forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_hf_server.py
223 lines (181 loc) · 7.45 KB
/
basic_hf_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Basic FastAPI server to serve models using HuggingFace Transformers library.
This is an alternative to running the HuggingFace `text-generation-inference` (tgi) server.
"""
import sys
import threading
from queue import Queue
import fastapi
import hf_stopping
import hf_streamer
import interface
import torch
import transformers
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from oasst_shared import model_configs
from settings import settings
from sse_starlette.sse import EventSourceResponse
app = fastapi.FastAPI()
DECODE_TOKEN = "<decode-token>"
# Allow CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.middleware("http")
async def log_exceptions(request: fastapi.Request, call_next):
try:
response = await call_next(request)
except Exception:
logger.exception("Exception in request")
raise
return response
model_loaded: bool = False
fully_loaded: bool = False
model_input_queue: Queue = Queue()
def model_thread():
"""Continually obtain new work requests from the model input queue and work on them."""
model: transformers.PreTrainedModel
tokenizer: transformers.PreTrainedTokenizer
model, tokenizer, decode_token = load_models()
request: interface.GenerateStreamRequest
output_queue: Queue
eos_token_id = tokenizer.eos_token_id if hasattr(tokenizer, "eos_token_id") else None
while True:
request, output_queue = model_input_queue.get()
try:
prompt = request.inputs
params = request.parameters.dict()
seed = params.pop("seed")
stop_sequences = params.pop("stop")
params.pop("details")
params.pop("plugins")
if seed is not None:
torch.manual_seed(seed)
last_token_id = None # need to delay by 1 to simulate tgi
def print_text(token_id: int):
nonlocal last_token_id
if last_token_id is not None:
text = decode_token(last_token_id)
stream_response = interface.GenerateStreamResponse(
token=interface.Token(text=text, id=last_token_id),
)
output_queue.put_nowait(stream_response)
last_token_id = token_id
with torch.no_grad():
ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
streamer = hf_streamer.HFStreamer(input_ids=ids, printer=print_text)
ids = ids.to(model.device)
stopping_criteria = (
transformers.StoppingCriteriaList(
[hf_stopping.SequenceStoppingCriteria(tokenizer, stop_sequences, prompt)]
)
if stop_sequences
else None
)
output = model.generate(
ids,
**params,
streamer=streamer,
eos_token_id=eos_token_id,
stopping_criteria=stopping_criteria,
)
output = output.cpu()
output_ids = output[0][len(ids[0]) :]
decoded = tokenizer.decode(output_ids, skip_special_tokens=True)
stream_response = interface.GenerateStreamResponse(
token=interface.Token(
text=decode_token(last_token_id), # hack because the "normal" inference server does this at once
id=last_token_id,
),
generated_text=decoded.strip(),
details=interface.StreamDetails(
finish_reason="eos_token",
generated_tokens=len(output_ids),
seed=seed,
),
)
output_queue.put_nowait(stream_response)
except Exception as e:
logger.exception("Exception in model thread")
output_queue.put_nowait(interface.GenerateStreamResponse(error=str(e)))
def load_models():
global model_loaded
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
model_config = model_configs.MODEL_CONFIGS.get(settings.model_config_name)
if model_config is None:
logger.error(f"Unknown model config name: {settings.model_config_name}")
sys.exit(2)
hf_config = transformers.AutoConfig.from_pretrained(model_config.model_id)
logger.warning(f"Loading model {model_config.model_id}...")
tokenizer = transformers.AutoTokenizer.from_pretrained(model_config.model_id)
logger.warning(f"tokenizer {tokenizer.name_or_path} has vocab size {len(tokenizer)}")
# see `decode_token` method, taken from HF text-generation-inference
tokenizer.add_special_tokens({"additional_special_tokens": ["<decode-token>"]})
special_decode_token_id = tokenizer.convert_tokens_to_ids("<decode-token>")
special_decode_token_length = len("<decode-token>")
def decode_token(token_id):
result = tokenizer.decode([special_decode_token_id, token_id], skip_special_tokens=False)
# slice to remove special decode token
return result[special_decode_token_length:]
config_dtype = hf_config.torch_dtype if hasattr(hf_config, "torch_dtype") else torch.float32
dtype = torch.bfloat16 if torch.has_cuda and torch.cuda.is_bf16_supported() else config_dtype
model = transformers.AutoModelForCausalLM.from_pretrained(
model_config.model_id,
torch_dtype=dtype,
load_in_8bit=settings.quantize,
device_map="auto" if torch.cuda.is_available() else None,
).eval()
logger.warning("Model loaded, using it once...")
# warmup
with torch.no_grad():
text = "Hello, world"
tokens = tokenizer.encode(text, return_tensors="pt")
tokens = tokens.to(model.device)
model.generate(tokens, max_length=10, num_beams=1, do_sample=False)
model_loaded = True
return model, tokenizer, decode_token
@app.on_event("startup")
async def start_model_thread():
logger.warning("Starting model thread...")
threading.Thread(target=model_thread, daemon=True).start()
logger.warning("Model thread started")
@app.on_event("startup")
async def welcome_message():
global fully_loaded
logger.warning("Server started")
logger.warning("To stop the server, press Ctrl+C")
fully_loaded = True
@app.post("/generate_stream")
async def generate(
request: interface.GenerateStreamRequest,
):
def event_stream():
try:
output_queue: Queue = Queue()
model_input_queue.put_nowait((request, output_queue))
while True:
output = output_queue.get() # type: interface.GenerateStreamResponse
yield {"data": output.json()}
if output.is_end:
break
if output.is_error:
raise Exception(output.error)
except Exception as e:
logger.exception("Exception in event stream")
output_queue.put_nowait(interface.GenerateStreamResponse(error=str(e)))
raise
return EventSourceResponse(event_stream())
@app.get("/health")
async def health():
if not (fully_loaded and model_loaded):
raise fastapi.HTTPException(status_code=503, detail="Server not fully loaded")
return {"status": "ok"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)