-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathtrain.py
485 lines (411 loc) · 17.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import time
import os
import random
import math
import contextlib
from distutils.dir_util import mkpath
import paddle
import paddle.fluid as fluid
from paddle.fluid import profiler
import paddle.fluid.framework as framework
import paddle.fluid.profiler as profiler
from paddle.fluid.executor import Executor
import reader
import sys
if sys.version[0] == '2':
reload(sys)
sys.setdefaultencoding("utf-8")
sys.path.append('../shared_modules/')
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from args import *
from models.model_check import check_cuda, check_version
from models.language_model import lm_model
from config import RNNConfig
import logging
import pickle
SEED = 123
@contextlib.contextmanager
def profile_context(profile=True, profiler_path='/tmp/paddingrnn.profile'):
if profile:
with profiler.profiler('All', 'total', profiler_path):
yield
else:
yield
def get_current_model_para(train_prog, train_exe):
param_list = train_prog.all_parameters()
param_name_list = [p.name for p in param_list]
vals = {}
for p_name in param_name_list:
p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
vals[p_name] = p_array
return vals
def save_para_npz(train_prog, train_exe):
print("begin to save model to model_base")
param_list = train_prog.all_parameters()
param_name_list = [p.name for p in param_list]
vals = {}
for p_name in param_name_list:
p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
vals[p_name] = p_array
emb = vals["embedding_para"]
print("begin to save model to model_base")
np.savez("mode_base", **vals)
def main():
args = parse_args()
# check if set use_gpu=True in paddlepaddle cpu version
check_cuda(args.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
logger = logging.getLogger("lm")
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
config = RNNConfig(args)
if not os.path.exists(args.save_model_dir):
mkpath(args.save_model_dir)
# define train program
main_program = fluid.Program()
startup_program = fluid.Program()
if args.enable_ce:
startup_program.random_seed = SEED
with fluid.program_guard(main_program, startup_program):
with fluid.unique_name.guard():
res_vars = lm_model.lm_model(
config.hidden_size,
config.vocab_size,
num_layers=config.num_layers,
num_steps=config.num_steps,
init_scale=config.init_scale,
dropout=config.dropout,
rnn_model=config.rnn_model,
use_dataloader=args.use_dataloader)
if args.use_dataloader:
dataloader = res_vars[-1]
res_vars = res_vars[:-1]
loss, last_hidden, last_cell, feed_order = res_vars
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=config.max_grad_norm))
learning_rate = fluid.layers.create_global_var(
name="learning_rate",
shape=[1],
value=1.0,
dtype='float32',
persistable=True)
optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
optimizer.minimize(loss)
# define inference program
inference_program = fluid.Program()
inference_startup_program = fluid.Program()
with fluid.program_guard(inference_program, inference_startup_program):
with fluid.unique_name.guard():
lm_model.lm_model(
config.hidden_size,
config.vocab_size,
num_layers=config.num_layers,
num_steps=config.num_steps,
init_scale=config.init_scale,
dropout=config.dropout,
rnn_model=config.rnn_model,
use_dataloader=False)
# Some op behaves differently for train and inference, we need to call
# this clone function to ensure every op is right for inference.
inference_program = inference_program.clone(for_test=True)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = Executor(place)
exe.run(startup_program)
if args.init_from_pretrain_model:
if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
print(args.init_from_pretrain_model)
raise Warning("The pretrained params do not exist.")
return
fluid.load(main_program, args.init_from_pretrain_model)
print("finish initing model from pretrained params from %s" %
(args.init_from_pretrain_model))
device_count = len(fluid.cuda_places()) if args.use_gpu else len(
fluid.cpu_places())
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = device_count
exec_strategy.num_iteration_per_drop_scope = 100
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_all_optimizer_ops = True
try:
fluid.require_version(min_version='1.7.0')
build_strategy.enable_auto_fusion = args.enable_auto_fusion
except Exception as e:
logger.info("PaddlePaddle version 1.7.0 or higher is "
"required when you want to enable fusion_group.")
if args.parallel:
train_program = fluid.compiler.CompiledProgram(
main_program).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
else:
train_program = fluid.compiler.CompiledProgram(main_program)
data_path = args.data_path
print("begin to load data")
ptb_data = reader.get_ptb_data(data_path)
print("finished load data")
train_data, valid_data, test_data = ptb_data
def generate_init_data():
batch_size = config.batch_size * device_count
init_hidden = np.zeros(
(batch_size, config.num_layers, config.hidden_size),
dtype='float32')
init_cell = np.zeros(
(batch_size, config.num_layers, config.hidden_size),
dtype='float32')
return init_hidden, init_cell
def generate_new_lr(epoch_id=0, device_count=1):
new_lr = config.base_learning_rate * (config.lr_decay**max(
epoch_id + 1 - config.epoch_start_decay, 0.0))
lr = np.ones((device_count), dtype='float32') * new_lr
return lr
def prepare_input(batch,
init_hidden=None,
init_cell=None,
epoch_id=0,
with_lr=True,
device_count=1):
x, y = batch
x = x.reshape((-1, config.num_steps, 1))
y = y.reshape((-1, 1))
res = {}
res['x'] = x
res['y'] = y
if init_hidden is not None:
res['init_hidden'] = init_hidden
if init_cell is not None:
res['init_cell'] = init_cell
if with_lr:
res['learning_rate'] = generate_new_lr(epoch_id, device_count)
return res
def eval(data):
# when eval the batch_size set to 1
eval_data_iter = reader.get_data_iter(data, config.batch_size *
device_count, config.num_steps)
total_loss = 0.0
iters = 0
init_hidden, init_cell = generate_init_data()
for batch_id, batch in enumerate(eval_data_iter):
input_data_feed = prepare_input(
batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
fetch_outs = exe.run(
program=inference_program,
feed=input_data_feed,
fetch_list=[loss.name, last_hidden.name, last_cell.name],
use_program_cache=False)
cost_eval = np.array(fetch_outs[0])
init_hidden = np.array(fetch_outs[1])
init_cell = np.array(fetch_outs[2])
total_loss += cost_eval
iters += config.num_steps
ppl = np.exp(total_loss / iters)
return ppl
def get_log_interval(data_len):
num_batchs = data_len // config.batch_size
epoch_size = (num_batchs - 1) // config.num_steps
log_interval = max(1, epoch_size // 10)
return log_interval
def train_an_epoch(epoch_id, batch_times):
# get train epoch size
log_interval = get_log_interval(len(train_data))
train_data_iter = reader.get_data_iter(train_data, config.batch_size *
device_count, config.num_steps)
total_loss = 0
iters = 0
init_hidden, init_cell = generate_init_data()
for batch_id, batch in enumerate(train_data_iter):
input_data_feed = prepare_input(
batch,
init_hidden=init_hidden,
init_cell=init_cell,
epoch_id=epoch_id,
with_lr=True,
device_count=device_count)
batch_start_time = time.time()
fetch_outs = exe.run(train_program,
feed=input_data_feed,
fetch_list=[
loss.name, "learning_rate",
last_hidden.name, last_cell.name
],
use_program_cache=True)
batch_time = time.time() - batch_start_time
batch_times.append(batch_time)
cost_train = np.array(fetch_outs[0])
lr = np.array(fetch_outs[1])
init_hidden = np.array(fetch_outs[2])
init_cell = np.array(fetch_outs[3])
total_loss += cost_train
iters += config.num_steps
if batch_id > 0 and batch_id % log_interval == 0:
ppl = np.exp(total_loss / iters)
print(
"-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
% (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
# profiler tools for benchmark
if args.profile and batch_id == log_interval:
profiler.reset_profiler()
elif args.profile and batch_id == (log_interval + 5):
break
ppl = np.exp(total_loss / iters)
return ppl
def train_an_epoch_dataloader(epoch_id, batch_times):
# get train epoch size
log_interval = get_log_interval(len(train_data))
init_hidden, init_cell = generate_init_data()
total_loss = 0
iters = 0
dataloader.start()
batch_id = 0
try:
while True:
data_feeds = {}
if batch_id == 0:
batch_time = 0
batch_start_time = time.time()
else:
batch_time = time.time() - batch_start_time
batch_times.append(batch_time)
batch_start_time = time.time()
new_lr = generate_new_lr(epoch_id, device_count)
data_feeds['learning_rate'] = new_lr
data_feeds["init_hidden"] = init_hidden
data_feeds["init_cell"] = init_cell
fetch_outs = exe.run(train_program,
feed=data_feeds,
fetch_list=[
loss.name, "learning_rate",
last_hidden.name, last_cell.name
],
use_program_cache=True)
cost_train = np.array(fetch_outs[0])
lr = np.array(fetch_outs[1])
init_hidden = np.array(fetch_outs[2])
init_cell = np.array(fetch_outs[3])
total_loss += cost_train
iters += config.num_steps
if batch_id > 0 and (log_interval == 0 or
batch_id % log_interval == 0):
ppl = np.exp(total_loss / iters)
print(
"-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
% (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
batch_id += 1
# profiler tools for benchmark
if args.profile and batch_id == log_interval:
profiler.reset_profiler()
elif args.profile and batch_id == (log_interval + 5):
break
except fluid.core.EOFException:
dataloader.reset()
batch_times.append(time.time() - batch_start_time)
ppl = np.exp(total_loss / iters)
return ppl
def train():
if args.use_dataloader:
def data_gen():
data_iter_size = config.batch_size
train_batches = reader.get_data_iter(train_data, data_iter_size,
config.num_steps)
for batch in train_batches:
x, y = batch
x = x.reshape((-1, config.num_steps, 1))
y = y.reshape((-1, 1))
yield x, y
dataloader.set_batch_generator(data_gen)
total_time = 0.0
for epoch_id in range(config.max_epoch):
batch_times = []
epoch_start_time = time.time()
if args.use_dataloader:
train_ppl = train_an_epoch_dataloader(epoch_id, batch_times)
else:
train_ppl = train_an_epoch(epoch_id, batch_times)
epoch_time = time.time() - epoch_start_time
total_time += epoch_time
print(
"\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
% (epoch_id, epoch_time, train_ppl[0],
len(batch_times) / sum(batch_times)))
# FIXME(zjl): ppl[0] increases as batch_size increases.
# We should find a better way to calculate ppl by normalizing batch_size.
if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
0] > 1000:
# for bad init, after first epoch, the loss is over 1000
# no more need to continue
print(
"Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
)
print("Abort this training process and please start again.")
return
if epoch_id == config.max_epoch - 1 and args.enable_ce:
# kpis
print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
(args.rnn_model, device_count,
total_time / config.max_epoch))
print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
(args.rnn_model, device_count, train_ppl[0]))
if not args.profile:
# NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
# Just skip to avoid error
def is_valid_data(data, batch_size, num_steps):
data_len = len(data)
batch_len = data_len // batch_size
epoch_size = (batch_len - 1) // num_steps
return epoch_size >= 1
valid_data_valid = is_valid_data(valid_data, config.batch_size,
config.num_steps)
if valid_data_valid:
valid_ppl = eval(valid_data)
print("Valid ppl: %.5f" % valid_ppl[0])
else:
print(
'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
format(
len(valid_data), config.batch_size,
config.num_steps))
save_model_dir = os.path.join(args.save_model_dir,
str(epoch_id))
if not os.path.exists(save_model_dir):
mkpath(save_model_dir)
save_model_dir = os.path.join(save_model_dir, 'params')
fluid.save(main_program, save_model_dir)
print("Saved model to: %s.\n" % save_model_dir)
with profile_context(args.profile, args.profiler_path):
train()
test_ppl = eval(test_data)
print("Test ppl:", test_ppl[0])
if __name__ == '__main__':
main()