-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathinference_model.py
115 lines (96 loc) · 3.6 KB
/
inference_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys.path.append("../shared_modules/")
import paddle
import paddle.fluid as fluid
import numpy as np
from models.model_check import check_cuda
from config import PDConfig
from run_classifier import create_model
import utils
def do_save_inference_model(args):
if args.use_cuda:
dev_count = fluid.core.get_cuda_device_count()
place = fluid.CUDAPlace(0)
else:
dev_count = int(os.environ.get('CPU_NUM', 1))
place = fluid.CPUPlace()
test_prog = fluid.default_main_program()
startup_prog = fluid.default_startup_program()
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
infer_loader, probs, feed_target_names = create_model(
args, num_labels=args.num_labels, is_prediction=True)
test_prog = test_prog.clone(for_test=True)
exe = fluid.Executor(place)
exe.run(startup_prog)
assert (args.init_checkpoint)
if args.init_checkpoint:
utils.init_checkpoint(exe, args.init_checkpoint, test_prog)
fluid.io.save_inference_model(
args.inference_model_dir,
feeded_var_names=feed_target_names,
target_vars=[probs],
executor=exe,
main_program=test_prog,
model_filename="model.pdmodel",
params_filename="params.pdparams")
print("save inference model at %s" % (args.inference_model_dir))
def test_inference_model(args, texts):
if args.use_cuda:
dev_count = fluid.core.get_cuda_device_count()
place = fluid.CUDAPlace(0)
else:
dev_count = int(os.environ.get('CPU_NUM', 1))
place = fluid.CPUPlace()
exe = fluid.Executor(place)
assert (args.inference_model_dir)
infer_program, feed_names, fetch_targets = fluid.io.load_inference_model(
dirname=args.inference_model_dir,
executor=exe,
model_filename="model.pdmodel",
params_filename="params.pdparams")
data = []
seq_lens = []
for query in texts:
wids = utils.query2ids(args.vocab_path, query)
wids, seq_len = utils.pad_wid(wids)
data.append(wids)
seq_lens.append(seq_len)
data = np.array(data)
seq_lens = np.array(seq_lens)
pred = exe.run(infer_program,
feed={feed_names[0]: data,
feed_names[1]: seq_lens},
fetch_list=fetch_targets,
return_numpy=True)
for probs in pred[0]:
print("%d\t%f\t%f\t%f" %
(np.argmax(probs), probs[0], probs[1], probs[2]))
if __name__ == "__main__":
args = PDConfig(json_file="./config.json")
args.build()
args.print_arguments()
check_cuda(args.use_cuda)
if args.do_save_inference_model:
do_save_inference_model(args)
else:
texts = [u"我 讨厌 你 , 哼哼 哼 。 。", u"我 喜欢 你 , 爱 你 哟"]
test_inference_model(args, texts)