-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathinference_model.py
114 lines (96 loc) · 3.59 KB
/
inference_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: UTF-8 -*-
import argparse
import sys
import os
import numpy as np
import paddle.fluid as fluid
import creator
import reader
import utils
sys.path.append('../shared_modules/models/')
from model_check import check_cuda
from model_check import check_version
def save_inference_model(args):
# model definition
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
else:
place = fluid.CPUPlace()
dataset = reader.Dataset(args)
infer_program = fluid.Program()
with fluid.program_guard(infer_program, fluid.default_startup_program()):
with fluid.unique_name.guard():
infer_ret = creator.create_model(
args, dataset.vocab_size, dataset.num_labels, mode='infer')
infer_program = infer_program.clone(for_test=True)
# load pretrain check point
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
utils.init_checkpoint(exe, args.init_checkpoint, infer_program)
fluid.io.save_inference_model(
args.inference_save_dir,
['words'],
infer_ret['crf_decode'],
exe,
main_program=infer_program,
model_filename='model.pdmodel',
params_filename='params.pdparams', )
def test_inference_model(model_dir, text_list, dataset):
"""
:param model_dir: model's dir
:param text_list: a list of input text, which decode as unicode
:param dataset:
:return:
"""
# init executor
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# transfer text data to input tensor
lod = []
for text in text_list:
lod.append(np.array(dataset.word_to_ids(text.strip())).astype(np.int64))
base_shape = [[len(c) for c in lod]]
tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
# for empty input, output the same empty
if (sum(base_shape[0]) == 0):
crf_decode = [tensor_words]
else:
# load inference model
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
[inferencer, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
model_dir,
exe,
model_filename='model.pdmodel',
params_filename='params.pdparams', )
assert feed_target_names[0] == "words"
print("Load inference model from %s" % (model_dir))
# get lac result
crf_decode = exe.run(
inferencer,
feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets,
return_numpy=False,
use_program_cache=True, )
# parse the crf_decode result
result = utils.parse_result(tensor_words, crf_decode[0], dataset)
for i, (sent, tags) in enumerate(result):
result_list = ['(%s, %s)' % (ch, tag) for ch, tag in zip(sent, tags)]
print(''.join(result_list))
if __name__ == "__main__":
parser = argparse.ArgumentParser(__doc__)
utils.load_yaml(parser, 'conf/args.yaml')
args = parser.parse_args()
check_cuda(args.use_cuda)
check_version()
print("save inference model")
save_inference_model(args)
print("inference model save in %s" % args.inference_save_dir)
print("test inference model")
dataset = reader.Dataset(args)
test_data = [u'百度是一家高科技公司', u'中山大学是岭南第一学府']
test_inference_model(args.inference_save_dir, test_data, dataset)