-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathtrain.py
executable file
·185 lines (164 loc) · 6.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
def set_paddle_flags(flags):
for key, value in flags.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
set_paddle_flags({
'FLAGS_conv_workspace_size_limit': 500,
'FLAGS_eager_delete_tensor_gb': 0, # enable gc
'FLAGS_memory_fraction_of_eager_deletion': 1,
'FLAGS_fraction_of_gpu_memory_to_use': 0.98
})
import sys
import numpy as np
import time
import shutil
import collections
import paddle
import paddle.fluid as fluid
import reader
import models.model_builder as model_builder
import models.resnet as resnet
import checkpoint as checkpoint
from config import cfg
from utility import parse_args, print_arguments, SmoothedValue, TrainingStats, now_time, check_gpu
num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
def get_device_num():
# NOTE(zcd): for multi-processe training, each process use one GPU card.
if num_trainers > 1:
return 1
return fluid.core.get_cuda_device_count()
def train():
learning_rate = cfg.learning_rate
#image_shape = [-1, 3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]
devices_num = get_device_num()
total_batch_size = devices_num * cfg.TRAIN.im_per_batch
use_random = True
startup_prog = fluid.Program()
train_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
model = model_builder.RRPN(
add_conv_body_func=resnet.ResNet(),
add_roi_box_head_func=resnet.ResNetC5(),
use_pyreader=cfg.use_pyreader,
use_random=use_random)
model.build_model()
losses, keys, rpn_rois = model.loss()
loss = losses[0]
fetch_list = losses
boundaries = cfg.lr_steps
gamma = cfg.lr_gamma
step_num = len(cfg.lr_steps)
values = [learning_rate * (gamma**i) for i in range(step_num + 1)]
start_lr = learning_rate * cfg.start_factor
lr = fluid.layers.piecewise_decay(boundaries, values)
lr = fluid.layers.linear_lr_warmup(lr, cfg.warm_up_iter, start_lr,
learning_rate)
optimizer = fluid.optimizer.Momentum(
learning_rate=lr,
regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
momentum=cfg.momentum)
optimizer.minimize(loss)
fetch_list = fetch_list + [lr]
for var in fetch_list:
var.persistable = True
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_all_optimizer_ops = False
build_strategy.fuse_elewise_add_act_ops = True
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_iteration_per_drop_scope = 1
exe.run(startup_prog)
if cfg.pretrained_model:
checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrained_model)
compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
shuffle = True
shuffle_seed = None
if num_trainers > 1:
shuffle_seed = 1
if cfg.use_pyreader:
train_reader = reader.train(
batch_size=cfg.TRAIN.im_per_batch,
total_batch_size=total_batch_size,
padding_total=cfg.TRAIN.padding_minibatch,
shuffle=shuffle,
shuffle_seed=shuffle_seed)
if num_trainers > 1:
assert shuffle_seed is not None, \
"If num_trainers > 1, the shuffle_seed must be set, because " \
"the order of batch data generated by reader " \
"must be the same in the respective processes."
# NOTE: the order of batch data generated by batch_reader
# must be the same in the respective processes.
if num_trainers > 1:
train_reader = fluid.contrib.reader.distributed_batch_reader(
train_reader)
data_loader = model.data_loader
data_loader.set_sample_list_generator(train_reader, places=place)
else:
if num_trainers > 1: shuffle = False
train_reader = reader.train(
batch_size=total_batch_size, shuffle=shuffle)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
def train_loop():
data_loader.start()
train_stats = TrainingStats(cfg.log_window, keys)
try:
start_time = time.time()
prev_start_time = start_time
for iter_id in range(cfg.max_iter):
prev_start_time = start_time
start_time = time.time()
outs = exe.run(compiled_train_prog,
fetch_list=[v.name for v in fetch_list])
stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
train_stats.update(stats)
logs = train_stats.log()
if iter_id % 10 == 0:
strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
now_time(), iter_id,
np.mean(outs[-1]), logs, start_time - prev_start_time)
print(strs)
sys.stdout.flush()
if (iter_id) % cfg.TRAIN.snapshot_iter == 0 and iter_id != 0:
save_name = "{}".format(iter_id)
checkpoint.save(exe, train_prog,
os.path.join(cfg.model_save_dir, save_name))
if (iter_id) == cfg.max_iter:
checkpoint.save(
exe, train_prog,
os.path.join(cfg.model_save_dir, "model_final"))
break
end_time = time.time()
total_time = end_time - start_time
last_loss = np.array(outs[0]).mean()
except (StopIteration, fluid.core.EOFException):
data_loader.reset()
train_loop()
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
check_gpu(args.use_gpu)
train()