-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathrun_ernie_classifier.py
378 lines (317 loc) · 13.6 KB
/
run_ernie_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""
Sentiment Classification Task
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse
import numpy as np
import multiprocessing
import sys
import paddle
import paddle.fluid as fluid
sys.path.append("../shared_modules/models/classification/")
sys.path.append("../shared_modules/")
print(sys.path)
from nets import bow_net
from nets import lstm_net
from nets import cnn_net
from nets import bilstm_net
from nets import gru_net
from nets import ernie_base_net
from nets import ernie_bilstm_net
from preprocess.ernie import task_reader
from models.representation.ernie import ErnieConfig
from models.representation.ernie import ernie_encoder, ernie_encoder_with_paddle_hub
#from models.representation.ernie import ernie_pyreader
from models.model_check import check_cuda
from config import PDConfig
from utils import init_checkpoint
def ernie_pyreader(args, pyreader_name):
src_ids = fluid.data(
name="src_ids", shape=[None, args.max_seq_len, 1], dtype="int64")
sent_ids = fluid.data(
name="sent_ids", shape=[None, args.max_seq_len, 1], dtype="int64")
pos_ids = fluid.data(
name="pos_ids", shape=[None, args.max_seq_len, 1], dtype="int64")
input_mask = fluid.data(
name="input_mask", shape=[None, args.max_seq_len, 1], dtype="float32")
labels = fluid.data(name="labels", shape=[None, 1], dtype="int64")
seq_lens = fluid.data(name="seq_lens", shape=[None], dtype="int64")
pyreader = fluid.io.DataLoader.from_generator(
feed_list=[src_ids, sent_ids, pos_ids, input_mask, labels, seq_lens],
capacity=50,
iterable=False,
use_double_buffer=True)
ernie_inputs = {
"src_ids": src_ids,
"sent_ids": sent_ids,
"pos_ids": pos_ids,
"input_mask": input_mask,
"seq_lens": seq_lens
}
return pyreader, ernie_inputs, labels
def create_model(args, embeddings, labels, is_prediction=False):
"""
Create Model for sentiment classification based on ERNIE encoder
"""
sentence_embeddings = embeddings["sentence_embeddings"]
token_embeddings = embeddings["token_embeddings"]
if args.model_type == "ernie_base":
ce_loss, probs = ernie_base_net(sentence_embeddings, labels,
args.num_labels)
elif args.model_type == "ernie_bilstm":
ce_loss, probs = ernie_bilstm_net(token_embeddings, labels,
args.num_labels)
else:
raise ValueError("Unknown network type!")
if is_prediction:
return probs
loss = fluid.layers.mean(x=ce_loss)
num_seqs = fluid.layers.create_tensor(dtype='int64')
accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs)
return loss, accuracy, num_seqs
def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
"""
Evaluation Function
"""
test_pyreader.start()
total_cost, total_acc, total_num_seqs = [], [], []
time_begin = time.time()
while True:
try:
np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
fetch_list=fetch_list,
return_numpy=False)
np_loss = np.array(np_loss)
np_acc = np.array(np_acc)
np_num_seqs = np.array(np_num_seqs)
total_cost.extend(np_loss * np_num_seqs)
total_acc.extend(np_acc * np_num_seqs)
total_num_seqs.extend(np_num_seqs)
except fluid.core.EOFException:
test_pyreader.reset()
break
time_end = time.time()
print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
(eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))
def infer(exe, infer_program, infer_pyreader, fetch_list, infer_phase):
"""
Inference Function
"""
infer_pyreader.start()
time_begin = time.time()
while True:
try:
batch_probs = exe.run(program=infer_program,
fetch_list=fetch_list,
return_numpy=True)
for probs in batch_probs[0]:
print("%d\t%f\t%f" % (np.argmax(probs), probs[0], probs[1]))
except fluid.core.EOFException:
infer_pyreader.reset()
break
time_end = time.time()
print("[%s] elapsed time: %f s" % (infer_phase, time_end - time_begin))
def main(args):
"""
Main Function
"""
ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
reader = task_reader.ClassifyReader(
vocab_path=args.vocab_path,
label_map_config=args.label_map_config,
max_seq_len=args.max_seq_len,
do_lower_case=args.do_lower_case,
random_seed=args.random_seed)
if not (args.do_train or args.do_val or args.do_infer):
raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
"least one of them must be True.")
startup_prog = fluid.Program()
if args.random_seed is not None:
startup_prog.random_seed = args.random_seed
if args.do_train:
train_data_generator = reader.data_generator(
input_file=args.train_set,
batch_size=args.batch_size,
epoch=args.epoch,
shuffle=True,
phase="train")
num_train_examples = reader.get_num_examples(args.train_set)
max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count
print("Device count: %d" % dev_count)
print("Num train examples: %d" % num_train_examples)
print("Max train steps: %d" % max_train_steps)
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_prog):
with fluid.unique_name.guard():
# create ernie_pyreader
train_pyreader, ernie_inputs, labels = ernie_pyreader(
args, pyreader_name='train_pyreader')
# get ernie_embeddings
if args.use_paddle_hub:
embeddings = ernie_encoder_with_paddle_hub(ernie_inputs,
args.max_seq_len)
else:
embeddings = ernie_encoder(
ernie_inputs, ernie_config=ernie_config)
# user defined model based on ernie embeddings
loss, accuracy, num_seqs = create_model(
args, embeddings, labels=labels, is_prediction=False)
optimizer = fluid.optimizer.Adam(learning_rate=args.lr)
optimizer.minimize(loss)
if args.verbose:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program, batch_size=args.batch_size)
print("Theoretical memory usage in training: %.3f - %.3f %s" %
(lower_mem, upper_mem, unit))
if args.do_val:
test_data_generator = reader.data_generator(
input_file=args.dev_set,
batch_size=args.batch_size,
phase='dev',
epoch=1,
shuffle=False)
test_prog = fluid.Program()
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
# create ernie_pyreader
test_pyreader, ernie_inputs, labels = ernie_pyreader(
args, pyreader_name='eval_reader')
# get ernie_embeddings
if args.use_paddle_hub:
embeddings = ernie_encoder_with_paddle_hub(ernie_inputs,
args.max_seq_len)
else:
embeddings = ernie_encoder(
ernie_inputs, ernie_config=ernie_config)
# user defined model based on ernie embeddings
loss, accuracy, num_seqs = create_model(
args, embeddings, labels=labels, is_prediction=False)
test_prog = test_prog.clone(for_test=True)
if args.do_infer:
infer_data_generator = reader.data_generator(
input_file=args.test_set,
batch_size=args.batch_size,
phase='infer',
epoch=1,
shuffle=False)
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
infer_pyreader, ernie_inputs, labels = ernie_pyreader(
args, pyreader_name="infer_pyreader")
# get ernie_embeddings
if args.use_paddle_hub:
embeddings = ernie_encoder_with_paddle_hub(ernie_inputs,
args.max_seq_len)
else:
embeddings = ernie_encoder(
ernie_inputs, ernie_config=ernie_config)
probs = create_model(
args, embeddings, labels=labels, is_prediction=True)
infer_prog = infer_prog.clone(for_test=True)
exe.run(startup_prog)
if args.do_train:
if args.init_checkpoint:
init_checkpoint(
exe, args.init_checkpoint, main_program=train_program)
elif args.do_val:
if not args.init_checkpoint:
raise ValueError("args 'init_checkpoint' should be set if"
"only doing validation or testing!")
init_checkpoint(exe, args.init_checkpoint, main_program=test_prog)
elif args.do_infer:
if not args.init_checkpoint:
raise ValueError("args 'init_checkpoint' should be set if"
"only doing validation or testing!")
init_checkpoint(exe, args.init_checkpoint, main_program=infer_prog)
if args.do_train:
train_exe = exe
train_pyreader.set_batch_generator(train_data_generator)
else:
train_exe = None
if args.do_val:
test_exe = exe
test_pyreader.set_batch_generator(test_data_generator)
if args.do_infer:
test_exe = exe
infer_pyreader.set_batch_generator(infer_data_generator)
if args.do_train:
train_pyreader.start()
steps = 0
total_cost, total_acc, total_num_seqs = [], [], []
time_begin = time.time()
while True:
try:
steps += 1
if steps % args.skip_steps == 0:
fetch_list = [loss.name, accuracy.name, num_seqs.name]
else:
fetch_list = []
outputs = train_exe.run(program=train_program,
fetch_list=fetch_list,
return_numpy=False)
if steps % args.skip_steps == 0:
np_loss, np_acc, np_num_seqs = outputs
np_loss = np.array(np_loss)
np_acc = np.array(np_acc)
np_num_seqs = np.array(np_num_seqs)
total_cost.extend(np_loss * np_num_seqs)
total_acc.extend(np_acc * np_num_seqs)
total_num_seqs.extend(np_num_seqs)
if args.verbose:
verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
)
print(verbose)
time_end = time.time()
used_time = time_end - time_begin
print("step: %d, ave loss: %f, "
"ave acc: %f, speed: %f steps/s" %
(steps, np.sum(total_cost) / np.sum(total_num_seqs),
np.sum(total_acc) / np.sum(total_num_seqs),
args.skip_steps / used_time))
total_cost, total_acc, total_num_seqs = [], [], []
time_begin = time.time()
if steps % args.save_steps == 0:
save_path = os.path.join(args.checkpoints,
"step_" + str(steps), "checkpoint")
fluid.save(train_program, save_path)
if steps % args.validation_steps == 0:
# evaluate dev set
if args.do_val:
evaluate(exe, test_prog, test_pyreader,
[loss.name, accuracy.name, num_seqs.name],
"dev")
except fluid.core.EOFException:
save_path = os.path.join(args.checkpoints, "step_" + str(steps),
"checkpoint")
fluid.save(train_program, save_path)
train_pyreader.reset()
break
# final eval on dev set
if args.do_val:
print("Final validation result:")
evaluate(exe, test_prog, test_pyreader,
[loss.name, accuracy.name, num_seqs.name], "dev")
# final eval on test set
if args.do_infer:
print("Final test result:")
infer(exe, infer_prog, infer_pyreader, [probs.name], "infer")
if __name__ == "__main__":
args = PDConfig()
args.build()
args.print_arguments()
check_cuda(args.use_cuda)
main(args)