-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathinfer.py
executable file
·74 lines (68 loc) · 2.47 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import time
import numpy as np
import pickle
import paddle
import paddle.fluid as fluid
import reader
import models.model_builder as model_builder
import models.resnet as resnet
import checkpoint as checkpoint
from config import cfg
from data_utils import DatasetPath
from eval_helper import *
from utility import print_arguments, parse_args, check_gpu
def infer():
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
class_nums = cfg.class_num
model = model_builder.RRPN(
add_conv_body_func=resnet.ResNet(),
add_roi_box_head_func=resnet.ResNetC5(),
use_pyreader=False,
mode='infer')
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
model.build_model()
pred_boxes = model.eval_bbox_out()
infer_prog = infer_prog.clone(True)
exe.run(startup_prog)
fluid.load(infer_prog, cfg.pretrained_model, exe)
infer_reader = reader.infer(cfg.image_path)
data_loader = model.data_loader
data_loader.set_sample_list_generator(infer_reader, places=place)
fetch_list = [pred_boxes]
imgs = os.listdir(cfg.image_path)
imgs.sort()
for i, data in enumerate(data_loader()):
result = exe.run(infer_prog,
fetch_list=[v.name for v in fetch_list],
feed=data,
return_numpy=False)
nmsed_out = result[0]
im_info = np.array(data[0]['im_info'])[0]
im_scale = im_info[2]
outs = np.array(nmsed_out)
draw_bounding_box_on_image(cfg.image_path, imgs[i], outs, im_scale,
cfg.draw_threshold)
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
check_gpu(args.use_gpu)
infer()