-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathcreator.py
246 lines (215 loc) · 7.89 KB
/
creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Define the function to create lexical analysis model and model's data reader
"""
import sys
import os
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import NormalInitializer
from reader import Dataset
from ernie_reader import SequenceLabelReader
sys.path.append("../shared_modules/")
from models.sequence_labeling import nets
from models.representation.ernie import ernie_encoder, ernie_pyreader
def create_model(args, vocab_size, num_labels, mode='train'):
"""create lac model"""
# model's input data
words = fluid.data(
name='words', shape=[None, 1], dtype='int64', lod_level=1)
targets = fluid.data(
name='targets', shape=[None, 1], dtype='int64', lod_level=1)
# for inference process
if mode == 'infer':
crf_decode = nets.lex_net(
words, args, vocab_size, num_labels, for_infer=True, target=None)
return {
"feed_list": [words],
"words": words,
"crf_decode": crf_decode,
}
# for test or train process
avg_cost, crf_decode = nets.lex_net(
words, args, vocab_size, num_labels, for_infer=False, target=targets)
(precision, recall, f1_score, num_infer_chunks, num_label_chunks,
num_correct_chunks) = fluid.layers.chunk_eval(
input=crf_decode,
label=targets,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((num_labels - 1) / 2.0)))
chunk_evaluator = fluid.metrics.ChunkEvaluator()
chunk_evaluator.reset()
ret = {
"feed_list": [words, targets],
"words": words,
"targets": targets,
"avg_cost": avg_cost,
"crf_decode": crf_decode,
"precision": precision,
"recall": recall,
"f1_score": f1_score,
"chunk_evaluator": chunk_evaluator,
"num_infer_chunks": num_infer_chunks,
"num_label_chunks": num_label_chunks,
"num_correct_chunks": num_correct_chunks
}
return ret
def create_pyreader(args,
file_name,
feed_list,
place,
model='lac',
reader=None,
return_reader=False,
mode='train'):
# init reader
device_count = len(fluid.cuda_places()) if args.use_cuda else len(
fluid.cpu_places())
if model == 'lac':
pyreader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=50,
use_double_buffer=True,
iterable=True)
if reader == None:
reader = Dataset(args)
# create lac pyreader
if mode == 'train':
pyreader.set_sample_list_generator(
fluid.io.batch(
fluid.io.shuffle(
reader.file_reader(file_name),
buf_size=args.traindata_shuffle_buffer),
batch_size=args.batch_size / device_count),
places=place)
else:
pyreader.set_sample_list_generator(
fluid.io.batch(
reader.file_reader(
file_name, mode=mode),
batch_size=args.batch_size / device_count),
places=place)
elif model == 'ernie':
# create ernie pyreader
pyreader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=50,
use_double_buffer=True,
iterable=True)
if reader == None:
reader = SequenceLabelReader(
vocab_path=args.vocab_path,
label_map_config=args.label_map_config,
max_seq_len=args.max_seq_len,
do_lower_case=args.do_lower_case,
random_seed=args.random_seed)
if mode == 'train':
pyreader.set_batch_generator(
reader.data_generator(
file_name,
args.batch_size,
args.epoch,
shuffle=True,
phase="train"),
places=place)
else:
pyreader.set_batch_generator(
reader.data_generator(
file_name,
args.batch_size,
epoch=1,
shuffle=False,
phase=mode),
places=place)
if return_reader:
return pyreader, reader
else:
return pyreader
def create_ernie_model(args, ernie_config):
"""
Create Model for LAC based on ERNIE encoder
"""
# ERNIE's input data
src_ids = fluid.data(
name='src_ids', shape=[None, args.max_seq_len, 1], dtype='int64')
sent_ids = fluid.data(
name='sent_ids', shape=[None, args.max_seq_len, 1], dtype='int64')
pos_ids = fluid.data(
name='pos_ids', shape=[None, args.max_seq_len, 1], dtype='int64')
input_mask = fluid.data(
name='input_mask', shape=[None, args.max_seq_len, 1], dtype='float32')
padded_labels = fluid.data(
name='padded_labels', shape=[None, args.max_seq_len, 1], dtype='int64')
seq_lens = fluid.data(
name='seq_lens', shape=[None], dtype='int64', lod_level=0)
squeeze_labels = fluid.layers.squeeze(padded_labels, axes=[-1])
# ernie_pyreader
ernie_inputs = {
"src_ids": src_ids,
"sent_ids": sent_ids,
"pos_ids": pos_ids,
"input_mask": input_mask,
"seq_lens": seq_lens
}
embeddings = ernie_encoder(ernie_inputs, ernie_config=ernie_config)
padded_token_embeddings = embeddings["padded_token_embeddings"]
emission = fluid.layers.fc(
size=args.num_labels,
input=padded_token_embeddings,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(
low=-args.init_bound, high=args.init_bound),
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=1e-4)),
num_flatten_dims=2)
crf_cost = fluid.layers.linear_chain_crf(
input=emission,
label=padded_labels,
param_attr=fluid.ParamAttr(
name='crfw', learning_rate=args.crf_learning_rate),
length=seq_lens)
avg_cost = fluid.layers.mean(x=crf_cost)
crf_decode = fluid.layers.crf_decoding(
input=emission,
param_attr=fluid.ParamAttr(name='crfw'),
length=seq_lens)
(precision, recall, f1_score, num_infer_chunks, num_label_chunks,
num_correct_chunks) = fluid.layers.chunk_eval(
input=crf_decode,
label=squeeze_labels,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((args.num_labels - 1) / 2.0)),
seq_length=seq_lens)
chunk_evaluator = fluid.metrics.ChunkEvaluator()
chunk_evaluator.reset()
ret = {
"feed_list":
[src_ids, sent_ids, pos_ids, input_mask, padded_labels, seq_lens],
"words": src_ids,
"labels": padded_labels,
"seq_lens": seq_lens,
"avg_cost": avg_cost,
"crf_decode": crf_decode,
"precision": precision,
"recall": recall,
"f1_score": f1_score,
"chunk_evaluator": chunk_evaluator,
"num_infer_chunks": num_infer_chunks,
"num_label_chunks": num_label_chunks,
"num_correct_chunks": num_correct_chunks
}
return ret