-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathtrain.py
executable file
·205 lines (170 loc) · 7.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""train auto dialogue evaluation task"""
import io
import os
import sys
import six
import time
import numpy as np
import paddle
import paddle.fluid as fluid
import ade.reader as reader
from ade_net import create_net, set_word_embedding
from ade.utils.configure import PDConfig
from ade.utils.input_field import InputField
from ade.utils.model_check import check_cuda
import ade.utils.save_load_io as save_load_io
try:
import cPickle as pickle #python 2
except ImportError as e:
import pickle #python 3
def do_train(args):
"""train function"""
train_prog = fluid.default_main_program()
startup_prog = fluid.default_startup_program()
with fluid.program_guard(train_prog, startup_prog):
train_prog.random_seed = args.random_seed
startup_prog.random_seed = args.random_seed
with fluid.unique_name.guard():
context_wordseq = fluid.data(
name='context_wordseq',
shape=[-1, 1],
dtype='int64',
lod_level=1)
response_wordseq = fluid.data(
name='response_wordseq',
shape=[-1, 1],
dtype='int64',
lod_level=1)
labels = fluid.data(name='labels', shape=[-1, 1], dtype='int64')
input_inst = [context_wordseq, response_wordseq, labels]
input_field = InputField(input_inst)
data_reader = fluid.io.PyReader(
feed_list=input_inst, capacity=4, iterable=False)
loss = create_net(
is_training=True, model_input=input_field, args=args)
loss.persistable = True
# gradient clipping
fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
max=1.0, min=-1.0))
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
optimizer.minimize(loss)
if args.use_cuda:
dev_count = fluid.core.get_cuda_device_count()
place = fluid.CUDAPlace(
int(os.getenv('FLAGS_selected_gpus', '0')))
else:
dev_count = int(os.environ.get('CPU_NUM', 1))
place = fluid.CPUPlace()
processor = reader.DataProcessor(
data_path=args.training_file,
max_seq_length=args.max_seq_len,
batch_size=args.batch_size)
batch_generator = processor.data_generator(
place=place,
phase="train",
shuffle=True,
sample_pro=args.sample_pro)
num_train_examples = processor.get_num_examples(phase='train')
max_train_steps = args.epoch * num_train_examples // dev_count // args.batch_size
print("Num train examples: %d" % num_train_examples)
print("Max train steps: %d" % max_train_steps)
data_reader.decorate_batch_generator(batch_generator)
exe = fluid.Executor(place)
exe.run(startup_prog)
assert (args.init_from_checkpoint == "") or (
args.init_from_pretrain_model == "")
#init from some checkpoint, to resume the previous training
if args.init_from_checkpoint:
save_load_io.init_from_checkpoint(args, exe, train_prog)
#init from some pretrain models, to better solve the current task
if args.init_from_pretrain_model:
save_load_io.init_from_pretrain_model(args, exe, train_prog)
if args.word_emb_init:
print("start loading word embedding init ...")
if six.PY2:
word_emb = np.array(
pickle.load(io.open(args.word_emb_init, 'rb'))).astype(
'float32')
else:
word_emb = np.array(
pickle.load(
io.open(args.word_emb_init, 'rb'),
encoding="bytes")).astype('float32')
set_word_embedding(word_emb, place)
print("finish init word embedding ...")
build_strategy = fluid.compiler.BuildStrategy()
build_strategy.enable_inplace = True
compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
steps = 0
begin_time = time.time()
time_begin = time.time()
for epoch_step in range(args.epoch):
data_reader.start()
sum_loss = 0.0
ce_loss = 0.0
while True:
try:
fetch_list = [loss.name]
outputs = exe.run(compiled_train_prog, fetch_list=fetch_list)
np_loss = outputs
sum_loss += np.array(np_loss).mean()
ce_loss = np.array(np_loss).mean()
if steps % args.print_steps == 0:
time_end = time.time()
used_time = time_end - time_begin
current_time = time.strftime('%Y-%m-%d %H:%M:%S',
time.localtime(time.time()))
print(
'%s epoch: %d, step: %s, avg loss %s, speed: %f steps/s'
% (current_time, epoch_step, steps, sum_loss /
args.print_steps, args.print_steps / used_time))
sum_loss = 0.0
time_begin = time.time()
if steps % args.save_steps == 0:
if args.save_checkpoint:
save_load_io.save_checkpoint(args, exe, train_prog,
"step_" + str(steps))
if args.save_param:
save_load_io.save_param(args, exe, train_prog,
"step_" + str(steps))
steps += 1
except fluid.core.EOFException:
data_reader.reset()
break
if args.save_checkpoint:
save_load_io.save_checkpoint(args, exe, train_prog, "step_final")
if args.save_param:
save_load_io.save_param(args, exe, train_prog, "step_final")
def get_cards():
num = 0
cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
if cards != '':
num = len(cards.split(","))
return num
if args.enable_ce:
card_num = get_cards()
pass_time_cost = time.time() - begin_time
print("test_card_num", card_num)
print("kpis\ttrain_duration_card%s\t%s" % (card_num, pass_time_cost))
print("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss))
if __name__ == '__main__':
args = PDConfig(yaml_file="./data/config/ade.yaml")
args.build()
args.Print()
check_cuda(args.use_cuda)
do_train(args)