_SEQ,
OBSERVATION_SEQ,
START_SEQ,
THOUGHT_SEQ,
)
from loguru import logger
from oasst_shared.schemas import inference
from settings import settings
from utils import shared_tokenizer_lock, special_tokens
def make_prompt_and_parameters(
tokenizer: transformers.PreTrainedTokenizer,
work_request: inference.WorkRequest,
) -> tuple[str, interface.GenerateStreamParameters]:
"""Prepare a formatted prompt and stream generation parameters based on a work request."""
if settings.oa_protocol_version != "v2":
raise RuntimeError(f"Unsupported oa protocol version: {settings.oa_protocol_version}")
eos_token = ""
if special_tokens["end"]:
eos_token = special_tokens["end"]
elif hasattr(tokenizer, "eos_token"):
eos_token = tokenizer.eos_token
def _prepare_message(message: inference.MessageRead) -> str:
prefix = special_tokens["assistant"] if message.is_assistant else special_tokens["prompter"]
return prefix + message.content + eos_token
# Construct prompt
messages = [_prepare_message(message) for message in work_request.thread.messages]
# Prepend system prompt and custom_instructions if it was specified in work parameters
work_params = work_request.parameters
if work_params.system_prompt or work_params.user_profile or work_params.user_response_instructions:
pre_prompt = special_tokens["system"] + (work_params.system_prompt or "")
if work_params.user_profile or work_params.user_response_instructions:
pre_prompt = f"""{pre_prompt}\n{CUSTOM_INSTRUCTIONS_PREFIX.format(user_profile=work_params.user_profile or "", user_response_instructions=work_params.user_response_instructions or "")}"""
pre_prompt = pre_prompt + eos_token
messages = [pre_prompt] + messages
# Stringify and append assistant prefix to signify start of generation
prompt = "".join(messages) + special_tokens["assistant"]
parameters = interface.GenerateStreamParameters.from_work_parameters(work_request.parameters)
if settings.use_stop_sequences:
parameters.stop = [
special_tokens["prompter"],
special_tokens["assistant"],
special_tokens["system"],
]
if eos_token:
parameters.stop.append(eos_token)
else:
parameters.stop = []
return prompt, parameters
def prepare_safe_prompt(prompt: str, label: str, rots: str) -> str:
"""Given a prompt, safety label, and safety rule of thumb, prepare a 'safe prompt' to replace the prompt."""
pre_prompt = f"Answer the following request with {label} as responsible chatbot that believes that {rots}: "
input_list = prompt.split(special_tokens["prompter"])
input_list[-1] = pre_prompt + input_list[-1]
return special_tokens["prompter"].join(input_list)
def is_safety_triggered(safety_label: str, safety_level: int) -> bool:
"""
Determines whether to trigger the safe prompt based on the configured safety level and severity label from the
safety classifier.
"""
return ("caution" in safety_label and safety_level > 1) or ("intervention" in safety_label and safety_level > 0)
def parse_safety_response(safety_opinion: str) -> tuple[str, str]:
"""Parse the response from the safety model into a separate label and rule of thumb."""
safety_opinion = re.sub(r"<pad>|</s>", "", safety_opinion).split("<sep>")
label, rots = safety_opinion[0], "and".join([x.strip(".") for x in safety_opinion[1:]])
label = label.replace("<pad>", "").strip()
return label, rots
def handle_work_request(
ws: websocket.WebSocket,
tokenizer: transformers.PreTrainedTokenizer,
work_request: inference.WorkRequest,
worker_config: inference.WorkerConfig,
):
"""Handle a work request from end-to-end. Handles plugins and safety if enabled."""
parameters = interface.GenerateStreamParameters.from_work_parameters(work_request.parameters)
prompt = ""
used_plugin = None
for plugin in parameters.plugins:
if plugin.enabled:
prompt, used_plugin = chat_chain.handle_conversation(work_request, worker_config, parameters, tokenizer, ws)
# When using plugins and final prompt is truncated due to length limit
# LLaMA has tendency to leak internal prompts and generate bad continuations
# So we add keywords/sequences to the stop sequences to reduce this
parameters.stop.extend([END_SEQ, START_SEQ, THOUGHT_SEQ, f"{ASSISTANT_PREFIX}:"])
break
if not used_plugin:
prompt, parameters = make_prompt_and_parameters(tokenizer=tokenizer, work_request=work_request)
logger.debug(f"Prompt: {prompt}")
model_config = worker_config.model_config
if settings.enable_safety and work_request.safety_parameters.level:
safety_request = inference.SafetyRequest(inputs=prompt, parameters=work_request.safety_parameters)
safety_response = get_safety_server_response(safety_request)
safety_label, safety_rots = parse_safety_response(safety_response.outputs)
if is_safety_triggered(safety_label, work_request.safety_parameters.level):
prompt = prepare_safe_prompt(prompt, safety_label, safety_rots)
utils.send_response(
ws,
inference.SafePromptResponse(
request_id=work_request.id,
safe_prompt=prompt,
safety_parameters=work_request.safety_parameters,
safety_label=safety_label,
safety_rots=safety_rots,
),
)
logger.debug(f"Safe prompt: {prompt}")
stream_response = None
token_buffer = utils.TokenBuffer(stop_sequences=parameters.stop)
if model_config.is_lorem:
stream_events = utils.lorem_events(parameters.seed)
else:
prompt = utils.truncate_prompt(tokenizer, worker_config, parameters, prompt, used_plugin is not None)
stream_request = interface.GenerateStreamRequest(
inputs=prompt,
parameters=parameters,
)
stream_events = utils.get_inference_server_stream_events(stream_request)
generated_ids = []
decoded_text = ""
for stream_response in stream_events:
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
utils.send_response(
ws,
inference.ErrorResponse(
request_id=work_request.id,
error=stream_response.error,
metrics=inference.WorkerMetricsInfo(),
),
)
raise RuntimeError(f"Error from inference server: {stream_response.error}")
token = stream_response.token
if model_config.is_llama:
generated_ids.append(token.id)
try:
with shared_tokenizer_lock:
text = tokenizer.decode(generated_ids, skip_special_tokens=True)
new_text = text[len(decoded_text) :]
if not decoded_text:
new_text = new_text.lstrip()
except Exception:
text = decoded_text
new_text = ""
token.text = new_text
decoded_text = text
for send_token in token_buffer.add(token):
utils.send_response(ws, send_token.to_token_response(request_id=work_request.id))
if stream_response is None:
logger.error("No stream response received")
raise RuntimeError("No stream response received")
for send_token in token_buffer.finish(reason=stream_response.details.finish_reason):
utils.send_response(
ws,
send_token.to_token_response(request_id=work_request.id),
)
if model_config.is_llama:
stream_response.generated_text = stream_response.generated_text.strip()
# Helps with RLHF models using plugin prompts. Get generated text to first occurrence of:
# START_SEQ, END_SEQ, ASSISTANT_PREFIX, THOUGHT_SEQ, OBSERVATION_SEQ
end_seq_index = min(
[
stream_response.generated_text.find(seq)
for seq in [START_SEQ, END_SEQ, f"{ASSISTANT_PREFIX}:", THOUGHT_SEQ, OBSERVATION_SEQ]
if seq in stream_response.generated_text
]
+ [len(stream_response.generated_text)]
)
if end_seq_index != -1 and used_plugin is not None:
stream_response.generated_text = stream_response.generated_text[:end_seq_index]
logger.info(f"Done. {stream_response=}")
utils.send_response(
ws,
inference.GeneratedTextResponse(
request_id=work_request.id,
text=stream_response.generated_text,
finish_reason=stream_response.details.finish_reason,
metrics=inference.WorkerMetricsInfo(),
used_plugin=used_plugin,
),
)
logger.debug("Work complete. Waiting for more work...")
def get_safety_server_response(request: inference.SafetyRequest) -> inference.SafetyResponse:
"""Query the safety server URL configured in the worker settings."""
http = utils.HttpClient(base_url=settings.safety_server_url)
response = http.post("/safety", json=request.dict())
try:
response.raise_for_status()
except requests.HTTPError:
logger.exception("Failed to get response from safety server")
logger.error(f"Response: {response.text}")
raise
return inference.SafetyResponse(**response.json())
def perform_oom_test(tokenizer: transformers.PreTrainedTokenizer):
logger.warning("Performing OOM test")
prompt = ("This is a test prompt. " * 10000).strip()
parameters = interface.GenerateStreamParameters(
max_new_tokens=4,
temperature=1.5,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
stop=[],
)
class OOMError(Exception):
pass
if settings.oom_test_max_length is None:
try:
for length in range(256, 2**15, 256):
prompt_ids = tokenizer.encode(prompt, max_length=length - 4, truncation=True)
short_prompt = tokenizer.decode(prompt_ids)
stream_request = interface.GenerateStreamRequest(
inputs=short_prompt,
parameters=parameters,
)
stream_events = utils.get_inference_server_stream_events(stream_request)
for stream_response in stream_events:
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
raise OOMError()
except OOMError:
length = length - 256
logger.warning(f"Max length: {length}")
else:
length = settings.oom_test_max_length
with futures.ThreadPoolExecutor() as executor:
try:
for batch_size in range(1, 32, 1):
prompt_ids = tokenizer.encode(prompt, max_length=length - 4, truncation=True)
short_prompt = tokenizer.decode(prompt_ids)
stream_request = interface.GenerateStreamRequest(
inputs=short_prompt,
parameters=parameters,
)
ftrs: list[futures.Future] = []
try:
for _ in range(batch_size):
stream_events = utils.get_inference_server_stream_events(stream_request)
ftrs.append(executor.submit(list, stream_events))
for ftr in ftrs:
for stream_response in ftr.result():
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
raise OOMError()
except Exception:
logger.exception("OOM")
try:
for ftr in ftrs:
ftr.cancel()
except Exception:
pass
raise OOMError()
except OOMError:
batch_size = batch_size - 1
logger.warning(f"Batch size: {batch_size}")
logger.warning("OOM test complete")
logger.warning(f"Max length: {length}")
logger.warning(f"Batch size: {batch_size}")