-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathreader.py
executable file
·180 lines (160 loc) · 6.02 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
import six
import cv2
import math
import paddle
from collections import deque
import data_utils
from roidbs import ICDAR2015Dataset, ICDAR2017Dataset
from config import cfg
from PIL import Image
from data_utils import _resize
num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
np.random.seed(10)
def roidb_reader(roidb, mode):
im, im_scales, gt_boxes, gt_classes = data_utils.get_image_blob(roidb, mode)
im_id = roidb['im_id']
is_crowd = roidb['is_crowd']
im_height = np.round(roidb['height'] * im_scales)
im_width = np.round(roidb['width'] * im_scales)
is_difficult = roidb['is_difficult']
im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
if mode == 'val':
return im, gt_boxes, gt_classes, is_crowd, im_info, im_id, is_difficult
outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id)
return outs
def RRPNData(mode,
batch_size=None,
total_batch_size=None,
padding_total=False,
shuffle=False,
shuffle_seed=None): #,
#roidbs=None):
total_batch_size = total_batch_size if total_batch_size else batch_size
assert total_batch_size % batch_size == 0
if cfg.dataset == "icdar2015":
icdar2015_dataset = ICDAR2015Dataset(mode)
roidbs = icdar2015_dataset.get_roidb()
else:
icdar2017_dataset = ICDAR2017Dataset(mode)
roidbs = icdar2017_dataset.get_roidb()
print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs)))
def reader():
if mode == "train":
if shuffle:
if shuffle_seed is not None:
np.random.seed(shuffle_seed)
roidb_perm = deque(np.random.permutation(roidbs))
else:
roidb_perm = deque(roidbs)
roidb_cur = 0
count = 0
batch_out = []
device_num = total_batch_size / batch_size
while True:
start = time.time()
roidb = roidb_perm[0]
roidb_cur += 1
roidb_perm.rotate(-1)
if roidb_cur >= len(roidbs):
if shuffle:
roidb_perm = deque(np.random.permutation(roidbs))
else:
roidb_perm = deque(roidbs)
roidb_cur = 0
# im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks
datas = roidb_reader(roidb, mode)
if datas[1].shape[0] == 0:
continue
batch_out.append(datas)
end = time.time()
#print('reader time:', end - start)
if len(batch_out) == batch_size:
yield batch_out
count += 1
batch_out = []
iter_id = count // device_num
if iter_id >= cfg.max_iter * num_trainers:
return
elif mode == "val":
batch_out = []
for roidb in roidbs:
im, gt_boxes, gt_classes, is_crowd, im_info, im_id, is_difficult = roidb_reader(
roidb, mode)
batch_out.append((im, gt_boxes, gt_classes, is_crowd, im_info,
im_id, is_difficult))
if len(batch_out) == batch_size:
yield batch_out
batch_out = []
if len(batch_out) != 0:
yield batch_out
return reader
def train(batch_size,
total_batch_size=None,
padding_total=False,
num_workers=20,
shuffle=True,
shuffle_seed=None):
return RRPNData(
'train',
batch_size,
total_batch_size,
padding_total,
shuffle=shuffle,
shuffle_seed=shuffle_seed)
def test(batch_size, total_batch_size=None, padding_total=False):
return RRPNData('val', batch_size, total_batch_size, shuffle=False)
def infer(file_path):
def reader():
imgs = os.listdir(file_path)
imgs.sort()
for image in imgs:
if not os.path.exists(file_path):
raise ValueError("Image path [%s] does not exist." %
(file_path))
with open(os.path.join(file_path, image), 'rb') as f:
data = f.read()
data = np.frombuffer(data, dtype='uint8')
img = cv2.imdecode(data, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img, im_scale = _resize(img, target_size=1000, max_size=1778)
img = img.astype(np.float32, copy=False)
img = img / 255.0
mean = np.array(cfg.pixel_means)[np.newaxis, np.newaxis, :]
std = np.array(cfg.pixel_std)[np.newaxis, np.newaxis, :]
img -= mean
img /= std
img = img.transpose((2, 0, 1))
h = img.shape[1]
w = img.shape[2]
im_info = np.array([h, w, im_scale], dtype=np.float32)
yield [(img, im_info)]
return reader
if __name__ == '__main__':
from utility import parse_args
args = parse_args()
train_reader = train(1, shuffle=True)
import time
time0 = time.time()
for iter_id, data in enumerate(train_reader()):
print('iter:', iter_id)
print('cost:', time.time() - time0)
time0 = time.time()