-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathpaddle_utils.py
218 lines (174 loc) · 5.66 KB
/
paddle_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import paddle
from paddle.fluid import dygraph
from paddle.fluid import layers
from paddle.fluid.framework import Variable
import cv2 as cv
PTensor = Variable
def broadcast_op(a, b, op='mul'):
a_expand_factors = []
b_expand_factors = []
assert len(a.shape) == len(
b.shape), 'a.shape = {} while b.shape = {}'.format(a.shape, b.shape)
for a_s, b_s in zip(a.shape, b.shape):
if a_s != b_s:
if a_s == 1:
a_expand_factors.append(b_s)
b_expand_factors.append(1)
elif b_s == 1:
a_expand_factors.append(1)
b_expand_factors.append(a_s)
else:
raise NotImplementedError
else:
a_expand_factors.append(1)
b_expand_factors.append(1)
if op == 'mul':
op = layers.elementwise_mul
elif op == 'add':
op = layers.elementwise_add
elif op == 'sub':
op = layers.elementwise_sub
elif op == 'div':
op = layers.elementwise_div
else:
raise NotImplementedError
return op(
layers.expand(a, a_expand_factors), layers.expand(b, b_expand_factors))
def paddle_prod(x):
prod = 1
num_elems = x.shape[0]
for idx in range(num_elems):
prod *= x[idx]
return prod
def n2p(x, dtype=None):
if dtype is None:
x = np.array(x)
if x.dtype == np.float64:
x = x.astype('float32')
else:
x = np.array(x, dtype=dtype)
return dygraph.to_variable(x)
def p2n(x):
return x.numpy()
def clone(x):
v = dygraph.to_variable(x.numpy())
v.stop_gradient = x.stop_gradient
return v
def static_identity(x):
x = layers.reshape(x, x.shape)
return x
def static_clone(x):
x1 = static_identity(x)
x1.stop_gradient = True
x2 = static_identity(x1)
x2.stop_gradient = x.stop_gradient
return x2
def detach(x):
v = dygraph.to_variable(x.numpy())
v.stop_gradient = True
return v
def squeeze(input, axes):
new_shape = []
for i, s in enumerate(input.shape):
if i in axes:
assert s == 1
else:
new_shape.append(s)
return layers.reshape(input, new_shape)
def unsqueeze(input, axes):
new_shape = []
for i, s in enumerate(input.shape):
for a in axes:
if i == a:
new_shape.append(1)
new_shape.append(s)
return layers.reshape(input, new_shape)
def crop(x, crops):
slices = []
for c in crops:
c1 = None if c[1] == 0 else -c[1]
slices.append(slice(c[0], c1))
return x[tuple(slices)]
def _padding(x, pads, mode='constant'):
return_tensor = False
if isinstance(x, PTensor):
x = x.numpy()
return_tensor = True
assert len(pads) % 2 == 0
pads = list(pads) + [0] * (len(x.shape) * 2 - len(pads))
# convert to numpy pad format
pads_np, pad_per_dim = [], []
for i, p in enumerate(pads):
if i % 2 == 0:
pad_per_dim = [p]
else:
pad_per_dim.append(p)
pads_np.insert(0, pad_per_dim)
# handle negative pads (cropping)
pads_np_pos, pads_np_neg = [], []
for pad_per_dim in pads_np:
pad_per_dim_pos, pad_per_dim_neg = [], []
for p in pad_per_dim:
if p < 0:
pad_per_dim_pos.append(0)
pad_per_dim_neg.append(-p)
else:
pad_per_dim_pos.append(p)
pad_per_dim_neg.append(0)
pads_np_pos.append(pad_per_dim_pos)
pads_np_neg.append(pad_per_dim_neg)
# cropping
x = crop(x, pads_np_neg)
# padding
# if x is an image
if len(x.shape) == 3 and pads_np_pos[-1][0] == 0 and pads_np_pos[-1][
1] == 0:
if mode == 'replicate':
pad_mode = cv.BORDER_REPLICATE
else:
pad_mode = cv.BORDER_CONSTANT
y1_pad, y2_pad = pads_np_pos[0]
x1_pad, x2_pad = pads_np_pos[1]
x = cv.copyMakeBorder(x, y1_pad, y2_pad, x1_pad, x2_pad, pad_mode)
else:
np_mode = 'edge' if mode == 'replicate' else 'constant'
x = np.pad(x, pads_np_pos, mode=np_mode)
out = dygraph.to_variable(x) if return_tensor else x
return out
def mod(a, b):
arg_list, new_arg_list = [a, b], []
return_PTensor = False
for x in arg_list:
if isinstance(x, PTensor):
x = p2n(x)
return_PTensor = True
new_arg_list.append(x)
out = new_arg_list[0] % new_arg_list[1]
return n2p(out) if return_PTensor else out
def floordiv(a, b):
arg_list, new_arg_list = [a, b], []
return_PTensor = False
for x in arg_list:
if isinstance(x, PTensor):
x = p2n(x)
return_PTensor = True
new_arg_list.append(x)
out = new_arg_list[0] // new_arg_list[1]
return n2p(out) if return_PTensor else out
def stack_sum(x):
return layers.reduce_sum(layers.stack(x))
def leaky_relu(x, alpha):
return layers.relu(x) + alpha * (-1 * layers.relu(-1 * x))
def elu(x, alpha):
return layers.relu(x) + alpha * (layers.exp(-1 * layers.relu(-1 * x)) - 1)
def dropout2d(input, prob, is_train=False):
if not is_train:
return input
channels = input.shape[1]
keep_prob = 1.0 - prob
random_tensor = keep_prob + layers.uniform_random_batch_size_like(
input, [-1, channels, 1, 1], min=0., max=1.)
binary_tensor = layers.floor(random_tensor)
output = input / keep_prob * binary_tensor
return output