-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathreader.py
113 lines (99 loc) · 3.73 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
EmoTect Reader, data converters for classification data.
"""
import os
import paddle
import paddle.fluid as fluid
import numpy as np
from utils import load_vocab
from utils import data_reader
class EmoTectProcessor(object):
"""
Processor class for data convertors for EmoTect.
"""
def __init__(self, data_dir, vocab_path, random_seed=None, max_seq_len=128):
self.data_dir = data_dir
self.vocab = load_vocab(vocab_path)
self.num_examples = {"train": -1, "dev": -1, "test": -1, "infer": -1}
np.random.seed(random_seed)
self.max_seq_len = max_seq_len
def get_train_examples(self, data_dir, epoch, max_seq_len):
"""
Load training examples
"""
return data_reader(
os.path.join(self.data_dir, "train.tsv"), self.vocab,
self.num_examples, "train", epoch, max_seq_len)
def get_dev_examples(self, data_dir, epoch, max_seq_len):
"""
Load dev examples
"""
return data_reader(
os.path.join(self.data_dir, "dev.tsv"), self.vocab,
self.num_examples, "dev", epoch, max_seq_len)
def get_test_examples(self, data_dir, epoch, max_seq_len):
"""
Load test examples
"""
return data_reader(
os.path.join(self.data_dir, "test.tsv"), self.vocab,
self.num_examples, "test", epoch, max_seq_len)
def get_infer_examples(self, data_dir, epoch, max_seq_len):
"""
Load infer querys
"""
return data_reader(
os.path.join(self.data_dir, "infer.tsv"), self.vocab,
self.num_examples, "infer", epoch, max_seq_len)
def get_labels(self):
"""
Return Labels
"""
return ["0", "1", "2"]
def get_num_examples(self, phase):
"""
Return num of examples in train, dev, test set
"""
if phase not in ['train', 'dev', 'test', 'infer']:
raise ValueError(
"Unknown phase, which should be in ['train', 'dev', 'test', 'infer']."
)
return self.num_examples[phase]
def get_train_progress(self):
"""
Get train progress
"""
return self.current_train_example, self.current_train_epoch
def data_generator(self, batch_size, phase='train', epoch=1):
"""
Generate data for train, dev or test
"""
if phase == "train":
return fluid.io.batch(
self.get_train_examples(self.data_dir, epoch, self.max_seq_len), batch_size)
elif phase == "dev":
return fluid.io.batch(
self.get_dev_examples(self.data_dir, epoch, self.max_seq_len), batch_size)
elif phase == "test":
return fluid.io.batch(
self.get_test_examples(self.data_dir, epoch, self.max_seq_len), batch_size)
elif phase == "infer":
return fluid.io.batch(
self.get_infer_examples(self.data_dir, epoch, self.max_seq_len), batch_size)
else:
raise ValueError(
"Unknown phase, which should be in ['train', 'dev', 'test', 'infer']."
)